
Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Securing Large Applications Against
Command Injections

Guy-Vincent Jourdan1

1University of Ottawa, SITE
Ottawa, Canada

gvj@site.uottawa.ca

2007 International Carnahan Conference on Security
Technology

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Outline

1 Introduction

2 Examples of Command Injections

3 Formal Definition of Command Injections

4 A Strategy

5 Experimental Results and Conclusion

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Software security

An increasing concern...

Software security has been an increasing concern over the past
few years

Regularly in the popular news (CNN, CBC ...)

Front and center in computing press

Microsoft “trustworthy computing”, Oracle “Unbreakable”

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Software security

... but still ways to go

Despite the increased attention, the computing world seem to
be faced with an ever increasing number of reported security
problems. Symantec’s study, March 2006:

40% more vulnerabilities in 2005 than in 2004

69% of these vulnerabilities were coming from Web
applications (60% in the first half of 2005 and 49% in the
second half of 2004)

Average of 49 days to release a patch correcting a
vulnerability after it was released (down from 64 days in
the previous report)

Average of 6.8 days for an exploit to be released after a
vulnerability was disclosed

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Software security

Command injections

We focus on a particular category of software security
vulnerabilities especially common in Web application:
command injections.

Often categorized into several different types of injections,
each of these types being studied separately.

Informal overview of the software vulnerabilities published
within the last couple of years suggests that a majority of
them belong to the category of command injections.

Three of the OWASP’s “Ten Most Critical Web Application
Security Vulnerabilities” are command injections

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Software security

Our contributions

Provide a formal, generic definition of command injections

Provide a practical, intuitive road map to address the issue
in existing, large software applications

Report on two real life experiments

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

About command injections

Command injections vulnerabilities are common and occur with
different technologies, current and future. In order to efficiently
protect application against this type of attacks, we need a
definition of command injections which is technology
independent and grasps the essence of the problem.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

SQL injections

What are SQL injections?

Among command injections, SQL injections are perhaps the
best known and the most studied. A SQL command injection
vulnerability can exist whenever an application uses a SQL
based database and constructs unfiltered (or improperly
filtered) SQL commands based on user input. An attacker can
then take this opportunity to inject its own SQL command,
which will be passed down by the application to the
SQL-database engine and executed.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

SQL injections

Example
LoginQuery = ’’SELECT * FROM UsersTable

WHERE UserId=’’’ +
request.getParameter(’’userName’’) +
’’’ AND Password = ’’’ +
request.getParameter(’’password’’) +
’’’;’’;

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

SQL injections

Example

Because the query is built directly by concatenation of
predefined commands and user input, malicious users can
actually modify the end query.
With password = ’ OR 1=1; and
username=administrator, “LoginQuery” becomes

SELECT * FROM UsersTable WHERE
UserId= ’administrator’
AND Password = ’’ OR 1=1;

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

HTML-browsers command injections (HTML, XSS...)

HTML-browsers command injections?

HTML-browsers can be the target of several distinct command
injections attacks. Dismissed at first as harmless, browsers
injections are now understood as real threats, giving access to
user’s browsers, session, web applications etc.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

HTML-browsers command injections (HTML, XSS...)

Example: HTML injection

HTML page built on the fly from user provided Username and
Comment with the following server side ASP code:

<B><%UserName%></B> says <%Comment%>

If a malicious user has given a user name or a comment that
include HTML tags, then those tags will be inserted into the
resulting page as is and will be directly interpreted by the HTML
browser of the users viewing the page.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

HTML-browsers command injections (HTML, XSS...)

Example: Cross Site Scripting

HTML page built on the fly from user provided Username and
Comment with the following server side ASP code:

<B><%UserName%></B> says <%Comment%>

If a malicious user enters a comment such as:

<script>alert(document.cookie)</script>

The following page is sent:

<B>name</B> says
<script>alert(document.cookie)</script>

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

More examples

Other examples of command injections?

shell command injections

LDAP-injections

XPath injections

XML injections

macro injections

. . .

More importantly, future injections based on new technologies.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Main idea

What is a command injection?

A command injection occurs when some input that is seen as
data in a particular context becomes instructions in a new
context .

Our approach

See applications as interacting “virtual machines” feeding
“programs” to each other. Prevent users from interacting with
the instructions of the programs.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Formal definition

Virtual machines

A virtual machine M accepts programs as input and “executes”
these programs in some way. The programs must be “valid”, in
that they have to be an element of the input language LM

recognized by M. The language LM is usually specified by a
grammar GM . Thus, a valid program for a machine M is a
program recognized by the grammar GM .

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Formal definition

Virtual machines grammars

The grammar GM has two types of symbols: the terminal and
the non-terminal symbols.
We can identify two types of terminal symbols in GM : the
predefined constants of the language LM and the variables.
The predefined constants are the keywords of the language,
the predefined symbols that are interpreted by M upon
execution of a program, while the variables specify values,
variable names etc.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Formal definition

Virtual machines usage

Assume that an application makes use of a virtual machine M:
it produces a program p recognized by GM and sends p to M
for execution.
If p is partially based some user input ip, we say that there is a
LM -injection vulnerability if for some inputs ip, the application
produces a p containing an element from ip that is going to be
recognized as a predefined constant of the language LM by the
grammar GM .

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Formal definition

Definition

An application has an LM -injection vulnerability if
1 The application uses a virtual machine M.
2 It is possible for a user to provide a set of inputs ip to the

application that will cause the application to pass a
program p to M.

3 There are in p some elements coming from ip that will be
parsed by the grammar GM as a predefined constant of the
language LM .

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

The goal and the context

The formal definition of command injections gives us the
foundation needed to define a strategy to protect applications
against command injections by neutralizing potentially harmful
inputs.

Our assumptions

We assume that we have to secure a large application that has
been developed over many years by several teams of
professional software engineers that are not security
specialists. In other words, we can assume that there are
several exploitable injection points to be found, that mistakes
where made over the years and more mistakes will be made
during the securing process itself.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

The goal and the context

Our goal

Our aim is not to achieve perfect protection(too costly). We
want to remove as many command injections vulnerabilities as
possible during the time allocated for the securing effort,
making it significantly harder for an attacker to find and
successfully exploit an injection point.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

1 - Virtual machines identification

The first natural step when securing any application against
data commands injections is to identify every virtual machine
used by the application. Failure to recognize one of these
machines will lead to the application being potentially open to
commands injections against that machine, regardless of the
amount of effort spent securing the application against other
commands injections attacks.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

1 - Virtual machines identification

Common virtual machines

A partial listing of virtual machines commonly used today:

SQL-based databases,

XML parsers,

HTML browsers,

scripting languages embedded into HTML browsers,

XSL transforms,

LDAP servers,

embedded applications macros,

programming languages,

shell commands.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

2 - Injection points inventory

For a given virtual machine M, the first step is to create an
injection points inventory. At that stage, an injection point is
basically any interaction between the application and M, where
data that will be recognized by M as parseable input is sent by
the application.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

2 - Injection points inventory

Approach

To create this inventory, one must carefully examine the API of
M. Once the possible injection points to M are known, create
an exhaustive inventory of the ones that are used in the
application. This search can often be automated and can thus
provide a complete and fully accurate result.
Note that this list can be very concise (e.g. SQL) or
discouragingly long (e.g. XSL).

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

3 - Untrusted user data inventory

Once the injection points have been identified, the next step is
to create an inventory of untrusted data used at these injection
points.
Untrusted data is data that can be influenced, that is set or
modified in any ways by any user.
Initially almost all input data is untrusted. Untrusted data must
be carefully examined in order to evaluate whether it can in fact
be trusted at the injection point, or if it should be neutralized
against command injections.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

3 - Untrusted user data inventory

Gaining trust

Untrusted input data does gain trust through data validation.
The paths through which the data might have gone, and the
various validation steps that have been performed along the
way leading to the injection point must be researched, in order
to decide whether or not this data can be trusted at this
particular injection point.
Merely having gone through a step of validation is in no way
enough for data to become trusted. The details of the actual
validation steps must be evaluated to see their specific
effectiveness against LM -injections.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

3 - Untrusted user data inventory

Being trusted

The reality is that our trust in the data simply increases when
the data is validated. We are not trying to achieve complete,
blind trust in the data, but rather to reach a level of trust that we
deem sufficient in the context of the injection point.
The required level of trust has to be adapted on a case by case
basis, taking into consideration the cost associated to raising it,
the likelihood of an attack being successfully carried out with
the current level of protection and the actual consequences of
an LM -injection.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

3 - Untrusted user data inventory

Being trusted

The trust that we give to the data has to be understood as a
contextual trust: it is related to the injection point and it is
related to the virtual machine M. In other words, the data is not
gaining any kind of general “trusted” status for a different
purpose.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

4 - Data neutralization

The last step in our process is the neutralization of the data that
was identified as untrusted at injection points during the
previous step (or rather that was not identified as sufficiently
trusted). If we have proceeded correctly, then we should be in
possession of the complete listing of potentially harmful data,
and of the location where it can harm.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

4 - Data neutralization

Data neutralization approach

Neutralizing data means to remove the possibility for the data to
contain an element that is going to be recognized as a
predefined constant of the language LM by the grammar GM .
If the machine M against which the data is neutralized works
with a relatively simple grammar GM , then it is possible to look
at systematic approaches that would provably prevent
LM -injections.
In general, use simple neutralization rules making use of usual
white lists mitigated with black lists: allow only known good,
and if necessary, filter out, escape or encode known bad.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

4 - Data neutralization

Data neutralization approach

The problem is greatly simplified by the realization that we are
neutralizing data against LM -injections, and thus the
neutralization effort is clearly directed toward avoiding
user-provided inputs that would be parsed as predefined
constants of LM by a GM parser.

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Experimental Results

The approach described here has been followed in some forms
with various large-size Web applications, each involving several
teams of professional programmers. In this industrial settings,
one key requirement was the cost effectiveness of the effort,
with significant results expected at reasonable cost.
Our technique has proved to be fairly effective, in that we were
able to get large teams of programmers that had no prior
knowledge of the problem to rapidly understand the issue and
fully participate to the securing effort.
The results was verified by a formal security audit done
subsequently.
See proceedings for details

Securing Large Applications Against Command Injections



Introduction
Examples of Command Injections

Formal Definition of Command Injections
A Strategy

Experimental Results and Conclusion

Conclusion

What we have

a formal definition of command injections which is
completely independent from any particular technology

a simple strategy that can be used to track and remove
existing command injections of any types in a given

a real life test for our strategy

What we need
more automation in the strategy

better virtual machine API that do not permit injections

more awarness

Securing Large Applications Against Command Injections


	Introduction
	Examples of Command Injections
	Formal Definition of Command Injections
	A Strategy
	Experimental Results and Conclusion

