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Abstract Images acquired by heterogeneous image sen-
sors may provide complementary information about
the scene, for instance, the visual image can provide
personal identification information like the facial pat-
tern while the infrared (IR) or millimeter wave image
can detect the suspicious regions of concealed weapons.
Usually, a technique, namely multiresolution pixel-level
image fusion is applied to integrate the information
from multi-sensor images. However, when the images
are significantly different, the performance of the mul-
tiresolution fusion algorithms is not always satisfactory.
In this study, a new strategy consisting of two steps is
proposed. The first step is to use an unsupervised fuzzy
k-means clustering to detect the concealed weapon
from the IR image. The detected region is embedded in
the visual image in the second step and this process is
implemented with a multiresolution mosaic technique.
Therefore, the synthesized image retains the quality
comparable to the visual image while the region of the
concealed weapon is highlighted and enhanced. The

experimental results indicate the efficiency of the pro-
posed approach.

Keywords Concealed weapon detection Æ Unsupervised
clustering Æ Multiresolution mosaic Æ Image fusion

1 Introduction

To address the emerging threats from terrorists, there is
a need to develop an efficient technique for heightened
security requirements and law enforcement. Currently,
airport personnel examine passengers using metal
detector, hand wands, and physical searches [1]. Hence,
passengers with concealed objects may not be detected.
Imaging systems with a radiation wavelength longer
than 20 lm can penetrate clothing and thus have the
potential to detect concealed weapons [2]. The enabling
sensing mechanisms being studied include infrared (IR),
acoustic, millimeter wave (MMW), X-ray sensors and so
on [3]. Multiple image modalities of different radiation
wavelengths can provide complementary information
about the scene. Therefore, the use of multiple sensing
modalities can increase the overall performance in
comparison with single sensor systems. A technique,
namely image fusion provides a solution to combine
information from multiple images and generates a single
image that gives a more accurate or complete description
of the scene than any of the individual source images [4].
The application of image fusion techniques can be found
in a wide range of applications including multi-focus
imagery, concealed weapon detection (CWD), intelligent
robot, surveillance system, medical diagnosis, remote
sensing, non-destructive testing, etc. [3–14].

Based on requirements of the CWD application,
there are different ways to implement the multi-modal
image fusion process. The principle idea is illustrated in
Fig. 1. The first purpose of fusion is to facilitate the
detection process. Like the circle in Fig. 1, the fusion
operation is to achieve an enhanced result for easing
further analysis, recognition, or classification. Varshney

This material is based on part of the work carried out at the SPCR
laboratory of Lehigh University and the work is partially sup-
ported by the U. S. Army Research Office under grant number
DAAD19-00-1-0431. The content of the information does not
necessarily reflect the position or the policy of the federal govern-
ment, and no official endorsement should be inferred.

Z. Liu (&) Æ R. Laganière
School of Information Technology and Engineering
Faulty of Engineering, University of Ottawa, SITE-5025,
800 King Edward Ave, P.O. Box 450 STN A, Ottawa,
ON K1N 6N5, Canada
E-mail: zliu086@uottawa.ca
Tel.: +1-613-5625800
Fax: +1-613-5635664

Z. Xue Æ R. S. Blum
Signal Processing and Communications Research Lab,
Department of Electrical and Computer Engineering,
Lehigh University, 19 Memorial Drive West, Bethlehem,
PA 18015-3084, USA
E-mail: rblum@eecs.lehigh.edu
Tel.: +1-610-7583459
Fax: +1-610-7586279

Pattern Anal Applic (2006) 8: 375–389
DOI 10.1007/s10044-005-0020-8



et al. presented an automatic procedure to register and
fuse IR and MMW images in [7]. However, the study on
how further analysis can benefit from the fusion result is
not available yet. The second purpose of CWD fusion is
to locate human subjects with possible concealed
weapons by fusing electro-optical (EO) and IR/MMW
images [15]. Like the face and moon in Fig. 1, the fused
image contains both the pieces of personal information,
i.e., facial pattern, and the highlighted concealed weap-
on region. This fusion is carried out at the pixel level as
well. A human operator is presented with a composite
image, with which the operator can respond accurately
and promptly [9, 15, 16]. Another important issue that
has not been addressed yet is the ‘‘privacy rights’’. The
multi-modal image device cannot be used as a tool for
voyeurism [17]. Therefore, the fusion algorithm must be
tuned to reveal only the concealed weapon’s information
instead of personal privacy to the operators. The work
presented in this paper will focus on the second scenario,
where a visual image is involved. From now on, we will
use the terminology ‘‘CWD’’ to refer to the second topic
described above.

The current study on multiresolution image fusion
for CWD is to generate a composite image for the
operator or an automated analysis procedure as show
in Fig. 2a. We suggest a new image processing archi-
tecture in Fig. 2b. Each pixel from the IR and/or

MMW images is classified with a confident value as
belonging to either a weapon or a non-weapon region.
This can be implemented at a higher level (decision
level instead of pixel level). The detected region is
further segmented by a predefined confident threshold
and embedded into the corresponding visual image by
using a multiresolution image mosaic (MRIM) tech-
nique, which can achieve a seamless boundary between
host image and embedded regions. In our work, only
the selected (weapon region) parts are synthesized with
the visual image, because other parts do not contribute
to the weapon detection at all.

The philosophy of the proposed approach is different
from previously published work, where a pixel-level fu-
sion is carried out for the whole image. In our study, the
weapon is first detected from an IR image by an unsu-
pervised clustering algorithm namely fuzzy k-means
clustering. The feasibility of the clustering algorithm on
IR or MMW image is investigated. The detected region
is used as a mask signal for the MRIM process. The
steerable image pyramid is employed to decompose and
reconstruct the two images. The reconstruction gener-
ates the final result. The rest of the paper is organized as
follows: in Sect. 2, we first briefly review the prepro-
cessing and image fusion techniques for CWD applica-
tions. A two-step scheme for synthesizing a composite
image is described in Sect. 3. Experimental results can be
found in Sect. 4. Discussion and conclusion are pre-
sented in Sects. 5 and 6, respectively.

2 Brief overview

2.1 Image fusion for CWD

The most popular solution to a CWD application is to
fuse EO and IR/MMW images at pixel level with a so-
called multiresolution analysis (MRA) technique [18–
20]. The fusion process is carried out in the transform
domain through the combination of the transform
coefficients. A brief comparison of the algorithms is
summarized herein in Table 1. Generally, the study of
multiresolution image fusion (MRIF) is twofold,
encompassing a multiresolution algorithm and a coeffi-
cient combination rule. A number of MRA algorithms
have been investigated for the fusion of multi-sensor
images so far. For detailed implementation, readers are
referred to the relevant publications in Table 1. The
choice of wavelet largely depends on the characteristics
of the algorithm and the signal to be processed. Since an
image is represented as a weighted sum of basis func-
tions, choosing the basis function that resembles the
signal will facilitate the analysis. The major steps of
MRIF include: image decomposition, coefficient
combination, and image reconstruction. The basic rule
for coefficient combination is the absolute value
maximum selection for high frequency bands and aver-
aging for the low-pass band, i.e., the coefficients with
larger absolute value from the high frequency bands will

a b c

Fig. 1 The illustration of image fusion techniques for concealed
weapon detection applications. a, b Input images results, c fusion
result. The input images are assumed to be fully registered

Previous solution.

Proposed method.

a

b

Fig. 2 The image processing architectures for CWD applications. a
Previous solution. b Proposed method
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be retained and used for reconstruction, because the
larger values correspond to image features like edges,
lines, or boundaries. More sophisticated rules will con-
sider the area or region around the pixel and the cor-
responding areas or regions at the other frequency bands
or resolutions [21, 22]. Image feature measurements in a
region or across the frequency bands are generated. A
selection rule is created or the weighting coefficients are
derived from such measurements. The concept of match
measure and salience measure originated from Burt’s
work on gradient pyramid based image fusion [4], where
the match measure determined the selection or averaging
operation while the salience measure chose the coeffi-
cients for the reconstruction in the selection mode.
Wilson et al. [23, 24] introduced the contrast sensitivity
measure to weigh the coefficient sets. Li’s rule for coef-
ficient selection was based on a 3·3 or 5·5 window [20],
where the pixel with the maximum absolute value in the
window represented the activity of the pixel located at
the center. Li also introduced consistency verification as
a rectification of the selection process. Zhang and Blum
[25] used the average value in the region contoured and
segmented by the Canny detector instead of the maxi-
mum pixel value to guide the fusion process. Thus, the
approach is more robust to the noise. Koren et al. [26]
used the local oriented energy as a metric of image
feature and the coefficient selection was based on such
measurement. Cross-band selection and coefficient
grouping methods were proposed by Xydeas and Zhang
in [27] and [25], respectively. This is actually another
consideration for the region effect, since a single pixel at
a lower resolution corresponds to several pixels (region)
at a higher resolution.

The fusion of IR and MMW images has been studied
by Salmani [37] and Varshney [7], respectively. In [5] and
[3], Uner and Slamani fused multiple IR images with a
discrete wavelet transform. In [9], Xue and Blum did an
extensive study on fusion of visual and IR images with
different MRIF algorithms. The fused results were
evaluated by a number of quantitative metrics. How-
ever, the visual quality of the fused image was degraded
in most of the experimental results. The problem is that
the MRA algorithms try to keep the salient features of
images no matter whether the substance is really useful
or not. One disadvantage of the MRIF approach is that
when the two source images have a great difference, the
selecting or even the averaging of the low pass compo-
nents will cause the ‘‘block’’ effect in the fused result. In
other words, the reconstruction is not stable. Lately,
Xue presented a new color-based fusion algorithm, in
which the IR image was fused with color channels [16].
Yang et al. employed the expectation-maximization
algorithm to estimate the optimal scene in [38].

2.2 Processing for object extraction

As described in [15], the further processing is toward an
automatic weapon detection. Commonly used object

extraction approaches are based on thresholding or
segmentation techniques. In Slamani’s mapping proce-
dure A’SCAPE [3], homogeneous regions are separated
by applying a series of threshold values followed by a
low- and high-pass filtering operation. The basic idea is
to group pixels in homogeneous regions. In [7], the au-
thors suggested the use of Otsu’s thresholding method
[39] to the fused result of IR and MMW images. How-
ever, there is no study on assessing the performance of
these approaches so far.

3 A two-step scheme for synthesizing a composite image

The objective of synthesizing a visual and a non-visual
image is to retain the information of both the personal
identification and the concealed weapons. It is obvious
that the IR image contributes little to the facial identi-
fication in the case of being fused with a visual image.
Therefore, a simple combination may degrade the
quality of the fusion result for facial identification. The
detection of concealed weapon depends on the operation
of the IR sensor, because the pixel value of the IR image
reflects the variations in temperature. If the IR sensor
cannot locate the concealed weapon, the fusion with a
visual image will not generate a useful result. The vari-
ation in temperature distribution of different objects,
i.e., weapon, clothing, and body, can be identified by
using an unsupervised clustering approach. A two-step
scheme consisting of a detecting and an embedding
operation is proposed next.

3.1 Concealed weapon detection

3.1.1 Fuzzy k-means clustering

Fuzzy k-means clustering assigns a membership grade to
a data point belonging to certain cluster [40]. It is an
unsupervised approach for data clustering through
seeking a minimum of heuristic global cost function [40]:

J ¼
Xc

i¼1

Xn

j¼1
P̂ xi xj; ĥ

���
� �h ib

xj � li

� �2
; ð1Þ

where the probability P̂ xi xj; ĥ
���

� �
stands for the fuzzy

membership of pixel xj (j=1 ... n ) in a cluster xi (i=1 ...
c ), and there are in total c clusters in the data set. li

indicates the mean value for each cluster x i. b is a free
parameter chosen to adjust the blending of different
clusters, while ĥ is the parameter vector for the mem-
bership functions. The probabilities of cluster member-
ship for each pixel are normalized as:

Xc

i¼1
P̂ xi xj

��� �
¼ 1; j ¼ 1; � � � � � � ; n: ð2Þ

The minimization of the cost function in Eq. 1 leads
to the solutions [40]:
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lj ¼
Pn

j¼1 P̂ xi xj

��� �� �b
xj

Pn
j¼1 P̂ xi xj

��� �� �b ð3Þ

and

P̂ xi xj

��� �
¼

1=dij
� �1=ðb�1Þ

Pc
r¼1 1=drj
� �1=ðb�1Þ and dij ¼ xj � li

� �2
:

ð4Þ

The cluster means and point probabilities are estimated
iteratively until there is only small change in l j and
P̂ xi xj

��� �
:

By applying the fuzzy k-means clustering algorithm
to the IR images, a set of clustered images are ob-
tained. The idea is similar to Slamani’s SMP algorithm
[37] in grouping pixels in homogeneous regions. It is
observed that the cluster corresponding to the highest
center value is the collection of the points in the con-
cealed weapon region. By applying a proper threshold
value, a binary mask image is obtained and used for
the mosaic operation.

The fuzzy k-means clustering algorithm needs the
number of clusters as an input parameter, which can be
determined empirically. Calculating validity measure
indexes can help estimate the goodness of the fuzzy
clustering algorithm and find the optimal number of
clusters [41]. Herein, four validity indexes are employed,
i.e., partition index (SC), separation index (S), Xie and
Beni’s index (XB), and Dunn’s index (DI) [41]. Readers
are referred to [41–44] for detailed description and
implementation of these metrics.

A small cluster number is better for computational
efficiency. In Fig. 3, SC and S index hardly decrease at
point 8 while XB and DI reach their local minimum at
the same point. Therefore, in our experiments, we select
eight as the initial number of clusters for the IR images.

3.1.2 Region-of-interest (ROI) enhancement

The aforementioned approach provides another advan-
tage in that particular processing can be applied to the
ROI partitioned by the mask image. On one hand, the
synthesized image is evaluated by the operator; on the
other hand, in further processing, different algorithms
can be applied to the different ROI regions, respectively.
For example, if we again apply the fuzzy k-means clus-
tering algorithm to the ROI of an IR image, the shape of
the weapon can be detected through finding out the
cluster with the highest center value. With this infor-
mation, the weapon in the IR image can be enhanced. If
only the shape is enhanced, we can simply multiply the
IR image with a gain map in which the value in the
weapon region is larger than 1. Another enhancement
scheme is to use the corresponding membership map
from the IR image:

IIR x; yð Þ ¼ IIR x; yð Þ 1þ a � FROI x; yð Þð Þ: ð5Þ

FROI (x, y) is the corresponding ROI fuzzy membership
map. The pixel with the higher membership value is
emphasized more by the parameter a. The next step is to
follow previously descibed procedure to mosaic the vi-
sual image and the enhanced IR image.

3.2 Embedding in a visual image

3.2.1 Steerable pyramid

The multiresolution representation of an image is given
as:

Iðx; yÞ ! LIN ðx; yÞ;BIj
i ðx; yÞ

j¼1...K
i¼1...N

���
� �

ð6Þ

or

Iðx; yÞ ! LIN ðx; yÞ;HIj
i ðx; yÞ

j¼1...K
i¼1...N

���
� �

; ð7Þ
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Fig. 3 The clustering indexes with different cluster numbers
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where LIN (x, y) denotes the low-pass component at the
decomposition level N while BIj

i (x, y) and HIj
i (x, y)

stand for the band-pass components or high-pass com-
ponents at decomposition level i and orientation j,
respectively. For Laplacian pyramid, there is only one
band-pass image at each decomposition level, therefore
K=1. For Daubechies wavelet, K equals to 3. In the
experiments, we use another representation named
steerable pyramid proposed by Simoncelli et al. [45].
The image will be presented as:

I x; yð Þ ! LIN ðx; yÞ;BIj
i ðx; yÞ

j¼1...K
i¼1...N

��� ;HIðx; yÞ
� �

: ð8Þ

The representation in the transform domain consists
of three parts: one low-pass component, one high-pass
component, and K band-pass components. Each band-
pass component corresponds to an orientation angle
(i�1)p/4, where i=1 ... K. Although the representation
is overcompleted, it has the advantage that sub-bands
are both translation and rotation invariant. Oriented
features can be extracted by using the steerable pyra-
mid representation. The structure of the steerable pyr-
amid is shown in Fig. 4, where one high-pass filter H0

(x), two low-pass filters L0 (x) and L1 (x) , and a set
of band-pass filters Bk (x) are involved. k ranges from
1 to K.

To eliminate aliasing, avoid amplitude distortion, and
cascade the system recursively, the following conditions
should be satisfied:

Ł1ðxÞ ¼ 0 for xj j > p
2

ð9Þ

H0ðxÞj j2þ L0ðxÞj j2¼ 1 ð10Þ

L1ðxÞj j2þ
XK

k¼1
BkðxÞj j2 ¼ 1: ð11Þ

For more information about the steering theory and
details of filter design, readers are referred to references
[45, 46].

3.2.2 Procedure for image mosaic

The idea of MRIM is to combine two or more images
into a composite one with an invisible seam [4, 47]. The
general procedure is shown in Fig. 5. Like the multi-
resolution image fusion process, the input images are
decomposed by a certain multiresolution algorithm W.
Meanwhile, the Gaussian pyramid of the binary mask
image is constructed GIN (x, y), ... GI2 (x, y), GI1 (x, y),
where N is the decomposition level. The new image
components can be formed by the weighted sum with the
Gaussian image components. There are several ways to
achieve this.

The first implementation is achieved by the weighted
summation of every image component. The formulae are
given below:

HI x; yð Þ ¼ GI1 x; yð Þ � HIIR x; yð Þ þ 1� GI1 x; yð Þð Þ
� HIV x; yð Þ ð12Þ

BIj
i x; yð Þ ¼ GIi x; yð Þ � BIj

IRi x; yð Þ þ 1� GIi x; yð Þð Þ
� BIj

Vi x; yð Þ ð13Þ
LIN x; yð Þ ¼ GIN x; yð Þ � LIIRN x; yð Þ þ 1� GIN x; yð Þð Þ

� LIVN x; yð Þ:
ð14Þ

The new image components will be used to reconstruct
the composite image. The second implementation uses
the edge information of the mask image map. The ori-
ginal edge map can be easily obtained by the Canny edge
detector. Instead of generating a Gaussian image pyra-
mid, through the down-sampling operation, we can get a
set of edge images EN (x, y), ... E2 (x, y), E1 (x, y) and
mask images MN (x, y), ... M2 (x, y), M1 (x, y). Now,
the combination formulae become:

IIR x; yð Þ M x; yð Þ ¼ 1;E x; yð Þ ¼ 0
IIR x; yð Þ þ IV x; yð Þð Þ=2 E x; yð Þ ¼ 1

IV x; yð Þ M x; yð Þ ¼ 0;E x; yð Þ ¼ 1

8
<

:

ð15Þ

Fig. 4 The architecture of the
steerable pyramid
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LI x; yð Þ ¼ MN x; yð Þ � LIIRN x; yð Þ þ 1�MN x; yð Þð Þ
� LIVN x; yð Þ: ð16Þ

The operation will copy the corresponding regions
from the visual and IR images to the new image
component, i.e., ‘‘cut and paste’’. At the edge between
the two regions, an average operation is applied. In the
above equations, IIR (x, y), IV (x, y), and I(x, y) stand
for the high- and band-pass image components of IR,
visual, and new images, respectively. For the low-pass
component, we do not use the edge to smooth the
transition zone. The discussion can be found in Sect. 5.
The third implementation differs from the first in the
combination of low pass components. For the high-
pass and band-pass components, Eq. 12 and 13 are
applied. The low pass component from the visual im-
age is retained as the new low pass component for
reconstruction; or a weighted summation is imple-
mented in the marked weapon region by the mask
image map. Such operations can also be applied for
texture mapping [47].

3.3 Result assessment

An ideal solution for evaluating the fused image is to
compare it with a reference image, which is assumed to
be perfect. However, such a reference image is not
available in advance for the CWD application. The
success of the application largely depends on whether
the suspicious regions can be detected or not. Therefore,
the classification metrics, accuracy and reliability, are
employed herein. An illustration to interpret this con-
cept is given in Fig. 6. Suppose A is the ground truth
(true weapon region), B is the detected result (detected
weapon region) and C is the overlap between A and B.
The accuracy is defined as the ratio between the posi-
tively true and all pixels that are used as the ground
truth of this class, i.e., (C/A)·100% while the reliability
is expressed as (C/B)·100%, i.e., the ratio between the
positively true and all pixels classified as this class. A
large accuracy value together with a higher reliability
indicates a good classification result.

4 Experimental results

The multi-sensor image data was collected at the Signal
Processing and Communication Laboratory of Lehigh
University. There are nine pairs of visual and IR images
shown in Fig. 7. In the following experiments, we as-
sume: (1) the visual image and IR image are fully reg-
istered; (2) both the visual and IR image are background
subtracted; and (3) there is a concealed weapon in each
scene.

In the first part of the experiment, the first pair of
images in Fig. 7 was integrated by image fusion algo-
rithms. Figure 8 presents the results obtained by
applying Laplacian pyramid, Daubechies wavelet and
Simoncelli steerable pyramid based fusion algorithms,
respectively. The coefficient combination rule is: aver-
aging the low pass image components and applying the
maximum selection rule to the high pass components.
More sophisticated rules and algorithms were imple-
mented in [4, 20, 21]. The steerable pyramid based
algorithm was presented in [30] and applied to the image
pair in Fig. 7a, b. Figure 8c, d give the results. The facial
pattern is obscure in the pixel-level fusion results, al-
though the weapon region can be observed to some ex-
tent.

In the second part of the experiment, the MRIM was
implemented. As described in Sect. 3.2.2, there are three
approaches that come with the multiresolution mosaic

Fig. 5 The procedure for multiresolution image mosaic

Fig. 6 Illustration for accuracy and reliability assessment
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scheme. To apply the mosaic algorithm, the mask signal
needs to be extracted. In Fig. 9a, the segmented result by
applying fuzzy k-means clustering algorithm is shown.
By selecting the cluster with the highest center value and
applying a proper threshold value, the binary image map
was obtained and given in Fig. 9b. In the experiment,
the points in this cluster with a value larger than 0.1 were
collected and averaged. The averaged value was selected
as the threshold. With the binary mask image, the visual
and IR images were synthesized by the proposed algo-
rithms. The decomposition level of the multiresolution
representation does affect the results. We gave the results
with two, three, and four level decomposition in Fig. 10.

To see how the number of clusters affects the detec-
tion of weapon region in terms of accuracy and reli-

ability measurements, we used a set of numbers in
Table 2 to cluster IR image of Fig. 7b and compared the
detected results with a manually generated reference
image. Figure 11 shows the curve. A larger cluster
number can achieve a higher reliability at the cost of
losing accuracy; meanwhile, a larger number will intro-
duce computational loads. For the CWD application, a
higher accuracy has priority over reliability in most
cases.

In addition, we compared the fuzzy k-means clus-
tering method with the expectation-maximum (EM)
clustering and k-means clustering methods. The three
clustering algorithms were applied to the nine groups of
multi-sensor images with the same cluster number 8. The
results of accuracy and reliability assessments are listed

Fig. 7 Multi-sensor images
used for testing in the
experiment: totally eight groups
are involved (A–I)
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in Table 3 and illustrated in Fig. 12. In terms of classi-
fication rate, the fuzzy clustering does not show obvious
advantages over the other approaches. Nevertheless, the
outputs of fuzzy clustering can be used to enhance the
ROI in the IR image. The concealed weapons in Fig. 4b,
c have explicit shapes. The enhancement may facilitate
further processing. First, we used the binary mask image
to extract the ROI of the IR image. Then, the ROI was
segmented again by the clustering algorithm. The region
of the concealed weapon was further refined. By using
the fuzzy membership map of the ROI, the IR image can
be enhanced according to Eq. 16. The visual image was
then synthesized with the enhanced version of the IR
image. Figures 13 and 14 show the results.

From the above experiments, we can see that the
third multiresolution mosaic approach with a decom-
position level two achieved a better result in terms of
human perception. Eventually, we applied this approach
to the other images and have given the results in Fig. 15.

5 Discussion

The advantages of pixel-level fusion of IR and MMW
images are not explicitly identified; therefore, a decision-
level fusion for classification is suggested. In this study,
we did not implement the shaded block in Fig. 2b, which

Fig. 8 Image fusion results achieved by a Laplacian pyramid; b
Daubechies wavelet four; c Simoncelli steerable pyramid (averaging
for low-pass component and maximum selection for band- and
high-pass components); and d Simoncelli steerable pyramid with
sub-band images integrated by Laplacian pyramid)
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Fig. 9 a Clustered image by
fuzzy k-means clustering
algorithm; b binary mask image
obtained from the clustered
result; and c histogram of IR
image
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may involve two or more long-wavelength sensors for a
decision-level fusion. Following the procedure in
Fig. 2b, we investigated the detection of concealed
weapons from the IR image and creating a composite
image with visual information for an operation or
avoiding privacy offense. As far as the second scenario is

concerned, the idea is to detect the concealed weapon
from the IR, MMW image, or their fusion result and
embed the weapon region in the visual image. Since the
most important information provided by IR or MMW
image is the region of the concealed weapon, the other
parts will not make any contribution to the specific

Fig. 10 Mosaic results achieved
by applying the multiresolution
approach one at different
decomposition level a 2, b 3,
and c 4; approach two at
decomposition level d 2, e 3,
and f 4; approach three at
decomposition level g 2, h 3,
and i 4

Table 2 Comparison of the fuzzy k-means clustering results with different initial cluster numbers

Cluster number 8 10 13 16 19 22 25 30 40

False positive 0.5146 0.4314 0.3718 0.3444 0.3014 0.3014 0.2819 0.2552 0.2552
True positive 1 1 0.9721 0.9604 0.9249 0.9249 0.9106 0.901 0.901

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0.49 0.57 0.62 0.68 0.7 0.7 0.7 0.72 0.74
Reliability

A
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u
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cy

Group A

Fig. 11 The effect of cluster
number for IR image of group
A in Fig. 4
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Fig. 13 Enhancement of ROI: a clustered result on the ROI of IR
image; b enhanced IR image; c mosaic result with original IR
image; and d mosaic result with enhanced IR image

Fig. 14 Enhancement of ROI: a clustered result on the ROI of IR
image; b enhanced IR image; c mosaic result with original IR
image; and d mosaic result with enhanced IR image

Table 3 Comparison of multiresolution image fusion schemes

Fuzzy k-means clustering EM clustering k-Means clustering

Accuracy Reliability Accuracy Reliability Accuracy Reliability

Group A (1) 1 0.4854 1 0.2344 1 0.3917
Group B (2) 1 0.4569 1 0.3546 1 0.3828
Group C (3) 0.9529 0.4868 0.9532 0.4455 0.9540 0.3329
Group D (4) 0.4336 0.4117 0.4946 0.4077 0.5373 0.4090
Group E (5) 0.8618 0.6695 0.8618 0.5431 0.8618 0.6217
Group F (6) 0.9254 0.5066 0.9254 0.3414 0.9254 0.3290
Group G (7) 0.9776 0.8104 0.9776 0.6150 0.9776 0.6539
Group H (8) 0.4767 0.5556 0.5100 0.5055 0.8211 0.4980
Group I (9) 0.2248 0.2412 0.3222 0.2898 0.3895 0.3117

Fig. 12 The effect of cluster
number for IR image of group
A in Fig. 7

385



analysis. The critical issue is the detection of weapon
from IR images. If the weapon cannot be identified, it
does not make any sense to fuse it with the visual image.

From the above experiments, we find that the mul-
tiresolution-based fusion approaches do not always
generate a good result. This is due to the variations in
image formation and intensity map. Furthermore, the
fusion operation degraded the quality of the results due
to the integration of useless information. The face is
hard to identify in the fused image although the con-
cealed weapon region is highlighted to some extent.
Quantitative evaluation of image fusion results is per-
formed by comparing with a reference. The metrics for
comparison of two images like root mean square error,
correlation, and signal to noise ratio are employed in [9],
but these values do not assure the fidelity of the fused
image. The quality of the fused image can be tested by
further processing, such as face recognition or weapon
template matching, if applicable. A better fusion result
should facilitate the further processing. With the mosaic
technique, one hundred percent of the visual image’s
quality can be preserved. The objective assessment of the
results is accomplished by using the accuracy and reli-
ability measurements once the threshold value is se-
lected.

The advantage of using fuzzy k-means algorithm is
that the clustered pixels are accompanied with a mem-
bership value ranging from 0 to 1, which provides
additional information, i.e., to what extent we can trust
the results. As shown in the experiment, the membership
map can also be used for enhancement of the detected
ROI region. The clustering does introduce the false
alarm due to the ‘‘noise’’ in the IR image, which may
come from the background. The detection of foreground
object is not a difficult problem to solve. One solution is
to use the technique for background subtraction as
described in [48]. A camera calibration procedure is
given in [49]. Thus, the processing can be focused on the

derived target object. An example is shown in Fig. 15c,
where the region under that person’s left arm should be
the backrest of the chair. However, this region is also
detected and embedded in the corresponding visual im-
age (see Fig. 15c), although this does not affect the
subjective evaluation. Besides, the IR imager distin-
guishes the weapon from the other part of the body
based on the temperature distribution. The bottom edge
of the pants and the shirt or some other parts may have
the same temperature as the weapon. The clustering
algorithm may cluster those regions too as concealed
weapon. This does happen to most of the images in
Fig. 7. The IR imager has its limitation and does not
assure a hundred percent detection. Therefore, in order
to improve the probability of detection, other image
sensors like millimetre wave imager or ultrasound im-
ager can be employed to decrease the uncertainty with
more complementary information. The study on prob-
ability of detection (POD) should be carried out and
higher level fusion can be considered.

So far as the MRIM is concerned, one observation is
that the process with a larger decomposition level de-
grades the mosaic results. This is not always true and
largely depends on the size of the region (image) to be
embedded. When the region is relatively small, as the
test images in this report, at a lower resolution the image
components will be blurred by the weighted summation
with the Gaussian components of the binary mask im-
age. This also happens to the edge-based mask image.
Nevertheless, a lower-level decomposition is good for
improving the computational efficiency.

6 Conclusion

In this paper, a scheme based on multiresolution mosaic
for concealed weapon detection is presented. The tech-
nique will enhance the portal detection for potential

Fig. 15 Experimental results
achieved by applying the third
multiresolution mosaic scheme
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threats at the airport or other sensitive locations. The
procedure includes two steps: (1) weapon region detec-
tion from the IR image and (2) the ROI (detected
weapon) mosaic on the visual image. This strategy
clarifies the task for each stage, i.e., what to detect and
how to combine the results. The multiresolution mosaic
technique provides a way to combine two images
seamlessly. In the synthesized image, the fidelity of the
visual image is preserved well while the concealed
weapon is highlighted. An enhancement of the ROI will
further facilitate the process. The disadvantage is that
the detection algorithm may introduce false positive or
false negative error. This is partly due to the limitation
of the IR image sensor itself. To improve the probability
of detection, information fusion with other image sen-
sors like a MMW imager is the work for the future.

7 Originality and contribution

This paper proposes a two-step scheme to generate a
synthesized image from a visual and an IR image. The
personal identification, i.e., facial pattern is retained
with comparable fidelity to the visual image while the
region of concealed weapon is enhanced and high-
lighted. In the detection process, an unsupervised clus-
tering method, namely fuzzy k-means clustering, is
employed to segment the suspicious objects from the IR
image. The detected region is then embedded in the
corresponding visual image with a multiresolution mo-
saic technique. This work provides an efficient solution
to operator-assistant weapon detection and avoidance of
privacy offense at the portal security check for sensitive
locations.
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