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Outline  

 Introduction to Microwave Photonics (MWP) 
 SiP-based MWP systems 
– Photonic generation of microwave waveforms 
– Photonic processing of microwave signals 
– A fully SiP integrated MWP filter 
 InP-based signal processing 
– A fully reconfigurable photonic signal processor 
– A fully InP integrated MWP filter 
 SiN-based MWP systems 
– True time delay beamforming 
– Reconfigurable signal processor 
 Conclusion 
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Materials systems 

Three materials systems:  
1) Indium Phosphide (InP)  
2) Silicon Nitride (Si3N4) 
3) Silicon Photonics (SiP) 

 
1)InP:  
•Able to monolithically integrate both active and passive photonic components  
•High loss, and large size 
•Difficulty to integrate with electronics 
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Materials systems 

2) Si3N4: 
•Very low loss, <0.2 dB/cm 
•no active components such as light sources, modulators, amplifiers and 
photodetectors can be supported, thus full monolithic integration is hard to achieve 
 
3) SiP: 
•A technology that allows optical devices to be made economically using the 
standard and well-developed CMOS fabrication process 
•Most of the optical components, both passive and active, can be fabricate 
•The key advantages include much smaller footprint, low loss, and simple 
fabrication process 
•No optical amplification and light generation 
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Introduction to Microwave Photonics 

Microwave Photonics (RF Photonics) is an field that studies the 
generation, processing, control, and transmission of 
microwave signals by means of photonics for applications such 
as wireless communications, radar, sensing, imaging, and 
instrumentation.  
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What is Microwave Photonics (MWP)? 

Keith J. Williams, OFC2013 
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Applications of Microwave Photonics 

The Atacama Large Millimeter Antenna (ALMA) Array  
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Outline  

 Introduction to Microwave Photonics (MWP) 
 SiP-based MWP systems 
– Photonic generation of microwave waveforms 
– Photonic processing of microwave waveforms 
– A fully SiP integrated MWP filter 
 In-P signal processing 
– A fully reconfigurable photonic signal processor 
– A fully InP integrated MWP filter 
 SiN-based MWP systems 
– True time delay beamforming 
– Reconfigurable signal processor 
 Conclusion 
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Chirped microwave waveform generation 

Autocorrelation

(Matched Filtering)

Autocorrelation
(Matched Filtering)

Chirp-free pulse

Chirped pulse

Chirped microwave pulse can be compressed by matched filtering, widely employed in Radar systems.  
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J. P. Yao,  Opt. Comm., vol. 284, no. 15, pp. 3723-3736, Jul. 2011. 

Photonic microwave waveform generation based on  
spectral shaping and frequency-to-time mapping 

( )G ω ( )y tUltra-short 
optical pulse 
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• Frequency-to-time mapping 

Wavelength-to-time mapping, namely dispersive Fourier transformation, is a fast and 
effective way to measure optical spectrum in the time domain.  
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Photonic microwave waveform generation based on  
spectral shaping and frequency-to-time mapping 
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On-chip spectral shaper incorporating multi-microring resonators 

Perspective view of the proposed on-chip spectral shaper. (Inset: (left) Wire wave guide structure and 
(right) the simulated fundamental transverse electric (TE) mode profile of the wire waveguideat 1550 nm.  

W. Zhang and J. P. Yao, MWP2014, Sapporo, Japan, 20-23 Oct. 2014. 
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Schematic layout of the designed on-chip spectral shaper. 

(a) Measured spectral response of an on-chip spectral shaper consisting of four cascaded MRRs. (b) 
Measured spectral response of an on-chip spectral shaper consisting of five cascaded MRRs. 

On-chip spectral shaper incorporating multi-microring resonators 
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OSC

ISO
On-Chip Spectral 

Shaper
PDEDFA

MLL

PC DCF
EDFA

Experimental setup. MML: mode lock laser. ISO: Isolator; EDFA: erbium-doped fiber amplifier. PC: 
polarization controller. DCF: dispersion compensation fiber. PD: photodetector. OSC: oscilloscope. 

On-chip spectral shaper incorporating multi-microring resonators 
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Experimental results 

Bandwidth:15.5 GHz 
Chirp rate:17.2 GHz/ns 

Bandwidth:8.5 GHz 
Chirp rate:12.2 GHz/ns 

The generated chirped microwave waveforms and the spectrogram illustrating the time distribution of 
the microwave frequency components.  
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On-chip spectral shaper incorporating linearly chirped 
waveguide Bragg gratings 
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waveguide Bragg gratings 

 Perspective view of the proposed on-chip silicon-based 
optical spectral shaper. (Inset: (Left) Wire waveguide and 
(Right) Rib waveguide)  
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W. Zhang and J. P. Yao, "Photonic generation of linearly chirped microwave waveforms using a 
silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg 
gratings," IEEE/OSA J. Lightw. Technol., vo. 33, no. 24, pp. 5047-5054, Dec. 2015 . 

(a) Schematic layout of the designed on-chip spectral 
shaper; (b) Image of the fabricated spectral shaper 
captured by a microscope camera.  

(b)

Input 
Grating 
Coupler

Adiabatic 
S- Bend

Linearly Chirped 
Grating 

Output Grating 
Coupler  Compact 

Y-Branch

Taper I Taper II

Offset 
Waveguide 

linearly Chirped 
Grating 

(a)



18 

IPC2017 

SIlica
SIlicon

1.60

1.75

1.90

-20

-10

0

Re
fle

ct
io

n 
(d

B)

Gr
ou

p 
De

la
y 

(n
s)

-20

-10

0

1.50

1.65

1.80

1.53 1.545 1.56
Wavelength (um)

1.60

1.75

1.90

-20

-10

0

 (a)

 (b)

 (c)

Perspective view of the proposed LC-WBG. (Inset: Simulated 
fundamental TE mode profile of the rib waveguide with the rib 
width of 500 nm (left) and 650 nm (right)).  

Measured spectral and group delay 
responses of the LC-WBG with the rib 
width increasing from 500 nm to (a) 550 
nm, (b) 600 nm and (c) 650 nm along 
the gratings. 

On-chip spectral shaper incorporating linearly chirped 
waveguide Bragg gratings 

2B effnλ = Λ

The grating is realized by introducing periodic sidewall corrugations on the slab. By keeping the grating 
period uniform and linearly increasing the width of the rib along the grating, a linear chirp is produced since 
the effective refractive index is linearly increasing as the rib width increases in a definite range. 
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Experimental Results 
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Experimental setup. TMML: tunable mode lock laser. ISO: Isolator; EDFA: erbium-doped fiber 
amplifier. PC: polarization controller. DCF: dispersion compensation fiber. PD: photodetector. 
OSC: oscilloscope. 

Measured spectral response of an 
on-chip spectral shaper when the 
length of the offset waveguide is 
(left) zero and (right) the length of 
the LC-WBG. 
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Experimental Results 
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Experimental result: (a) the generated LCMW; (b) experimental 
spectrogram curve and numerical instantaneous frequency of the 
generated LCMW, and (c) compressed pulse by autocorrelation when 
the length of the offset waveguide equates to zero. 
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Experimental result: (a) the generated LCMW; (b) experimental 
spectrogram curve and numerical instantaneous frequency of the 
generated LCMW, and (c) compressed pulse by autocorrelation when 
the length of the offset waveguide equates to the length of LC-WBG. 
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Outline  

 Introduction to Microwave Photonics (MWP) 
 SiP-based MWP systems 
– Photonic generation of microwave waveforms 
– Photonic signal processing  
– A fully SiP integrated MWP filter 
 In-P signal processing 
– A fully reconfigurable photonic signal processor 
– A fully InP integrated MWP filter 
 SiN-based MWP systems 
– True time delay beamforming 
– Reconfigurable signal processor 
 Conclusion 
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Photonic temporal differentiator 

The transfer function: 
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Magnitude and phase response of a differentiator. 

( ) ( )n

n

d x t
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=A nth order temporal differentiator: 

Applications: phase to intensity conversion in an optical phase-modulated system. 



23 

IPC2017 

(b)

(c) (d)

Phase-shifted Grating on Ridge Waveguide

Taper Waveguide

(a)

Strip Waveguide
Grating Coupler

Input Grating 
coupler

Phase-Shifted Bragg Grating

Output Grating 
coupler

Taper Taper

W. Zhang, W. Li, and J. P. Yao, IEEE Photon. Technol. Lett., vol. 26, no. 23, pp. 2383-2386, 
Dec. 2014. 

Configuration of the phase-shifted Bragg grating (PSBG) 
in an silicon-on-insulator ridge waveguide.  

 (a) Schematic layout. (b) Image of the fabricated 
device. (c) Image of the grating couplers and the strip 
waveguides. (d) Image of the taper waveguides for the 
transition between the strip waveguides and ridge 
waveguides. 

Photonic microwave temporal differentiator using an 
integrated phase-shifted Bragg grating 
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(Left) Measured reflection and transmission spectral responses of the fabricated PSBG 
on a ridge waveguide with a designed corrugation width of 125 nm. (Right) Zoom-in 
view of the reflection notch and its phase response. 

Experimental Results 
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(Left) An input Gaussian pulse with an FWHM of 25 ps, and (Right) 
the temporally differentiated pulses by simulation and experiment.  
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Experimental setup. MML: mode lock laser. EDFA: erbium-doped fiber amplifier. 
PC: polarization controller. PD: photodetector. OSC: oscilloscope. 

Experimental Results 
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temporal differentiator 
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Perspective view of the proposed multi-channel 
fractional-order temporal differentiator. 

Measured spectral response of the five-channel fractional-order 
temporal differentiator; Inset: measured phase response of the five-
channel fractional-order temporal differentiator.  

W. Zhang, and J. P. Yao, IEEE/OSA J. Lightw. Technol., vol. 33, no. 2, pp. 361-367, Jan. 2015. 

Applications: phase modulation to 
intensity modulation conversion in a 
WDM optical phase-modulated system. 
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Experimental setup. TLS: tunable laser source. IM: Intensity modulator; AWG: arbitrary 
waveform generator. EDFA: erbium-doped fiber amplifier. PC: polarization controller. PD: 
photodetector. OSC: oscilloscope. DCF: dispersion compensating fiber.  

Experimental Results 
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Experimental results. (a) The 
measured Gaussian pulse 
from AWG (the blue solid 
line) and the simulated 
Gaussian pulse (the red 
dotted line); and measured 
differentiated output pulses 
from the photonic fractional 
differentiator at the (b) 1st, 
(c) 2nd, (d) 3rd, (e) 4th, and (f) 
5th channel. 

Experimental Results - differentiated output pulses  
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Experimental Results - differentiation order tuning 
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Experimental Results - independent tunability 
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2nd channel - fixed 5th channel - tuning 



31 

IPC2017 

W. Zhang, N. Ehteshami, W. Liu, and J. Yao, “Silicon-based on-chip electrically tunable 
sidewall Bragg grating Fabry–Perot filter,” Opt. Lett., vol. 40, no. 13, pp. 3153–3156, Jun. 
2015. 
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Figure 3 Measured reflection and 
transmission spectrums.  
(a) Reflection and transmission spectrum 
of the fabricated grating in the static state;  
(b) notch wavelength shift when the bias 
voltages applied to the left and right sub-
gratings vary synchronously;  
(c) extinction ratio tuning while the notch 
wavelength is kept unchanged;  
(d) reflection and transmission spectrums 
when the grating is reconfigured to be a 
uniform grating;  
(e) wavelength tuning of the uniform 
grating;  
(f) reflection and transmission spectrums 
when the device is reconfigured to be a 
uniform grating by increasing the cavity 
loss;  
(g) reflection and transmission spectrums 
when the device is reconfigured to be two 
independent uniform sub-gratings; and  
(h) reflection and transmission spectrums 
when the device is reconfigured to be a 
chirped grating.  
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To be presented at MWP2017, Beijing 

Experimental set-up 
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• Central frequency of the PMF  the wavelength of 
the TLS; 

 • Tuning range  the reflection band of the PS-FBG; 

•The 3-dB bandwidth of the PMF the transmission 
bandwidth of the PS-FBG 

Phase modulation to intensity modulation conversion 

W. Li, M. Li, and J. P. Yao, IEEE Trans. Microw. Theory 
Tech., 60(5) 1287, 2012. 
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Image of the experimental set-up 
captured by a camera. 
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Frequency response of the filter (in blue) with a 
center frequency of 6 GHz and measured frequency 
response (in red) when no optical signal is coupled 
into the chip (to show the EMI) 

Measurements of the fundamental signal 
power and that of the IMD3. Given a noise 
floor of -140 dBm/Hz, the measured spurious-
free dynamic range (SFDR) of the filter are 
92.4 dB·Hz2/3.  
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 Introduction to Microwave Photonics (MWP) 
 SiP-based MWP systems 
– Photonic generation of microwave waveforms 
– Photonic processing of microwave signals 
– A fully SiP integrated MWP filter 
 InP-based signal processing 
– A fully reconfigurable photonic signal processor 
– A fully InP integrated MWP filter 
 SiN-based MWP systems 
– True time delay beamforming 
– Reconfigurable signal processor 
 Conclusion 

 
 

Outline  
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The signal processor can be reconfigured to operate as a 
 
•Temporal integrator 
•Temporal differentiator 
•Hilbert transformer 
•Microwave generator 
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M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip 
CMOS-compatible all-optical integrator,” Nature Commun., vol. 1, 2010, Article 29. 

Optical memory 
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temporal integrator 

Mathematically, a temporal integrator can be implemented using a linear filtering device with a 
transfer function given by  
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A photonic temporal integrator can be implemented using a fiber Bragg grating (FBG) or a 
microring resonator. 
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( )H ω

ω

where n is the order of differentiation, and 
n can be a fractional order. When n=1, it is 
the first order differentiation. 
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Temporal Differentiator 

Tunable Image Enhancement 

A. C. Sparavigna, “Fractional differentiation based image processing,” arXiv. 

UWB pulse generation for wireless access 

UWB pulse  
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Differentiator 

Practically, a temporal differentiator can be 
implemented using an optical interferometer, 
such as a Michelson interferometer, a Mach-
Zehnder interferometer (MZI). 

FSR 
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MZI 

Magnitude 
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Hilbert Transformer 
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Single Sideband Modulation 

Temporal Hilbert Transformer 

S. L. Hahn, Transforms and Applications Handbook, A. D. Poularikas, Ed., 3rd ed. Boca 
Raton, FL: CRC Press, 2010, ch. 7. 

Power fading due to chromatic dispersion 
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Practically, a Hilbert transformer can be 
implemented using a linear filtering 
device with a narrow notch.  

A photonic Hilbert transformer can be implemented using a phase shifted fiber Bragg grating 
(FBG) or a microring resonator. 

ω
0ω

In
te

ns
ity

 

FSR 

Phase Shifted FBG Micro-ring resonator 

FSR 

Reflection Spectra 

Implementation of a Photonic Hilbert 
Transformer 
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Processor - Configuration 
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Reconfigurable - The 
reconfigurability is achieved by 
tuning the injection currents to the 
semiconductor optical amplifiers (9 
SOAs) and current injection phase 
modulators (3 PMs) in the design.  

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. P. Yao, 
"A fully reconfigurable photonic integrated signal processor," Nature Photon., vol. 10, no. 3, 
pp. 190-195, Mar. 2016. 
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Photonic Signal Processor - SEM images 

Low loss deeply etched waveguide (1.7 cm-1) 2×2 Multi-mode interference (MMI) coupler 

Tunable MMI Mach-Zehnder interferometer coupler Transaction between an active and passive region (PM loss: 1.56 dB at 2π phase shift) 
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Photonic Signal Processor – pictures of the chip 
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Photonic Signal Processor – experimental results 
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(a) The measured gain profile of an SOA as a 
function of the injection current. (peak gain at 
240 dB/cm, saturation power 12.8 dBm) 

(b) Tunable coupling coefficient of an MMI 
MZI coupler at different injection current of 
one PM on one of the two arms.  
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Photonic Temporal Integrator 
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Photonic Temporal Differentiator 
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Photonic Hilbert Transformer 
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Photonic Temporal Hilbert Transformation 

Fractional Hilbert 
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a Experimental 
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Image processing using the signal processor 

Application Examples 
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Single sideband modulation 

Application Examples 
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The spectrum of the experimentally generated SSB 
modulated optical signal. 

Single Sideband modulation is 
important in a radio over fiber 
(RoF) link to avoid dispersion-
induced power penalty 
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Photonic Microwave Signal Generator 

Microwave Photonics Research Laboratory 
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OutputInput
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 The signal processor is reconfigured to operate as a microwave generator consisting of 
two ring lasers. 

 A changing driving voltage is applied to PM3 in R3 to generate a chirped optical light. 
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J. Zhang and J. P. Yao, “A photonic integrated microwave waveform generator for linearly chirped 
microwave waveform generation," MWP2016, Long Beach, California, USA, Oct. 2016. 
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(a) The driving voltage applied to the PM3 
(red) and the generated high frequency 
microwave waveform (blue); (b) and (c) the 
zoom-in view of the generated waveform at 
different locations within a period of the 
driving voltage.  

Photonic Microwave Signal Generator 
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  Within the temporal duration of the 10 µs, the frequency increases from 5 to 17 
GHz, corresponding to a TBWP of 1.2×105.  

 A compressed pulse with a temporal width of 200 ps is achieved from the 
autocorrelation of the generated waveform.  The pulse compression ratio is 
calculated to be 5×104. 

Spectrogram of the generated LCMW. The color scale 
represents the normalized amplitude of the instantaneous 
spectrum.  

Calculated auto-correlation between two generated 
LCMWs. A correlation peak of 250 ps is achieved.  
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Outline  

 Introduction to Microwave Photonics (MWP) 
 SiP-based MWP systems 
– Photonic generation of microwave waveforms 
– Photonic processing of microwave signals 
– A fully SiP integrated MWP filter 
 InP-based signal processing 
– A fully reconfigurable photonic signal processor 
– A fully InP integrated MWP filter 
 SiN-based MWP systems 
– True time delay beamforming 
– Reconfigurable signal processor 
 Conclusion 
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Image of a fabricated die Packaged chip 
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Measured spurious-free dynamic range (SFDR) for 
these three cases as a function of modulation 
frequency 

Measured powers of the fundamental 
signal and the IMD3 when the filter is 
tuned at 1.4 GHz 
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– Photonic generation of microwave waveforms 
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– A fully SiP integrated MWP filter 
 InP-based signal processing 
– A fully reconfigurable photonic signal processor 
– A fully InP integrated MWP filter 
 SiN-based MWP systems 
– True time delay beamforming 
– Reconfigurable signal processor 
 Conclusion 
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Phased Array Antenna System based on phase shifters 

Phased Array Antenna System based on TTD 
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True time delay beamforming  
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Fig. 5. Measurement results of 
different outputs of the 1  8 OBFN 
chip: (a) and (b) show group delay 
responses of Outputs 2 and 4, 
respectively; (c) shows the linearly 
increasing delay at all outputs of the 1  
8 OBFN chip. 
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Silicon photonics - TTD beamforming 
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Silicon photonics - TTD beamforming 
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Basic circuit  
components 

FIR filter 

IIR filter 
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Arbitrary circuit 
topology 
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Conclusion  

• MWP has been extensively investigated, but its applications are limited 
due to large size and high cost of discrete components. 
 

• The use of PICs is a solution to reduce the size and cost. 
 

• The 3 materials systems have their own limitations 
o SiP – no light amplification, no light source 
o InP – large size, high loss, and complexity in fabrication 
o SiN – passive only devices 
 

• Hybrid Integration (SiP + InP) may be needed to produce laser sources 
and optical amplifiers using III-V materials -  a key challenge for wide 
applications of silicon photonics. 
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