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Recent activities in MWP

MWP systems
1. Microwave signal generation
‒ Parity time (PT) symmetric OEO
‒ Fourier domain mode locked OEO
‒ Photonic integrated OEO

2. Microwave signal processing
– MWP filters（incoherent and coherent MWP 

filters))
– Photonic integrated MWP filters

3. Radio over fiber (transmission)
– Radio over fiber based on coherent detection

4. MWP for sensing (optical  microwave 
domain with higher speed and higher resolution)
– MWP sensor based on SS-WTT mapping
– OEO based high resolution sensor

Integrated MWP
1. Silicon on Insulator (SOI)
– Optoelectronic oscillator (OEO)
– MWP filters
– Programmable signal processors
2. Silicon Nitride
– True time delay (TTD) beamforming
– Optical comb for RF generation
3. InP
– Monolithically integrated microwave 

photonic systems
– Programmable signal processors
4. InP+SiO+SiN
– Heterogenous integration (system on chip)

D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nature 
Photon., vol. 13, no. 1, pp. 80-90, Feb. 2019.
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MWP2021Microwave signal generation

The output of two beat signals applied to a photodetector:

where  E1 (t) and  E2 (t) are two optical inputs. 

is the RF frequency.

Coupler Photodetector

RF output

1f

2f

( ) ( ) ( ) ( )2
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J. P. Yao, “Photonics for Ultrawideband communications,” IEEE Microwav. 
Mag., vol. 10, no. 4, pp. 82-95, Jun. 2009.
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MWP2021Microwave generation

1. Dual-frequency laser source
2. Phase locked loop
3. Injection locking
4. External modulation
5. Optoelectronic oscillation LD1
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J. P. Yao, “Photonics for Ultrawideband communications,” IEEE Microwav. 
Mag., vol. 10, no. 4, pp. 82-95, Jun. 2009.
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MWP2021Opto-electronic oscillator (OEO)

Long fiber  high Q factor  low phase noise

Electronic oscillator 
Opto-electronic oscillator

To oscillate: 1) positive feedback, gain>loss, 
2) frequency selection mechanism

fiber

X. S. Yao and L. Maleki, vol. 32, no. 7, pp. 1141-1149, July 1996.
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• Longer loop  closely spaced modes Multi-mode 
oscillation. 

• Solutions: 
1) Shorter loop length (but higher phase noise)
2) Dual or multiple loops (Vernier effect) to extend the 

effective FSR, but complicated system
3) Parity-Time (PT) Symmetry

OEO – Mode Selection

PT symmetry increases 
gain difference 
between main mode to 
sidemode

Gain difference between main mode and sidemode

J. Zhang and J. P. Yao  Sci. Adv., vol. 4, no. 6, Jun. 2018.
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(a)

Gain Loss

Space

Wavelength

r1 r2

Parity time symmetry

Once the gain or loss 
exceeds the coupling 
coefficient (γo > κo), there 
will be a conjugate pair of 
modes  growing
(oscillation) and decaying
(PT symmetry is broken)

Coupled mode equations in the two cavities: 

Solving (S1) and (S2), we can get the eigenfrequencies
of the PT symmetric system:

When PT symmetry is satisfied,

( )0 0(1,2)
0 0

j j t j t tj e e eω δ ω δω ω δ ±= ± ⇒ = 

PT symmetry is broken growing and decaying
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The key importance of the concept is that it enables the implementation of an OEO for single-
frequency and ultra-low phase noise microwave generation without the need of an ultra-narrow 
optical or microwave filter.

J. Zhang and J. P. Yao  Sci. Adv., vol. 4, no. 6, Jun. 2018.
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Phase noise measurement

J. Zhang and J. P. Yao  Sci. Adv., vol. 4, no. 6, Jun. 2018.

df
dt
φ

∆ =
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Y. Liu, T. Hao, W. Li, et al. Light Sci Appl 7, 38 (2018)
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J. Zhang et al. Nat. Comm. 11, Article number: 3217 (2020)
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PT symmetry in wavelength space

1）Two wavelengths, corresponding to the gain and loss loops
2）Gain and loss are controlled by tuning the polarization controllers
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MWP2021
Experimental results

a) (no PT symmetry) Zoom-in view of the multimode spectrum showing multiple modes with comparable amplitudes 

(With PT symmetry) Single-mode oscillation spectra measured with RBWs of b) 3 MHz, c) 100 kHz and d) 9 Hz. The spectrum in (c) 
shows a dominating mode with a sidemode suppression ration of 46.75 dB.

Phase noise: −129.3 dBc/Hz at an offset frequency of 
10 kHz with sidemodes lower than −66.22 dBc/Hz 
with a 9.1-km loop length. 



16

MWP2021

10-12 GHz, -140 dBc/Hz at 10 KHz 
offset, 7”x7”x2”

35 GHz, -105 dBc/Hz at 10 KHz offset, 0.6”x0.6”x0.15”

OEwaves OEOs

Whispering Gallery 
Mode Resonator
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W. Zhang and J. P. Yao, J. Lightw. Technol., vol. 36, no. 19, pp. 4655-
4663, Oct. 2018. (MWP special issue 2018)

(b)
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Phase Noise

W. Zhang and J. P. Yao, J. Lightw. Technol., vol. 36, no. 19, pp. 4655-
4663, Oct. 2018. (MWP special issue 2018)
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• A regular frequency-tunable OEO  poor phase noise performance need of 
building time when tuned from one mode to another mode.

• A Fourier-domain mode locked OEO  all modes co-exist in the cavity 
each time only one mode is selected  no building time problem.

OEO for chirped microwave 
waveform generation 

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. P. Yao, N. Zhu, and M. Li,  Nature 
Comm., vol. 9, 1839, May 2018.
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MWP2021FDML OEO for chirped microwave waveform generation

Synchronized tuning 
Troundtrip = n ×Tfilter drive

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. P. Yao, N. Zhu, and M. Li,  Nature 
Comm., vol. 9, 1839, May 2018.
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The fast-tunable bandpass filter for frequency-domain mode locking is 
implemented using a tunable laser source, a phase modulator and a 
narrow-passband notch filter. 

FDML OEO for chirped microwave waveform generation

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. P. Yao, N. Zhu, and M. Li,  Nature 
Comm., vol. 9, 1839, May 2018.
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Experimental 
results

Challenge: an 
ultra-narrow 
bandpass filter is 
needed to ensure 
to select a single 
mode ar one time

T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. P. Yao, N. Zhu, and M. Li,  Nature 
Comm., vol. 9, 1839, May 2018.
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MWP2021Microwave photonic filters - Incoherent delay line MWP filters

A microwave photonic filter with negative coefficients based 
on phase inversion using complementarily biased MZMs.

Two microwave photonic filter configurations operating in 
the incoherent regime based on (a) a broadband light source 
and (b) a laser array

Three examples:

1

2

3

J. P. Yao, “A fresh look at microwave photonics filters,” IEEE Microwav. 
Mag., vo. 16, no. 8, pp. 46-60, Sept. 2015.
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Microwave photonic filters - Coherent MWP filters

A coherent microwave photonic filter, in which an optical notch filter is used to 
filter out one sideband of a phase-modulated signal, thus achieving PM–IM 
conversion.

Single laser 
source

A narrow 
band optical 
filter

J. P. Yao, “A fresh look at microwave photonics filters,” IEEE Microwav. 
Mag., vo. 16, no. 8, pp. 46-60, Sept. 2015.
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W. Li and J. P. Yao, IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, 
pp. 1735-1742, June 2012. 
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A coherent microwave photonic filter implemented based on phase modulation and PM–IM using SBS gain

Microwave photonic filters - Coherent MWP filters

SBS-based optical filter

ω 

ω 

J. P. Yao, “A fresh look at microwave photonics filters,” IEEE Microwav. 
Mag., vo. 16, no. 8, pp. 46-60, Sept. 2015.



28

MWP2021

J. Fandno et al, Nature Photon. 2016

(InP)
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Image of a fabricated die Packaged chip

J. Fandno et al, Nature Photon. 2016
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J. Fandno et al, Nature Photon. 2016
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MWP2021(SOI)

W. Zhang and J. P. Yao, Opt. Lett., vol. 43, no. 15, pp. 3622-3625, Aug. 2018.

Image of the experimental set-
up captured by a camera.
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W. Zhang and J. P. Yao, Opt. Lett., vol. 43, no. 15, pp. 3622-3625, Aug. 2018.






33

MWP2021

Frequency response of the filter (in blue) with a 
center frequency of 6 GHz and measured frequency 
response (in red) when no optical signal is coupled 
into the chip (to show the EMI)

Measurements of the fundamental signal power 
and that of the IMD3. Given a noise floor of -140 
dBm/Hz, the measured spurious-free dynamic 
range (SFDR) of the filter are 92.4 dB·Hz2/3. 

Tunable MWP filter - Measurements

W. Zhang and J. P. Yao, Opt. Lett., vol. 43, no. 15, pp. 3622-3625, Aug. 2018.
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D. Perez et al., Nature Comm., Sep. 2017
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D. Perez et al., Nature Comm., Sep. 2017
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D. Perez et al., Nature Comm., Sep. 2017
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D. Perez et al., Nature Comm., Sep. 2017
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Similar to electronic FPGA

W. Zhang and J. Yao, Nat. Comm., 11, Article number: 406 (2020)
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Photonic integrated field-programmable disk array signal processor

W. Zhang and J. Yao, Nat. Comm., 11, Article number: 406 (2020)



40

MWP2021
Outline

• Recent research activities in MWP
• Microwave signal generation 
• Microwave signal processing
• Radio over fiber based on coherent detection
• Microwave photonics for sensing 
• Conclusion



41

MWP2021
RoF with coherent detection

Base Station
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receiverADC
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Coherent 
receiver ADC
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M. Nakazawa, K. Kikuchi and T. Miyazaki, High Spectral Density Optical 
Communication Technologies. New York: Springer-Verlag, 2010, pp. 11-50.

IM-DD RoF link
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RoF with coherent detection:
 Both amplitude and phase can be modulated with increased spectral efficiency
 Demodulation achieved through coherent detection at a coherent receiver (an LO needed)
 Phase noise from the optical sources (the transmitter and LO) can be eliminated via a DSP 

algorithm

Advantages:
• High receiver sensitivity  Increase the transmission distance
• High spectral efficiency  All information (phase and intensity) can be recovered via 

coherent detection and DSP

Disadvantages:
• Complex structure and requires high speed DSP
• Receiver is sensitive to laser source PHASE NOISE (high quality laser source and DSP).

RoF with coherent detection
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• Demonstration of the effectiveness of coherent detection based on DSP
• Spectral efficiency is low due to the transmission of a single microwave signal

X. Chen and J. Yao, IEEE Photon. Lett., vol. 8, no. 26, 2014.

Digital phase noise cancellation for an IM/CD RoF
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C LOω ω ω∆ = −
Offset frequency

Joint phase noise

Recovered microwave 
signal free from the 
phase noise and offset 
frequency

Digital phase noise cancellation for an IM/CD RoF

X. Chen and J. Yao, IEEE Photon. Lett., vol. 8, no. 26, 2014.
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X. Chen, T. Shao, and J. P. Yao, IEEE Photon. Technol. Lett., vol. 26, no. 8, 
pp. 805-808, Apr. 2014.

• Experimental Results (1/3) 

Digital phase noise cancellation for an IM/CD RoF
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• Experimental Results (2/3)

Digital phase noise cancellation for an IM/CD RoF

Comparison of the EVMs and BERs for the transmission of a QPSK-modulated RF signal based on coherent 
detection and direct detection. PNC-phase noise cancellation

X. Chen, T. Shao, and J. P. Yao, IEEE Photon. Technol. Lett., vol. 26, no. 8, 
pp. 805-808, Apr. 2014.
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Digital phase noise cancellation for an IM/CD RoF

• Experimental Results (3/3)

Schematic diagram of an Intensity
modulation/coherent detection
MPL without digital PNC module

Constellation of the
detected QPSK microwave
vector signal (XI port)

• Demonstration of 
the effectiveness of 
coherent detection 
based on DSP

• Spectral efficiency 
is low due to the 
transmission of a 
single microwave 
signal

X. Chen, T. Shao, and J. P. Yao, IEEE Photon. Technol. Lett., vol. 26, no. 8, 
pp. 805-808, Apr. 2014.
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 Two microwave signals

 Single polarization 

 Single optical carrier 
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MWP2021Two microwave vector signal transmission
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(b)

Measured constellations of the two recovered 16-QAM microwave vector signals (fiber length: 9 km, 
received optical power :-10 dBm)

JLT, vol. 39, no. 20, Oct. 15, 2021
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When the received 
optical power is beyond 
-18 dBm, Error-free 
transmission is 
achieved with forward 
error correction (FEC).
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Four microwave vector signals

Single polarization 

Single optical carrier
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Flow chart to show the DSP algorithm. 
LPF: low-pass filter; BPF: bandpass 
filter.
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Measured constellations of the four 
recovered 16-QAM microwave 
vector signals at the output of the 
DSP unit (fiber length: 9 km, the 
received optical power: -10 dBm

Four microwave vector signal transmission

JLT, to be submitted
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JLT, to be submitted
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Microwave photonics for sensing - Motivation 

Conventional Interrogation of FBG sensors

Low Resolution (limited 
by OSA)

There is a trade-off between resolution and interrogation speed!
Solution  Microwave Photonics  to convert the spectral
information to the time domain.

Broadband light

FBGReflected λB

Transmission

High Interrogation Speed

Low Accuracy (power 
drifting)

Low Interrogation Speed

2B effnλ = Λ

Major source is
temperature.

Major source
is strain.

J. P. Yao, “Microwave photonic sensors,” J. Lightw. Technol., vol. 39, no. 12, 
pp. 3626-3637, June 2021.

OSA
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Wavelength-to-time mapping and chirped pulse compression

• Wavelength-to-time mapping

Wavelength-to-time mapping, namely dispersive Fourier transformation, is a 
fast and effective way to measure optical spectrum in the time domain. 

( )g t ( )y t

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. 
Comm., vol. 284, no. 15, pp. 3723-3736, Jul. 2011.

pulse compression 
(waveform should be 
linearly chirped or 
randomly distributed)
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t

• Chirped pulse compression 

Reference waveform

Reference
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1( ) cos 2
2 2
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t z
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  ∆ = + +  
    

Cross-Correlation t

t

W. Liu, M. Li, C. Wang, and J. P. Yao, J. Lightwave Technol., vol. 29, no. 9, 
pp. 1239-1247, May 2011.

Wavelength-to-time mapping and chirped pulse compression

Chirped pulse
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Temperature/Strain Measurement

MZI with 
LCFBG 

Dispersive 
Element

PD Correlation
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Wavelength-to-time mapping and chirped pulse compression
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Dispersive element
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W. Liu, M. Li, C. Wang, and J. P. Yao, J. Lightwave Technol., vol. 29, no. 9, pp. 
1239-1247, May 2011.
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Simulation Results

(a) Special reference signal.
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(c) Sensor signal with a 
wavelength shift of 0.740 nm.

(b) Sensor signal with a 
wavelength shift of 0.185 nm.

(d) The correlation outputs.
(e) The waveform in (b) with 
an added stationary white 
noise.
(f) The correlation with the 
noisy waveform shown in (e).
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W. Liu, M. Li, C. Wang, and J. P. Yao, J. Lightwave Technol., vol. 29, no. 9, pp. 
1239-1247, May 2011.

Wavelength-to-time mapping and chirped pulse compression
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a) Reference waveform

b) When a strain of 71.5 με is applied to 
the LCFBG. 

c) When a strain of 406.9με is applied to 
the LCFBG.

d) When a strain of 484.2 με is applied to 
the LCFBG. 

e) Correlation results for the detected 
microwave waveforms as show in (b), 
(c) and (d). 

f) The measured strain vs the peak 
position. The circles are the 
experimental data, and the solid curve 
is linear fitting of the experimental 
data.

W. Liu, M. Li, C. Wang, and J. P. Yao, J. Lightwave Technol., vol. 29, no. 9, 
pp. 1239-1247, May 2011.

Experimental results
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Highly Birefringent  (Hi-Bi) LCFBG

Simultaneous measurement of temperature and strain – replace the 
chirped FBG by a chirped FBG written in a highly birefringent fiber (Hi Fi)

MLL PBS

1
1

2

   g
2

    g
f

s

fT
f

τ
ε τ

−  ∆   
= −    ∆       

Perform chirped pulse compression, calculate the sensor function

W. Liu, W. Li, and J. P. Yao, IEEE Photon. Technol. Lett., vol. 23, no. 18, pp. 
1340-1342, Sep 2011.
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Experimental Results

(d) Correlation of the waveforms shown in (b) and (c) with the special reference waveform.

A linearly chirped microwave waveform corresponding to the polarization direction of the ultrashiort 
pulse aligned with (b) the fast axis and (c) the slow axis, when a strain of 50 με is applied to the LCFBG at 25 ºC.
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W. Liu, W. Li, and J. P. Yao, IEEE Photon. Technol. Lett., vol. 23, no. 18, pp. 
1340-1342, Sep 2011.

Wavelength-to-time mapping and chirped pulse compression
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H. Deng, P. Lu, S. Mihailov, and J. P. Yao, J. Lightw. Technol., vol. 36, no. 
23, pp. 5587-5592, Dec. 2018.
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Random 
grating 
spectrum

Chirped 
FBG 
spectrum

Compressed pulse Temperature sensing Strain sensing

H. Deng, P. Lu, S. Mihailov, and J. P. Yao, J. Lightw. Technol., vol. 36, no. 
23, pp. 5587-5592, Dec. 2018.
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M. Li, W. Li, J. Yao, and J. Azana,  Proc. OSA Techn. Dig.. WA, D.C., USA, 
2012, Paper BTu2E.3. 

OEO
Microwave filter response

Generated microwave signal Strain sensing

Optical spectrum change 
microwave frequency change 
Fast-speed and high-resolution 
sensing
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sensing

(a) Schematic of the temperature-insensitive 
transverse load sensor based on a dual-frequency 
OEO employing a polarization-maintaining PS-
FBG. 

(b) Single passband photonic 
microwave filter when the 
incident light is alighted with 
an angle of 0°or 90°
relative to one principal axis 
(horizontal or vertical) of the 
PolM.

(c) Dual passband photonic 
microwave filter when the 
incident light is alighted with 
an angle of 45° relative to 
one principal axis of the PolM

F. Kong, W. Li, and J. Yao, Opt. Lett., vol. 38, no. 14, pp. 2611–2613, Jul. 
2013.
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Electrical spectrum of the signal generated by the 
dual-frequency OEO, with two microwave signals at 
8.22 and 14.24 GHz and a beat signal at 6.02 GHz.

Measured beating frequency as a function of 
applied transverse load and the electrical spectrum 
with different load. Inset: the electrical spectrum 
with different load.

F. Kong, W. Li, and J. Yao, Opt. Lett., vol. 38, no. 14, pp. 2611–2613, Jul. 
2013.

Temperature insensitive

Dual-frequency OEO with a PM PS-FBG for transverse load 
sensing
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1. New MWP systems have been reported for the generation and processing 
of microwave signals (discussed here)

2. Numerous applications such as wireless communications (RoF), and high 
speed and high-resolution sensing (discussed here)

3. Microwave photonics can drive the development of other fields, such as radar, 
measurements, and instrumentation (not discussed here)

4. The key challenge: discrete systems  high cost and poor stability
solution: photonic integration.

5. Heterogeneous integration is urgently needed to implement systems on chip 
for low-cost, high-performance microwave photonic systems. 
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