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Abstract

Several algorithms are proposed in the literature to solve the difficult problem of feature point

correspondence between image pairs. In order to obtain good quality results, they make use of

different approaches and constraints to improve the quality of the matching set. A matching strategy

is considered useful if it is able to filter out many of the mismatches found in an input matching set

while keeping in most of the good matches present. In this paper, we present a survey of different

matching strategies. We propose an empirical evaluation of their performance. The validation process

used here determines the number of good matches and the proportion of good matches in a given

match set and this for the different parameter values of a matching constraint.

Keywords: feature point correspondence, stereo matching, interest point detection, corners.

1 Introduction

The correspondence problem remains of central interest in the field of image analysis. Matching feature

points between images constitutes a fundamental step in many computer vision applications such as the

recovery of 3D scene structures, the detection of moving objects, or the synthesis of new camera views.

Although solutions for the correspondence problem are still being investigated for difficult cases, great

advances has been made in establishing correspondence between views generated by an uncalibrated system

of cameras. In the recent literature, the following scheme has emerged as the method of choice to perform

an effective feature-based view matching [26, 31, 34]:

1. Feature points (corners) are detected [13, 22, 30].

2. Correlation is applied between feature points, then a threshold is applied to obtain a first set of

candidate matches.

3. A robust method, such as RANSAC or LMedS, is used to estimate the epipolar or trifocal geometry

of the camera system [9, 34].

4. Candidate pairs that are incompatible with the estimated camera geometry are rejected.

5. Guided matching using the estimated geometry is performed to find more matches.
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The efficiency and accuracy of this scheme depends greatly on the quality of the candidate match set

obtained in Step 2. Although usually robust to some noise, the estimator used in Step 3. requires a

candidate match input set with a sufficient number of correct matches to find an accurate solution, and

with a low proportion of mismatches to perform efficiently. For these reasons, another step is often added

between steps 2. and 3. to filter the candidate match set. This is generally done by the introduction of

some basic constraints that allow to eliminate matches that are suspected to be incorrect. These additional

constraints are basic in the sense that, at the stage where they are applied, the epipolar or trifocal geometry

of the camera system’s geometry is not yet known. Thus image rectification, or guided matching are not

an option at this point.

In this paper, we propose to empirically compare and validate the effectiveness of different matching

strategies that aim to reject false matches. They will be evaluated in terms of their ability to reduce the

number of false matches in a given match set, while preserving the good ones. The match set obtained

in this way is then intended to serve as input to a robust estimation of the epipolar geometry which can

thereafter be used to further improve the match set. It is important to note that the use of the constraints

and strategies studied in this work would not be sufficient, by themselves, to obtain a match set of a

quality sufficient to be suitable for most computer vision applications. Instead, they have to be used

within a more elaborate matching scheme. The objective of the present study is therefore to validate the

constraints used inside matching algorithms, not to study these algorithms as a whole. These algorithms

have been surveyed and empirically compared in several other works [8, 11, 15, 27].

In [21], a framework to evaluate stereo vision methods is proposed. The author has also explicitly

identified the constraints used in each of the studied methods. The work presented in [18] breaks down the

matching process and reviews several matching methods, setting the stage for an empirical comparison, and

[17] presents an algorithm for matching which exploits many constraints that are visually validated. Many

authors use an iterative process in their matching algorithm before using a robust estimator. Relaxation

is such an iterative process [34]. In this case, an energy function, corresponding to some aggregate value of

a constraint applied to the pairs in a candidate set, is iteratively minimized. Testing the same constraint

outside of such an iterative scheme represents a good way to establish its effectiveness. This why we have

chosen to limit the scope of this study to the direct application of constraints.

Finally, it worths noting that many authors have presented different approaches for dealing with large

changes in scale and rotations, or with the deformation induced by important change in viewpoints (i.e.

with wide baselines) [3, 23, 28, 32]. To restrict the scope of this study, we chose to limit ourselves to

constraints that are meant to deal with images where the change in viewpoint is limited, e.g. the case
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of stereoscopic images. For the image pairs that this work intends to deal with, the methods cited above

would be expected to produce inferior results as invariance to certain image transformations is necessarily

obtained at the expense of some discriminating power.

The next section describes our scheme for evaluating matching methods. Then, section 3 studies the role

of feature point detection in matching. Section 4 looks at the way in which correlation is applied. Section

5 is concerned with matching constraints that require corresponding features to have similar properties.

Section 6 looks at matching constraints that require matches to have similar disparities as their neighbors.

Finally, section 7 justifies the use of some matching constraints when the goal is fundamental matrix

estimation. Section 8 is a conclusion.

2 Validating Point Correspondences

The feature point matching problem consist in finding points, in different images, that correspond to the

same scene element. These matches are obtained from a large set of candidates selected in each image. In

order to evaluate and compare various matching strategies, we propose to use image pairs for which all

possible good matches, among a fixed set of detected feature points, have been previously identified. It

will then be possible to compare the result of the application of a given matching approach against this

exact solution.

For our experiments, the six image pairs shown in Figure 1 and 2 have been selected. The camera

displacement in the image pairs Kitchen and Lab consists mainly of a translation (smaller in the case of

Lab), while in Church it involves some rotation and in Building the rotation is even more significant. In

House the disparity is mainly caused by a zoom, and finally, in Objects there is a significant change in the

lighting conditions. Feature points have been detected on each image (see section 3). If N corners are

detected in the first image and N ′ in the second, then N ×N ′ possible matches are to be considered. To

produce the exact set, these N×N ′ matches must be examined to identify all the good matches. However,

because of their great number, it would be very laborious to visually examine all these possible matches.

Fortunately, to build this ground truth set, not all pairs need to be considered. First, it is easy, by

visual inspection, to determine the horizontal and vertical disparity range of each image pair. All possible

matches having a disparity outside this range can be rejected. Secondly, the matches that do not agree

with the epipolar geometry of the image pair can be automatically eliminated. To this end, the epipolar

geometry of each image pair was estimated using the method described in [26]. Following this pruning, we

are left with a smaller set of image point pairs from which all the good matches can be extracted manually
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in reasonable time1.

Having identified the set of all possible good matches between detected points in an image pair, it be-

comes possible to evaluate the effectiveness of different strategies used for matching: a matching constraint

is considered useful if it filters out many mismatches found in an input matching set, while preserving

most good matches.

A given method will use different parameters or thresholds towards accepting or rejecting a given

candidate match. There will be, usually, a tradeoff in the selection of these parameters. In order to

appreciate the effectiveness of an approach, results will be shown on a graph showing the number of good

matches in the resulting match set (on the Y-axis) versus the proportion of good matches in that set (on

the X-axis). For each image a curve is generated representing results obtained for different values of a

control parameter associated with the method under study. In such a graph, a perfect method would

be one producing a horizontal line, i.e. all points eliminated being false matches, thus increasing the

proportion of good matches as the filtering becomes more severe. Conversely, a useless technique would be

one that produces a vertical line, i.e. one that randomly eliminates points, thus keeping the good match

proportion constant. This is illustrated in Figure 3. Note that, in practice, we might expect that an

effective method would produce a nearly horizontal curve until some point where the curve will start to

drop vertically, when more severe thresholding cannot further improve the quality of the match set.

3 Corners as Points of Interest

The choice of a feature point detector certainly has an impact on the results produced by a given matching

scheme. Several corner detectors have been proposed in the past, [30] and [22] review some of them. Among

the most popular are the ones based on the Plessey operator [12] defined with the following matrix:



〈( δI(x,y)
δx

)2〉 〈 δI(x,y)
δx

δI(x,y)
δy

〉
〈 δI(x,y)

δx
δI(x,y)

δy
〉 〈( δI(x,y)

δy
)2〉


 (1)

where 〈I〉 denotes a smoothing operation on I. By diagonalizing this matrix, we obtain the two principal

gradient directions (given by the eigenvectors) and their respective strength (given by the eigenvalues).

A corner can therefore be defined as a point where the magnitude of both these directional gradients is

high. Noble [25] and Harris[13] have defined operators that exploit this idea, using the determinant and

the trace of matrix (1).

1These images, the detected feature points and the correct match set are available

at www.site.uottawa.ca/research/viva/projects/imagepairs/
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The Intel OpenCV library2 proposes an implementation based on explicit eigen decomposition. In

this case, a corner point is identified where the smallest eigenvalue of matrix (1) is greater than a given

threshold3. In addition, non-maxima suppression should be performed in order to eliminate clusters of

corners.

When feature points are detected for the purpose of matching, the key property of the detector is

repeatability: in different views of the same scene, the detector should extract the same points, despite

the variations due to a change in perspective or in the lighting conditions. The Harris detector is usually

considered as the most stable detector with regards to this property [29]. To confirm this result, we

compared it to the SUSAN corner detector [30], another well-known detector that uses a different strategy

to identify corners. This operator is based on the computation of the area, inside a circular window, having

similar brightness to the center point.

These corner detectors were used to extract approximatively 500 points in each image pair shown in

Figure 1 and 2. Then, all good matches among these corners were found using the technique described

in Section 2. From this, the number of scene corners that have been correctly detected in both images

(the repeatability of the corner detector), was obtained. Comparing these numbers between Harris and

SUSAN for an equal number of detected features results in a repeatability approximatively 3 times superior

for Harris. For example, in the case of the Kitchen image pair, using the corners detected with the

OpenCV-Harris detector, 148 correct matches were found, while SUSAN only produced 48 (cf. Figure 4).

Consequently, the OpenCV-Harris detector seems indeed to be more stable.

The OpenCV library includes a second function4 for corner detection, which filters the corners found

by the first one. It ensures that the detected corners are far enough from one another. This is done by

iteratively finding the strongest feature point, and throwing out all other feature points that are closer

than a threshold distance from it. In order to determine if this method brings an increase in the quality

of the candidate match set, the corners detected in both images of each pair were again counted, for

different distance thresholds. The resulting graph, shown in Figure 5, demonstrates that this ’cleaning’ of

the corner set significantly worsens the set of candidate matches. Thus, this function should not be used

when corners are detected for the purpose of matching between different views.

The OpenCV-Harris operator will therefore be the one used in our experiments. However, it should

be noted that, when using it, the value of the threshold imposed on the eigenvalues directly influences

2freely available at developer.intel.com
3This function is called cvCornersEigenValsandVecs.
4This second function is called cvGoodfeatureToTrack.
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the number of corners detected. To determine the effect of modifying the threshold on the quality of the

candidate set, corners were detected using different thresholds on the test image pairs, and the number

of corners detected in both images was determined. Results are shown in Figure 6. This graph shows

that, within a reasonable range, the proportion of detected corners remain relatively constant. It therefore

follows that one can increase the number of good matches just by accepting more corners. However, this is

done at the price of a proportional increase of the total number of corners to analyze. The corner detector’s

threshold should therefore be set so that the number of matches found is suitable, but not much greater

than the amount needed for the considered application.

4 Correlation

Correlation is the basic mean by which interest points of different images are matched. Correlation func-

tions measure the similarity between point neighborhoods. Different correlation functions are presented

in the following papers [1, 4, 5, 33, 34].

4.1 Average Squared Difference Correlation

A first simple correlation function consists of the average square difference (ASD) of the intensities of

corresponding pixels, performed between neighborhoods of the points. ASD correlation is defined for a

pair of points m and m′ as:

ASD(m,m′) =
1

N

∑

n∈N (m),n′∈N (m′)
[I(n)− I ′(n′)]2 (2)

where N is the size of the neighborhood N ().

Two basic parameters influence the performance of the correlation: the size of the window (the neigh-

borhood) used to correlate point pairs, and the threshold value on which the decision to accept or reject

a match is based. The results shown in Figure 7(a) and (b), where ASD is applied to the image pairs of

Figure 1 and 2, illustrate how these parameters affect the quality of the resulting match set. As expected,

tightening the threshold increases the proportion of good matches, but at the same time, decreases the

number of good matches quite rapidly.

The experiment also shows that increasing the size of the window is an effective mean to identify and

reject more false matches (an observation also made in [24]), but this is only true up to a certain size (until

about 11× 11, in our experiments). We should note that the ASD correlation was completely ineffective
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on the Objects image pair, where there is an important change of illumination. A normalizing factor must

therefore be introduced to cope with this problem.

4.2 Variance Normalized Correlation

Variance normalized correlation (VNC) is another commonly used correlation function. It offers the

advantage of producing stable and reliable results over a wide range of viewing conditions. VNC is defined

for a candidate match (m,m′) as:

V NC(m,m′) =
1

N
√

σ2
I (m)σ2

I′(m
′)

∑

n∈N (m),n′∈N (m′)
[I(n)− I(m)][I ′(n′)− I ′(m′)] (3)

where I(m) and σ2
I (m) are respectively the mean and the variance of the pixel intensities over the neigh-

borhood of point m. The fact that VNC scores are normalized to a range [−1, 1], is an advantage over

other correlation functions, as it makes the choice of a threshold much easier.

Results of the application of VNC, shown in Figure 7(c) and (d), demonstrate a behavior similar to the

one of ASD, except for the Objects pair where VNC did not fail when faced with a change of illumination,

as did the ASD correlation. For any choice of parameters, the results obtained by VNC are always superior

to the ones of ASD. For example, by comparing Figure 7(a) and (c), and excluding the Lab and Objects

images, we see that the average rate of reduction of the number of good matches in the case of ASD is about

22.6 (meaning that when the proportion of good matches is increased by 10%, the absolute number of good

matches is reduced by 22.6). For VNC, this rate is approximatively 14.4 on average. Our experiments here

simply confirms a well known fact that VNC, although more complex, is superior to ASD. Considering

the computational power now available, VNC should always be the method of choice when correlating

windows.

4.3 Unicity

So far, all pairs having a correlation score above some threshold value were considered. Thus, a feature

point could be matched with several others. Imposing unicity means that for each feature point in one

image, only its strongest match in the other image is considered. A generalization of unicity was studied,

where the n strongest matches are kept.

Figure 8(a) shows the results of applying VNC to our image pairs while imposing unicity of different

orders. Unicity proved beneficial, as it rejected many mismatches. This important improvement obtained

in the proportion of good matches is at the expense of a fairly small loss in the absolute number of good
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matches. The resulting large improvement in the quality of the match sets should justify the general use

of unicity of order 2 or 1.

4.4 Symmetry

When unicity is imposed, VNC becomes asymmetric, a situation which is physically impossible. Thus, a

right image point, which gives the highest correlation score, when paired with a certain left image point,

can itself be paired with a different left image point with a higher score.

Imposing symmetry means keeping only pairs in which each point is the other’s strongest match [10].

This increases the chances that the two points in the matched pairs correspond to projections of the same

physical scene point. Figure 8(b) shows the results of the same experiment as in 8(a), but where the

symmetry constraint has been applied in addition to unicity. It shows that imposing symmetry is clearly

advantageous as it eliminates many mismatches while affecting only few good ones. Note that symmetry is

generally imposed after unicity even if, in fact, symmetry can hold for matches that violates a unicity of a

given order. This is often the case for scenes where several occlusion boundaries can be found; the church

image pair is such an example where more than 20 good matches are lost when symmetry is applied after

unicity of order 1 rather than order 8.

Nevertheless, imposing unicity and symmetry constitutes a very effective way of improving the quality

of a match set. The fact that these constraints have a relatively low computational costs reinforces this

statement.

For this reason, the experiments presented in the remainder of this work will use match sets obtained

from VNC on 9× 9 windows and using a threshold of 0.8 with first order unicity and symmetry applied.

Table 1 summarizes the characteristics of the resulting match sets. The question now is to determine how

the quality of these match sets can be further improved.

5 Using Feature Point Properties

Many properties can be used to describe image points. Some should remain relatively unchanged in

different views, and hence could be used to constrain matching.
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Image pair Proportion of Number of

good matches good matches

Kitchen 54.5% 78

Building 48.7% 56

Church 56.2% 63

Lab 67.8% 192

House 50.7% 37

Objects 67.5% 81

Table 1: Characteristics of the match sets obtained from VNC correlation using a 9 × 9 window and a

threshold of 0.8 on which unicity of order 1 and symmetry have been applied.

5.1 Using corner characteristics

Curvature, gradient magnitude and direction, and orientation of incident edges are generally considered

as good invariant feature characteristics. In [7], the gradient direction and the curvature are used among

other constraints in a correlation scheme. Other such constraints are described in [2].

The principal curvatures of a point are given by the eigenvalues of matrix (1), λ1 and λ2. In [19], they

are used to define the cornerness at a point P as

cP = ‖λ2
1 + λ2

2‖ (4)

The ratio of the cornerness of 2 corners is then used as a correlation function.

A corner orientation constraint can also be defined using matrix (1). Its eigenvectors correspond to

the two main gradient directions, and thus, represent the two edges of the detected corner. The corner

orientation can then be defined as the bisector of these two directions. This orientation can be used to

constrain matching by requiring that corresponding corners have a similar direction.

Figure 9 shows the results of applying the constraint on cornerness, (a), and the one on corner orienta-

tion (b). It is seen that these constraints do not improve the candidate match set. This is not surprising

since such properties are indirectly taken into account by correlation. Thus, such properties should not be

used in conjunction with a correlation function that enforces similarity between the corner neighborhoods.
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5.2 Corner Shape Similarity

Another possible strategy is to require that the corners in a pair have similar shapes. A corner shape is

defined here as a small area around the feature point, belonging to the same scene object as this feature

point. A method to extract the corner from its background is therefore required. Two such simple methods

were investigated.

The first method uses univalue segment assimilating nuclei (USANs), as described in [30]. The idea is

to extract the portion of feature point neighborhoods that is of similar intensity values. A USAN is then

assumed to belong to the same scene object as the feature point.

The other method is inspired from rudimentary block truncation coding [6]. The correlation window

is separated into two regions according to the window’s average intensity value. The foreground consists

of the pixels within the same region as the feature point.

Once corner shapes have been extracted, the Hamming distance between the obtained binary fore-

ground/background maps is computed and pairs for which this distance is above some threshold are

eliminated. Results are shown in Figure 10(a) and (b). While foreground extraction using USAN does not

seem to be very effective, results based on truncated blocks show a certain improvement in the proportion

of good matches, but the corresponding reduction in the number of good matches might appear excessive

for some applications.

5.3 Eliminating the Background

Some correlation functions, such as [5], attempt to consider only the scene objects on which the feature

points lie, to establish correspondence. The foreground extraction methods of subsection 5.2 can be used

to determine the region to which correlation should be restricted.

Results obtained when using this kind of selective correlation (where VNC is applied directly to the

foregrounds of corners, but is weighted by a multiplying factor when applied to the background) are shown

in Figure 11(a) and (b). Clearly, these graphs show that performing a correlation on the foregrounds

gives better results than using the simple shape similarity criterium of the previous subsection. Higher

proportions of good matches can be achieved with higher multiplying factors, but at the cost of reducing

their number.
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6 Enforcing Disparity Consistency

It is reasonable to assume that, in most cases, the disparity of a match should be similar to the ones of its

neighbors. Hence, constraints could be established that ensure that matches behave as their neighbors.

6.1 Confidence Measure

Based on the principle that each point of a match pair should have a neighborhood with similar properties,

a confidence measure was proposed in [34]. It is defined for a pair of points (m,m′), using the feature

points belonging to their neighborhoods N(m) and N(m′):

CMmm′ = cmm′
∑

n∈N(m)

max
n′∈N(m′)

2cnn′δ(m,m′; n, n′)
2 + d(m,n) + d(m′, n′)

(5)

where c.. is the correlation score (e.g. VNC), d(., .) is the Euclidean distance, and

δ(m,m′; n, n′) =





e−r/εr if(n, n′) is a candidate match and r < εr

0 otherwise
(6)

where r is a relative distance difference

r =
2 |d(m,n)− d(m′, n′)|
d(m,n) + d(m′, n′)

(7)

Candidate matches, found in the neighborhood, having a relative position similar to the pair being con-

sidered, are counted by the measure.

Figure 12 shows the results of constraining the confidence measure with εr = 10 and 61× 61 neighbor-

hoods. A drawback of this measure is that it cannot be estimated if a point does not have close neighbors

in the candidate set. Also, the method was found difficult to tune because several parameters have to be

adjusted. Although this constraint achieves positive results on some of the image pairs, it is seen that it

does not perform as well as the other constraints of this section.

6.2 Disparity Gradient

The disparity gradient is a measure of the compatibility of two pairs [20]. If two pairs (m,m′) and (n, n′),

have disparities d(m,m′) and d(n, n′) respectively, then their cyclopean separation, dcs(m,m′; n, n′), can

be defined as the vector joining the midpoints of the line segments mm′ and nn′, and, their disparity

gradient is defined as:

∆d(m,m′; n, n′) =
|d(m,m′)− d(n, n′)|
|dcs(m,m′; n, n′)| (8)
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Compatibility measures, such as the disparity gradient can be used in a iterative process, as in [26],

where incompatible matches are iteratively removed until all pairs have a similar disparity gradient. Here,

the disparity gradient as well as the constraints of the next subsection are used in a new way, in a local

constraint that enforces that a match’s disparity be similar to those of it’s closest neighbors.

This measure was used in a constraint that accepts pairs that share a disparity gradients below some

threshold value with at least 2 of its 5 closest neighbors. Figure 13 (a) shows the results of applying this

constraint with varying threshold, and demonstrates that it can eliminate a significant number of outliers

while eliminating few good matches.

A second experiment was performed to evaluate the effect of a change in the proportion of the neighbors

that must be compatible with a match, in order for it to be considered valid. Figure 13 (b) shows the result

of applying the constraint with a threshold of 0.4, but where 2 out of n neighbors must be compatible, for

different ns. This shows that this constraint is most effective when applied to the 3 to 5 closest neighbors.

6.3 Relative Positions of the Neighbors

In a similar way to what may be done using the disparity gradient, the relative position of two pairs can

be constrained. For good matches, the vectors
−−→
mm′ and

−→
nn′ should be similar. Thus, a constraint was

used, that requires the angle between the two vectors to be smaller then a given threshold, for at least 2

of a pair’s 5 closest neighbors. Another constraint, that requires the ratios of the vector magnitudes for 2

of the neighbors to be within certain bounds, was also tested.

Figure 13 (c) shows results of applying the constraint on angles, and (d) shows the constraint on

magnitudes. As long as the image pair’s baseline is relatively small, these simple constraints give similar

results as the constraint on the disparity gradient. However, it is more difficult to select a good thresholds

on the disparity angle and magnitude.

7 Computing Fundamental Matrices from Match Sets

The matching strategies presented in this work aim at improving match sets by filtering out bad matches.

The legitimacy of this objective will now be demonstrated by showing how a good initial match set can

greatly improve the efficiency of fundamental matrix estimation (step 3, mentioned in Section 1).

The fundamental matrix is usually found using a RANSAC scheme, in which random selections of 8

matches are iteratively considered [14]. A fundamental matrix is computed for each selection, and its
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accuracy is assessed by considering the cardinality of the subset of the candidate matches that support it.

After a sufficient number of random selection, it is expected that an accurate estimate of the fundamental

matrix will be uncovered. The number of iterations required is basically a function of the proportion, p, of

good matches in the considered set. The number of iterations, n, needed to obtain a correct fundamental

matrix with 95% probability is expressed theoretically as

n =
log (0.05)

log (1− p8)
(9)

Table 7 presents the characteristics of different match sets which could be used for fundamental matrix

estimation, for the 6 image pairs of Figure 1 and 2. The first two lines of each row correspond to the sets

obtain using only VNC, with thresholds of 0.8 and 0.9 respectively. The last line corresponds to the match

set obtained with the 0.8 VNC threshold, on which the additional constraints of unicity and symmetry

were imposed, as well as a background elimination constraint using truncated blocks with a threshold of

0.9 and a background multiplier of 0.25, and a disparity gradient constraint with a threshold of 0.4.

It is seen that simply using VNC with a low threshold can yield poor results, and that the most

advantageous way of improving the match set is to filter it, rather then simply increasing the VNC

threshold.

We also used the Roth’s software5, described in [26], to estimate fundamental matrices from the match

sets of table 7. Figure 14 shows some results which illustrate how the use of matching constraints makes

the process of robust fundamental matrix estimation more efficient. The solution found in Figure 14(d),

where the match set on which several constraints have been applied was used, is indeed close to the correct

solution shown in Figure 14(b). This solution was found in less than 500 RANSAC iterations. This is in

contrast with the solutions found using a non-filtered match set that required, in this experiment, about

10000 iterations before finding an acceptable, but still inferior solution.

8 Conclusion

It can be seen, from the experiments described here, that many methods are useful in improving the quality

of sets of candidate matches. To summarize, the Harris corner detector was confirmed as a stable feature

point extractor. It was then shown that VNC produces a good first candidate match set, when unicity

and symmetry are imposed. Also, constraints that use simple models of the corners were investigated and

5available at www2.vit.iit.nrc.ca/̃.gerhard
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Match set Proportion of Number of Expected number

good matches good matches of iterations

Kitchen, VNC 0.8 20.0% 96 1 170 207

Kitchen, VNC 0.9 45.7% 59 1 564

Kitchen, VNC 0.8 + constraints 59.8% 70 181

Building, VNC 0.8 16.7% 83 4 951 418

Building, VNC 0.9 36.1% 48 10 407

Building, VNC 0.8 + constraints 65.3% 47 90

Church, VNC 0.8 12.3% 112 55 414 078

Church, VNC 0.9 19.1% 42 1 697 813

Church, VNC 0.8 + constraints 76.8% 43 24

Lab, VNC 0.8 27.4% 201 93 705

Lab, VNC 0.9 53.7% 195 431

Lab, VNC 0.8 + constraints 71.7% 195 42

House, VNC 0.8 13.2% 72 33 246 450

House, VNC 0.9 22.6% 36 433 770

House, VNC 0.8 + constraints 63.9% 23 107

Objects, VNC 0.8 29.8% 87 48 240

Objects, VNC 0.9 90.3% 56 6

Objects, VNC 0.8 + constraints 80.0% 80 17

Table 2: Characteristics of different match sets and the theoretical expectation of the number of iterations

required to find the exact fundamental matrix using RANSAC.
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found to be beneficial. Finally, comparing matches with their neighbors to ensure that they have similar

disparities was shown to allow the rejection of many mismatches.

A disadvantage of combining many constraints is that it results in more thresholds, and thus a greater

need for tuning. However, as seen in the example of Table 7, good, though suboptimal, results can be

obtained by combining constraints using conservative thresholds.

In the last section, it was demonstrated that the use of effective matching constraints can greatly

improve the process of fundamental matrix estimation. This work was restricted to the study of matching

in the case of image pairs with relatively small baselines, an interesting extension would be to investigate

the strategies that work best in the case of image pairs that are more difficult to match.
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(a) Kitchen

(b) Building

(c) Church

Figure 1: Three of the six test image pairs with feature points extracted (approximatively 500 per image).
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(a) Lab

(b) House

(c) Objects

Figure 2: Three of the six test image pairs with feature points extracted (approximatively 500 per image).

The Lab image pair is from University of Tsukuba.
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Figure 3: The evolution of the number of good matches, in a given match set, versus their proportion

in that set. The three curves correspond to cases of methods behaving perfectly, randomly, or typically,

as discussed in the text. The common starting point corresponds to an initial set containing, in this

fictitious illustrative example, 90 good matches representing 20% of the total set. Data points on each

curves correspond to different parameter selections, filtering being more severe as we move bottom-right.

Figure 4: The corners extracted by the SUSAN corner detector, for the Kitchen image pair (approxima-

tively 500 per image).
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Figure 5: Eliminating corners close to stronger ones. The numbers shown represent the minimal acceptable

distance between corners.
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Figure 6: Modifying the threshold value of the Harris corner detector.
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Figure 7: Correlating corners of Fig. 1 and 2. Each data point represents a test with particular parameter

values. (a) ASD correlation threshold between 200 and 1100 on 11 × 11 windows. (b) ASD window size

between 3 × 3 and 21 × 21, with ASD threshold of 700. (c) VNC threshold between 0.7 and 0.925, on

11× 11 windows. (d) VNC window size between 3× 3 and 21× 21, with VNC threshold of 0.8.
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Figure 8: (a) Imposing the unicity constraint with varying order while applying VNC to the corners of

Figure 1 and 2. (b) Imposing symmetry on the sets obtained in (a). VNC is applied to 9 × 9 windows

with a threshold of 0.8.
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Figure 9: Applying constraints on the corner characteristics. (a) Constraint on the cornerness. (b)

Constraint on the corner orientation.
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Figure 10: Applying the shape similarity constraint on 9 × 9 windows, for different choices of threshold.

(a) using USANs. (b) using truncated blocks.
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Figure 11: Applying the background elimination constraints on 21 × 21 windows. (a) with a varying

threshold, and a multiplier of 0 for the background. (b) with a varying multiplier for the background, and

a correlation threshold of 0.92.
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Figure 12: Constraints on the confidence measure, with varying threshold.
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Figure 13: Constraints on the disparity. (a) Constraint on the disparity gradient, with varying threshold.

(b) Varying the number of neighbors for the disparity gradient. (c) Constraint on the disparity angles,

with varying threshold. (d) Constraint on the disparity magnitude, with varying threshold.
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(a) (b)

(c) (d)

(e) (f)

Figure 14: The epipolar geometry given by fundamental matrices computed from different match sets. (a)

The left image with selected points. The corresponding epipolar lines in the right image, as calculated

from : (a) the set of exact matches. (c) the non-filtered match set after 500 RANSAC iterations. (d)

the filtered match set after 500 RANSAC iterations. (e) the non-filtered match set after 7500 RANSAC

iterations. (f) the non-filtered match set after 10000 RANSAC iterations.
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