
 The Open Software Engineering Journal, 2008, 2, 45-54 45

 1874-107X/08 2008 Bentham Open

Open Access

Data Validation, Data Neutralization, Data Footprint:
A Framework Against Injection Attacks

Guy-Vincent Jourdan*

School of Information Technology and Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario,

Canada, K1N 6N5

Abstract: Untrusted data validation is an important part of software security, yet most current validation techniques fall

short in two ways: they lack practicality when it comes to validating data in large scale, real life applications, and they do

not clearly identify the different goals of handling untrusted data securely. In this paper, we clarify the different,

independent problems that “data validation” should solve, and we provide a clear and detailed three step process to data

validation: a “data validation” step to protect the application itself against malicious users, a “data neutralization” step to

protect other applications from malicious users of the application, and a “data footprint” step to protect against attacks on

future, unforeseen components that will be connected to the application.

1. INTRODUCTION AND MOTIVATIONS

 Securely handling untrusted data is an important part of
software security, yet it is a question that is often overlooked
by security researchers. Indeed, most of the academic focus
in the security domain is on cryptographic systems, secure
protocols, intrusion detections etc. In other words, a lot of
attention is (rightfully) given to security software and the
security features of non security software, but the over-all
security of the resulting software does not seem to receive
the required attention from the academic world. This is
particularly unfortunate since a large number of security
vulnerabilities published over the last few years come from
exploitation of non security software, in parts that are not
dealing with the existing security features of the software. In
fact, the software industry seems to have taken the lead on
that front. For example, after having lunched its
“Trustworthy Computing” campaign in January 2002 [1, 2],
Microsoft has started publishing documentation on what it
calls the “Security Development Lifecycle” [3], an attempt to
integrate software security concerns into the software
development life cycle, while current software engineering
books aimed at university level courses are essentially silent
on the question of producing secure software [4, 5].

 Although there have been some (mostly industry led)
efforts to improve the overall security of software, much is
left to be done. A 2004 study of over 250 Web applications
showed that over 90% of them were vulnerable to “common
hacking techniques” [6]. A rapid overview of the software
vulnerabilities published within the last couple of years
shows that a number of them belong to the category of
command injections. For example, three of the “Ten Most
Critical Web Application Security Vulnerabilities” in 2004,
as reported in [7], were direct command injection
vulnerabilities.

*Address correspondence to this author at the School of Information

Technology and Engineering University of Ottawa 800 King Edward

Avenue, Ottawa, Ontario, Canada, K1N 6N5; E-mail: gvj@site.uottawa.ca

 These types of attack should not be confused with control
flow attacks, which have been know since at least 1972 [8]
and have been widely researched ever since. Control flow
attacks, sometimes also referred as command injection
attacks, are in fact based on the attacker ability to direct the
program counter to a location where some malicious code
has been put, usually using a bug in the host application such
as a buffer overflow [9]. Protecting against this type of
attacks calls for a better control over the program counter
[10-12] or a hardware or software based separation between
code memory and data memory [13]. Despite some
similarities, command injections as defined in this paper are
much broader and do not necessitate neither a bug in the host
application nor a control over the program counter.
Therefore, techniques to prevent control flow attacks are
unfortunately not able to contain command injection attacks
as defined here.

 In this paper, we look at the question of data validation,
that is, how to safely process data coming from an untrusted
source, throughout the application, in order to avoid
vulnerabilities such as command injections. We argue that
most of the existing published solutions fall short of their
expectations in several aspects: they are usually unclear
about the goal of data validation, they are at odds with good
software engineering practices, and they are not really usable
when dealing with real, medium to large size software
systems (see Section 3 for a detailed explanation of this
claim). We propose a new solution based on a three steps
framework to address these issues. Our solution breaks down
the “data validation” efforts into two, clearly identified,
formally defined and clearly localized steps. As we will
show in Sections 4 and 5, this solution integrates well with
good software engineering practices. In particular, it avoids
the duplication of efforts often encountered in other
approaches, it does not make unrealistic assumptions about
the application or the environment, and has been
successfully used with real life large web applications [14].

Our contributions are the following:

46 The Open Software Engineering Journal, 2008, Volume 2 Guy-Vincent Jourdan

• We provide a formal definition of command
injections, and formally identify the two separated
goals that “data validation” should reach: protecting
the application itself and protecting the other
applications that are used by the application being
secured.

• We show that most current data validation
techniques fail to address the question in an
effective way for large applications and that even
with simple, small applications, these techniques
are mostly incompatible with good software
engineering practices.

• We provide a practical and intuitive three steps
framework that can be used to achieve effective
data validation even with large software. Our
framework is compatible with modern, good
software engineering practice and provides clear
guidelines about what to do and when to do it. The
framework also accounts for future problems linked
to the processing of untrusted data that cannot be
known at the time of coding.

 The rest of this paper is organized as follows: in Section
2, we introduce the problem of command injection and give
a formal model for it. In Section 3, we give an overview of
some of the current data validation techniques, and show
their limitations. We then introduce our three step
framework in the next three sections: Section 4 covers the
data validation step, where the application itself is protected
from untrusted data. Section 5 covers the data neutralization
step, where other applications used by the application are
protected. And Section 6 describes the last step, the data
footprint, used to handle future evolutions of the
application’s environment. We conclude in Section 7.

2. PRELIMINARIES

2.1. Command Injections

 In this section, we give a quick overview of the most
common command injection vulnerabilities and then we
provide a general, formal definition which can be used to
explain current and future instances of the problem.

2.1.1 Examples of Command Injections

 What we call is this paper “command injection” is a type
of vulnerability that is very common today. Many different
technologies can be exploited, and as new technologies are
introduced, new command injection vulnerabilities
opportunities arise. Unfortunately, all of these vulnerabilities
are not always understood as a variation on the same
problem, leading to an array of specialized defense
mechanisms and an inefficient approach to solving the
problem overall.

 In today’s typical application environment, there is a
large spectrum of tools that are susceptible to command
injection attacks, including but not limited to SQL-based
databases, XML parsers, HTML browsers, scripting
languages embedded into HTML browsers, XSL transforms
[15], LDAP servers, word-processing and spreadsheet
embedded application macros, interpreted programming
languages, and shell commands.

 Shell command injection vulnerabilities are historically
important, although they seem to have become less common
lately. This type of command injection occurs when the
application invokes the operating system shell (C-shell, Bash
etc. on Unix, command shell on Windows etc.) to initiate
another program, such as the “grep” or the “mail” program
under Unix. If, as part of this program invocation, the
application is using some untrusted data without proper
filtering, a malicious user can craft an input that will
terminate the intended command and start another one of the
attacker’s choice.

 SQL injections are perhaps the most well known among
command injection vulnerabilities and have been extensively
studied (see e.g. [16-19]). An SQL command injection
vulnerability exists whenever an application uses an SQL
based database and constructs unfiltered (or improperly
filtered) SQL commands based on untrusted input. An
attacker can then use this opportunity to inject an SQL
command, which will be sent by the application to the SQL-
database engine and executed. As an example, consider the
following SQL query, assumed to be built on-the-fly on the
server. The intent is to query a database to see if the table
“UsersTable” contains a record where the field “UserId”
matches the user-provided parameter “userName” and the
field “Password” matches the user-provided parameter
“password”.

LoginQuery = ’’SELECT * FROM UsersTable
WHERE UserId=’’’

 + request.getParameter(’’userName’’)

 + ’’’ AND Password = ’’’

 + request.getParameter(’’password’’)

 + ’’’;’’;

 Since the query is built directly from user input,
malicious users can actually modify the end query in various
ways. One of many ways to exploit such code is to bypass
the password verification by providing a password such as
’OR 1=1;--. If the user name provided is, for example,
administrator, the query “LoginQuery” that is sent to
the database ends up being

1

SELECT *
FROM UsersTable WHERE UserId=

’administrator’

 AND Password = ’’ OR 1=1;--’;

 This command will always return the record with a field
UserId=’administrator’, regardless of the
associated password value.

 HTML-browsers can also be the target of command
injection attacks. As a simple example, assume that the
application produces an HTML page containing user-
provided comments to be displayed in other users’ HTML
browsers. If the application has stored the user nickname and
comment into the NickName and Comment variables,
and if the HTML page showing the user-provided comments
is built from the following server side ASP code:

<%NickName%> says <%Comment%>

1In SQL, “--” is the beginning of a comment.

Data Validation, Data Neutralization, Data Footprint The Open Software Engineering Journal, 2008, Volume 2 47

then if a malicious user gives a nickname or a comment that
includes HTML tags, those tags will be inserted into the
resulting page “as is” and will be directly interpreted by the
HTML browser of the users viewing the page. For example,
that attacker can easily insert an entire fake login form
similar to that used by the application. It will lie within a
legitimate page of the application but can send the credential
to some other location, controlled by the attacker. If instead
the attacker injects a command such as

<script>

location.href=’http://attack.com/?’
 +document.cookie

</script>

then the JavaScript interpreter that is embedded in the
browser will be invoked and the user’s cookies will be sent
to the attacker’s server, which can lead to the victim’s
session being hijacked (this particular type of injections is
known as Cross Site Scripting, or XSS).

2.1.2 Formal Definition of Command Injections

 The various examples in Section 2.1.1 show variations of
the same type of attack. Here, we give a formal, technology
independent definition of the problem.

 As seen in the previous examples, the root cause of the
problem is the interaction between the application and
another component (database server, HTML browser etc.),
where something that is simple data within the application
becomes command(s) in the other component. Thus, the
vulnerabilities lies in the ability of the attacker to inject data
into the application that is going to be interpreted as a
command by one of the components used by the application.

 Let us consider that the application makes use of virtual
machines, without any assumptions about what these virtual
machines actually are. A typical virtual machine M accepts
as input “programs” written in a particular language LM, as

specified by a grammar GM. Provided with such a valid
program, the virtual machine executes it. So, for example,
the “HTML browsers” virtual machine accepts programs
written in HTML, while the virtual machine “SQL database”
accepts programs written in SQL. Fig. (1) provides an
illustration of this concept.

 As usual (see e.g. [20] for an overview of these classical
concepts), these programs are words of LM, made of terminal
symbols of GM that can be derived from the rules of GM. The
terminal symbols in GM can be split in two categories: the
keywords of the language LM and the variables (or literals).
The keywords are the predefined symbols of the language
that are interpreted by M upon execution of a program, while
the literals specify values, variable names etc.

 An application making use of such a machine M has to
produce a program p recognized by GM and has to send p to
M for execution. We say that there is a command injection
vulnerability (more precisely in that case, an LM -injection
vulnerability) when p is at least partially generated at
runtime, based in part on some untrusted data ip, and when
there exists some ip for which the resulting p contains
elements from ip that are going to be recognized as keywords
of the language LM by the grammar GM.

 Fig. (2) provides an overview: an untrusted user sends
some input to a first application, Application 1. This input is
processed inside Application 1 in the module Mod 3, where
it is combined with other data coming from the database
Data App 1. The resulting data is eventually output to
Application 2, where it is processed inside module Mod 5,
combined with data coming from Data App 2. In turn, this
eventually produces an output that is given as input to
Application 3. This input is itself processed by module Mod
6. When we abstract Mod 6 as a virtual machine M accepting
programs written in the grammar GM, the input received from
Application 3 is a program p written in the language LM of
GM. The program p is produced from different sources,

Fig. (1). An application seen as a virtual machine M: the input of the module Mod is a program p written in the language LM, recognized by

the grammar GM of the virtual machine. Processing this input is the execution of p by the virtual machine. p contains keywords (in red) and

literals (in blue).

Application

Mod

Program p in LM

Virtual Machine M
Grammar GM

….
if Something then
 while xxx do
 inc (i);
else
 output(“no”)
….

 input output

INPUT OUTPUT

48 The Open Software Engineering Journal, 2008, Volume 2 Guy-Vincent Jourdan

including input from the user, data from Data App 1 and
Data App 2, as well as processing from at least Mod 3 and
Mod 5. If there is a way for part of the user input to end up
in p as keywords of the language LM when parsed by the
grammar GM, then there is an LM-injection vulnerability, and
the untrusted user can control to some extend the execution
of Mod 5 inside Application 3.

Definition 1 (LM-injection vulnerability) An application
has an LM-injection vulnerability if the application uses a
virtual machine M and it is possible for a user to provide a
set of inputs ip to the application that will cause the
application to generate a program p sent to M such that
there are in p some elements coming from ip that will be
parsed by the grammar GM as keywords of the language LM.

 In other words, a command injection vulnerability is a
flaw that allows a user to modify the parsed input of a virtual
machine in such a way that the modified portion of the input
is going to be interpreted by the machine as a command. It is
called a command injection because it reflects the ability of
the user to inject a “command” that will be executed directly
by the targeted virtual machine.

2.2. Data Normalization

 Before the actual validation effort, it is useful to first
normalize the data. This step is often known as data
canonicalization

2

(see for example [21, 22]). The goal is to
massage the data to put it in its canonical form, defined as
“its simplest and standard form”. We prefer to use “data
normalization”, because the notion of data’s “simplest form”
is neither well defined nor very relevant to this problem.

 Data normalization is the process of transforming the
data into some predefined format. A very common example
of normalization is encoding format: there are many different
ways of encoding the same input, for example using different
character sets. Therefore, if no preprocessing is done, the
data validation step will have to guarantee that whatever is
done during validation is done effectively regardless of the
format. Otherwise validation would simply be bypassed, e.g.

2Or even C14N, standing for “C, then 14 letters, then N”.

by using a different character set. This significantly
complicates the validation process. It is thus more efficient
to first normalize the encoding format, e.g. by encoding the
input into some predefined character set prior to the
validation process.

 Character sets are just one of the issues that
normalization concerns itself with. It is relevant when there
is more than one way to provide an equivalent input to the
application, and these different ways have an impact on
validation. For example, in most current operating systems
there are many different ways of naming a file, using
absolute or relative paths, mixing up actual path and parent
path (e.g. dir1/dir2 and dir1/../dir1/dir2 are equivalent on
Unix), using symbolic links, mixing cases on case-
insensitive operating systems or using Universal Naming
Convention shares, to name but a few. Another example
would be protocols allowing that some of the messages, or
some of the information inside the message, be given in
different orders, or even repeated several times (see for
example [23]).

 It should be noted that the goal of the data normalization
step is to put the data in a predefined format; the actual
format chosen, “simplest” or not, is thus not particularly
relevant.

3. EXISTING APPROACHES AND LIMITATIONS

 Data validation has long been identified as an important
part of software security. However, we will show that the
current approaches to data validation do lack both
practicality and clarity.

 One of the main theories about data validation is that one
should use “white lists” (permitting what is known as correct
input) rather than “black lists” (blocking inputs that are
known to be harmful). This is a fair idea as such, but it does
not help in understanding what it is that validation is trying
to protect against, nor does it help understand where to
validate. As we will see, this approach is still very relevant,
but cannot be considered a validation technique on its own.

 The most common validation technique uses the idea of
“trust boundaries” [24-26]. In this approach, we are

Fig. (2). An overview of the interaction between a user and a sequence of applications. Data entered by the user will be handled by the

applications 1, 2 and 3, in different contexts each time.

Untrusted User

Application 1

Mod 1

Mod 2

Mod 3

Data App 1

Application 2

Mod 4

Mod 5

Data App 2

Application 3

Mod 6

Hi’@$INPUT=…

Hi’@$INPUT
=…

Program p in LM

Grammar GM

Data Validation, Data Neutralization, Data Footprint The Open Software Engineering Journal, 2008, Volume 2 49

supposed to identify various zones inside the application
within which the level of trust is similar. The main idea is
that whenever data crosses a trust boundary, that is, crosses
the frontier between two of these zones, the data should be
validated. The theory sometimes includes the definition of
chokepoints [24] that should be used when crossing a trust
boundary. Chokepoints are the possible points of entries into
the guarded boundaries, where data must be validated,
although the scope of this “validation” is usually not very
clear.

 Trust boundaries are a natural idea, that fit rather well
with the natural security intuition of gatekeepers that are
used to ensure that whatever enters a zone is “safe”.
Unfortunately, in real life, there are several problems with
this view:

• The notion of trust boundaries has no particular
correspondence to any architectural boundaries. In
other words, a “trusted zone” may slice the software
architecture in any way, meaning that the
chokepoints will have a difficult time integrating
with the actual software architecture. Having a
security architecture at odds with the rest of the
software architecture is surely not a good situation.

• As a consequence of the previous point, it is very
likely that a given module can be reached through
several chokepoints and trust boundaries. In fact,
the target module for a particular input can be quite
remote from the chokepoints, and several
chokepoints might lead to the same module via
different routes, crossing the trust boundaries
through different paths. In other words, the
validation of the data leading to a particular module
will be done away from that module, and will have
to be done at different locations, once for every path
leading to that module and crossing the trusted
boundary. This is clearly in opposition to good
software engineering practices, where the same
work should be done only once. To make things
worse, because a particular module’s data is
validated away from that module, at the current
trust boundary, any extension to the software that
will reuse the module will likely re-create a new
trust boundary crossing, and thus a new duplication
of the verification. And of course, the same
problems occur if we want to reuse the module: the
validation will have to be redone in the new context
for the reused module to be secure.

• Last, but not least, there is just no reason to assume
that when crossing the trust boundary, the data is in
its final form. If it is not, then it means that we are
attempting to validate partial information, a futile
exercise without much doubt. And here again, even
in the favorable case where the data is reasonably
complete when crossing the boundary, validating it
here requires an understanding of the expected valid
format. When looking at a simple application, that
seems to be fairly doable. But when the data is part
of a large, complex application, it is often the case
that the data can not be simply validated by looking
at a simple value range. Instead, a complex
evaluation is required, which basically requires the

application logic to be restated at the validation
point. This is again at odd with any good software
engineering practices, which states that the logic of
the application should be coded once and
maintained at that one place. Following the trust
boundaries paradigm means that the logic of the
application must be duplicated and maintained at
every chokepoint, a situation that is clearly to be
avoided.

 Another common approach to data validation,
particularly popular with Web applications, is to perform
field by field the validation of the data entered in a form.
This idea is presumably common because the current
programming environments offer excellent support for it,
with advanced field-level and form-level validation functions
that can be used to easily enforce some input formats (see
e.g. [27, 28] for SUN’s J2EE [29] and [30, 31] for
Microsoft® .NET [32]). This approach, however convenient,
suffers from the same flaws as the trust boundaries approach:
the validation occurs outside the module that handles the
data, leading to a duplication of logic, a duplication of code,
poor modularity and maintenance problems. In addition to
these very serious problems, we are faced with an overall
strong limitation of what can actually be validated since a
very limited amount of data is available at the validation
point. Basically, one has to validate based on the data present
in the current form (or current screen). This approach can
only work with simple applications (such as most current
Web applications) but will not scale to more complex
scenarios

3
. Finally, this approach is typically only available

in the limited context of inputs via the user interface. If the
application is extended to provide other types of interactions,
these other types of input may not have this solution
available.

 Pushing the logic even further, in some contexts it is
sometimes suggested to validate data through an application
firewall, such as [33]. This obviously suffers from the very
same problems as the techniques described above, since an
application firewall is situated outside the application, even
further away from the end module that will process the data.
Note that in some cases, application firewalls are the only
option available (e.g. when the application source code is not
available or cannot be changed) but that does not change the
fact that application firewalls are a very poor solution to data
validation

4
.

 In [34], Stephen de Vries proposes a validation approach
which attempts to solve some of the issues outlined above.
This is the only such attempt that we are aware of at the time
of writing. Recognizing the fact that, with real, large
applications, validation cannot be done just about anywhere,
de Vries proposes a framework with a “validation” step in
the “business object”, that is, where the context of the data

3We are not suggesting not to use these types of tools; good defense-in-

depth security suggests that an additional layer of security is always a good

thing. However, we argue that one should not rely purely on these tools to

validate untrusted inputs in an application.

4Here again, we are not suggesting not using application firewall. In fact, we

believe application firewalls support should be part of any secure

distribution, since they are a very efficient way to quickly react to a problem

and secure an installation until a proper, fully tested patch can be

distributed.

50 The Open Software Engineering Journal, 2008, Volume 2 Guy-Vincent Jourdan

usage is known, and an “encoding” step at the data access
layer. His approach is compatible with the one proposed in
this article. However, de Vries does not clearly define,
formally or informally, the precise goals of the “validation”
step and the “encoding” step. Moreover, the suggestion that
the encoding step should be “performed close to where the
data is processed” [34] does not seem precise enough. The
closer we move to where the data is processed, the more
likely user-provided data and application provided data will
be mixed together, and thus the less likely it will be that
injection attacks will be caught. Finally, the suggestion to
use a specific data access object to “encode” the data for
each target “processing context” ignores the problem of
multiple processing contexts, where the data is aimed at a
series of contexts (e.g. the data is sent to a database (SQL
context) to be eventually rendered in an HTML browser
(HTML context) with scripting support such as a JavaScript
interpreter (JavaScript context)).

 A few other papers have been published on the topic, but
they typically focus on a very specific sub-problem and one
possible solution. As such, these techniques are typically
compatible with our proposal, which focuses on what should
be done and where it should be done, rather than how it
should be done (for which we refer to existing techniques).
Among others, we can refer to [35, 36], where a systematic
way of dealing with user inputs with filtering techniques can
be found. In [18, 37, 38], we can find solutions based on the
static analysis of the code to automatically link the command
injection points to user inputs. These solution are not perfect
and can miss some of the links, and even once the path from
the user input to the injection point is detected, much is left
to be done in order to decide whether the data can be trusted.
The solution provided by Su and Wassermann in [19] is to
tag what we have called the variable terminal symbols of GM

and to then simulate a parser for GM. If that parser infers the
existence of keywords of LM within tags, then a command
injection has been detected. The solution is the only one to
our knowledge that would provably prevent any possibility
of command injections in the tagged data. Unfortunately, this
method seems to be somewhat limited in practice, since it
requires the ability to properly tag the data and moreover
assume the availability of a GM parser simulator, which is
perhaps possible with simple grammar but much more
difficult with complex and in practice poorly standardized
languages such as HTML.

 In the following sections we provide our own solution to
the validation problem.

4. DATA VALIDATION

4.1. Goals of the validation steps

 In our framework, we split the overall untrusted data
validation process into two steps, each having a well
identified purpose. The first step, called the validation step,
is there to protect the application itself, and only the
application, against potentially harmful untrusted data. The
second step, called the neutralization step, is there to protect
other applications being utilized by ours. It is described in
Section 5.

Definition 2 (Data Validation) The data validation step is
the process by which we ensure that the untrusted data is of

the form that is expected by the application for proper
processing, and will not cause the application to behave in
an insecure way.

 This definition is a strong departure from the usual
approach, since at the data validation step, we do not attempt
to protect against injections of any kind. Instead, we have a
more focused and better defined scope, which is solely about
the application itself.

 It should be noted that with this definition, the data
validation step is closely related to classical good software
engineering practice. The goal is to ensure that the input data
is within the expected types and range, which one would
assume is already done by the application anyways. As such,
the effort required for that step is minimal, at least if the
application was engineered correctly to begin with. It still
departs from the expected existing checks in place in at least
two ways: first, our data validation should be concerned with
denial of service attacks (an attempt by an attacker to prevent
legitimate users from using the application, see e.g. [7]), and
thus may act on inputs that are not invalid but would cause
the application to consume too much of some restricted
resource (such as CPU, memory or storage). Second, the
checks must be “paranoid” and not assume anything about
that data coming in, for example not assume that the data has
been entered normally via the user interface.

4.2. Where to Validate

 As we have seen in Section 3, the temptation of
disconnecting the validation from the application logic is
strong, with a “natural” tendency to block potentially
harmful data as early as possible, typically just as it enters
the application. We argue that one should not yield to this
temptation, because this does more harm than good: first, the
data is either validated without context, which can work only
for the simple case, or the context has to be re-coded at the
validation point. Second, the data might be incomplete or
partial, in which case the validation cannot be very effective.
And third, the same data should be validated along every
possible path, leading to a duplication of the same validation
process along each path and the production of modules that
are not safe to re-use as such, since they do not contain the
validation step.

 The conclusion is clear, and the validation step should
only be performed within full context, inside the module that
is going to use the data. In this way, the application logic and
validation steps are not duplicated, safe reusable modules are
produced and the data validation step can be integrated with
the existing input validation steps of the modules. In Fig. (2),
it means that within Application 1, the data shown should be
validated as it enters module Mod 3, where it is processed; at
that point (and only at that point) data coming from Data
App 1 is known and a context-aware validation can be
performed.

 The apparent drawback is having “unsafe” data traveling
around the application for a long time (within modules Mod
1 and Mod 2 in the example of Fig. (2)). Security-minded
programmers might feel uncomfortable with this, but there is
no real problem from the security viewpoint of having
unvalidated data simply passed along. The data will still be
validated from the viewpoint of Mod 1 and Mod 2, which in

Data Validation, Data Neutralization, Data Footprint The Open Software Engineering Journal, 2008, Volume 2 51

this case may simply mean to check that enough storage is
allocated to accommodate the data as it passes through the
modules.

4.3. How to Validate

 Now that we know what to do when validating untrusted
data and where to do it, we still need to know how to do it.
For this, we do not suggest anything outside classical
techniques, since they seem very appropriate: precise type
checking, bounds verifications and any relevant application-
level logic should be used to ensure that the data can be
safely processed by the module being protected. As
previously stated, no assumptions should be made regarding
the untrusted data, in particular, it should not be assumed
that the data has not been tampered with, unless strong
cryptographic techniques have been used to guarantee or
verify it. If one is concerned with efficiency and wants to
avoid duplicating validation (for data that is used in different
objects), again no assumption should be made and
application-level checks should be implemented to ensure
that validation has indeed occurred. In addition, clear
guidelines should be established regarding what steps to take
when validation fails (rejection of the data, reformatting to
an acceptable form etc.).

5. DATA NEUTRALIZATION

5.1. Goals of the Neutralization Steps

 Since the data validation step was solely about protecting
the application itself, we still need to protect against all
possible command injection attacks. It means that, when
using a virtual machine M, we want to remove the possibility
for untrusted data to contain an element that is going to be
recognized as a keyword of the language LM by the grammar
GM. This is the purpose of the neutralization step, which
protects the other applications (the “virtual machines”)
against attacks carried through our application.

Definition 3 (Data Neutralization) The data neutralization
step is the process by which we ensure that the untrusted
data can be safely passed along to the various virtual
machines M used by our application and is free of any LM-
injection attacks.

 This clear separation between validation and
neutralization allows to properly cover the various issues that
must be addressed with untrusted data. It also helps
clarifying an apparently widespread misconception
suggesting that this particular area of software security boils
down to good software engineering practices. In other words,
if sound engineering practices are followed, then everything
that needs to be done around data validation will be done and
security problems will come only from glorified bugs. We
have already identified some aspects of the validation step
that are not typically covered by the typical software
engineering steps; the data neutralization actions are even
less likely to be addressed by proper software engineering
techniques, since this side of the problem is not about bugs in
the application but about protection of other applications [39].

5.2. Where to Neutralize

 Much like the data validation step, the data neutralization
step should be done only once the context is fully clarified.

This is typically only once the data is ready to be sent over to
the target virtual machine, which we call the injection point.
Injection points do not necessarily imply a direct
communication with the target virtual machine. It is the point
at which the data that will eventually reach this virtual
machine leaves our application.

 Thus, as opposed to current approaches which tend to
handle the threat as early as possible, in our framework the
neutralization is a “late” step, we neutralize the data as close
to the injection point as possible. In the example of Fig. (2),
in App 1 the neutralization step, which neutralizes the user
input from command injections in module Mod 6, is done at
the output of module Mod 3, where maximum contextual
knowledge as been accumulated (for App 1) and the most
informed decision can be taken. Note that if we have control
over App 2 as well, then a similar (and potentially better)
neutralization would be performed at the output of module
Mod 5.

 There is an exception to this situation, which is when
some previous computation makes it impossible to
distinguish the untrusted data from the other data at the
injection point. This happens typically because the untrusted
data is mixed with trusted data at some point in the
computation. When this is the case, we simply would not be
able to neutralize at the injection point and we have to apply
that step earlier (before the information is lost). It is however
best, if at all possible, to modify the code to allow
neutralization to happen close the injection point instead.

5.3. How to Neutralize

 Again, how to best neutralize, and what to do with faulty
data, is context dependent and should be adapted to the
application being secured. In practical terms, it seems that
the usage of simple neutralization rules making use of usual
white lists mitigated with black lists is appropriate: allow
only known good, and if necessary, filter out, escape or
encode known bad (see e.g. [35, 40]). Clearly, the
neutralization step is greatly simplified by the usage of our
framework, which helps understand precisely what this step
is all about.

 If the machine M against which the data is neutralized
works with a relatively simple grammar GM, then it is
possible to look at systematic approaches that would
provably prevent LM-injections. For example, Su and
Wassermann describe in [19] a method consisting of tagging
what we call the variable terminal symbols of GM and then
simulate a parser for GM to see if it derives the existence of
keyword of LM within tags. Other approaches are based on
static analysis of the code and automatic inference of
monitoring tools [18, 37, 38].

 Ideally, the need for neutralization can be mostly avoided
by interacting directly with the virtual machine to safely
construct the statements by passing the variables as such and
avoid any possible confusion between code and data (such as
using prepared statements when building an SQL query).
Unfortunately, this interactive solution is not always
available with the virtual machine at hand, and in some cases
will perhaps not be available any time soon (e.g. to construct
HTML pages or XSL Transformations [15]). And even when
such an interactive construction is possible, it is possible that

52 The Open Software Engineering Journal, 2008, Volume 2 Guy-Vincent Jourdan

using it is not an option, for example to avoid dependency on
a particular implementation of the virtual machine.

 When neutralizing data, one important thing is to identify
all the target virtual machines for the data and to neutralize
for each of them. In the following example, a JavaScript
code is built partially from the untrusted data Evil:

<HTML>
...
<BODY>
...

<SCRIPT language="JavaScript">
var unsafe = ’<%Evil%>’;
...

 This code is very insecure, since the value of Evil is
used as is inside the JavaScript code. In order to secure that,
we should clearly neutralize Evil against JavaScript
injections, since JavaScript is the target virtual machine.
However, this would not be enough. Indeed, the JavaScript
code is inside an HTML page, and thus we should also
neutralize against HTML injections, since the resulting page
will be send to an HTML virtual machine (the user’s
browser). If we fail to do that, then a value such as
</SCRIPT>... for Evil will give the attacker control
of the HTML engine. We should thus neutralize against both
JavaScript injections and HTML injections (and in that
order) to properly neutralize that code. And if the data was to
be stored in an SQL database before, then Evil should also
be neutralized against SQL injections.

6. DATA FOOTPRINT

 If the framework described above has been correctly
implemented, then the result should be an application free of
untrusted data attack problems, protected against attacks to
the application logic, as well as against attacks sent to other
applications via the protected application.

 However, that does not mean that we are fully safe, even
after having done the best possible job at data validation and
data neutralization. There are at least three reasons for that:

• The virtual machines will evolve. Our application
has been designed with a set of existing possible
implementation for the virtual machines (e.g. a set
of existing SQL-based databases or a set of existing
web browsers). If our application is successful, then
it will outlive these existing applications, and will
end up being used in conjunction with virtual
machines that did not exist at the time of
development (e.g. a new SQL-base database will be
popularized, a new HMTL browser will be
introduced, new version of existing ones will be
used etc.). Each one of these new virtual machine
can implement a slightly modified grammar, and
thus be vulnerable to new command injections that
were not present at the time of development.
Clearly, there is not much we can do against such
future unknown threats, and clearly once these
future threats are actually available, our application
is not secure anymore.

• The application might be used in an unforeseen
environment. The data that is stored by our
application might be redirected to an unexpected
virtual machine, creating unforeseen injections
opportunities. For example, the data stored in a
database might be later used as input to another
application. Or, the log file created on-the-fly by
our application can be redirected by some of our
users to a log formatting tools that creates HTML
reports out of it, creating unexpected HTML
injection opportunities through logged information.
Again, there is not much that can be done against
that ahead of time, since we cannot possibly
neutralize against everything “just in case”, but
once the problem occurs our application is a threat
despite our efforts.

• We could also simply have made some mistakes. If
the application is large enough and complex
enough, and is interacting with enough virtual
machines, then we are looking at a complex task.
Even if our framework simplifies the problem, it
remains that the task is difficult, and thus error
prone. It is not reasonable to expect creating a
vulnerability free application just using a good
framework, just as it is not reasonable to expect
creating a bug free application just using good
software engineering methods.

 Against these problems, at first we seem to be powerless,
since we cannot anticipate them precisely enough to act. Our
suggestion is then to be upfront about how the application
interacts with its surroundings, identify and document what
it is writing and where, so that after having made the best
possible efforts to produce a safe application, we can also
give to the application’s user the necessary information to
decide whether a particular evolution of the system (new
version, new virtual machine, new usage) is safe or not. This
is what we call the application data footprint map. A data
footprint map will thus identify where the application stores
data (e.g. this database, this table, this field) and provide in
each case the possible form of the data that can be stored, as
a regular expression. This is the stored data footprint. We
need to also list the volatile data footprint, capturing direct
interactions between the application and the virtual machine,
typically command invocations. In the example of Fig. (2), it
is shown that App 1 has a direct interaction (in this picture
with App 2, although it might be that in a different context,
App 1 interacts with some other application App’ 2). Thus,
the data footprint map of App 1 will record this volatile
interaction, describing with a regular expression all the
possible values that can sent there by App 1. App 1 is also
reading from a database Data App 1. If what is read was
written by App 1, then this stored data footprint will also be
included in the map, along with the possible values.

Definition 4 (Data Footprint) The application data
footprint is an exhaustive “map” of the application’s
interaction with the outside, identifying precisely where and
under what possible form the application stores data, as well
as how it interacts with virtual machines. The possible form
of the stored data and virtual machines interaction is
typically specified using regular expressions.

Data Validation, Data Neutralization, Data Footprint The Open Software Engineering Journal, 2008, Volume 2 53

 Armed with such as data footprint map, we are now able
to mitigate the three problems identified above: looking at
the bare information might help identify overlooked
injection possibilities with existing virtual machine.
Moreover, when the environment in which the application
evolves, either because new virtual machines or new usage is
introduced, we are now able to look at the data footprint of
the application and decide in an informed way whether or
not the new situation constitute a security risk. Without the
map, we would have had no way of deciding, and we would
have had to embark into a costly evaluation for every
possible evolution. With the footprint map, we can assert
that the new situation is not introducing new security risks,
or on the contrary we can identify new vulnerabilities and act
accordingly.

7. CONCLUSION

 In this paper, we have presented a framework that can be
used to handle untrusted input in a secure manner. Unlike
most of the current techniques, our approach can be used
with large, complex applications and is compatible with
current software engineering best practices.

 We have identified a three step process, where each step
has a precisely defined goal, and indications are provided for
where to implement these steps in the application. The first
step, data validation, protects the application itself against
malicious input. The second step, data neutralization,
protects the other applications used by the application being
secured. The third step, the data footprint, addresses the
question of the evolution of the environment in which the
application will evolve, and the fact the vulnerabilities will
be created in the future due to these evolutions. This is, as far
as we know, the first precise, realistic and complete solution
to the problem. Experiments done with earlier version of this
framework on real life, large web applications were reported
in [14].

 The next step will be to provide tools to help creating the
data footprint, or even to automate the production of such a
map. This tool will help trace backward from the injection
point back to the untrusted data insertion point, and to help
automatically inferring the possible syntactic forms of these
interactions.

ACKNOWLEDGMENTS

 This work is supported in part by the Natural Science and
Engineering Research Council of Canada under grants
RGPIN 312018.

REFERENCES

[1] B. Gates, “Trustworthy computing”, http://www.wired.com/news/

business/0,1367,49826,00.html, January 2002.
[2] Microsoft Corporation, “Trustworthy computing”, http://www.

microsoft.com/mscorp/execmail/2002/07-18twc.asp, July 2002.
[3] S. Lipner, and M. Howard, “The trustworthy computing security

development lifecycle”, http://msdn.microsoft.com/security/sdl,
March 2005.

[4] H. van Vliet, Software Engineering: Principles and Practice, 2nd
ed. Wiley, 2000, ISBN 0-4719-7508-7.

[5] I. Sommerville, Software Engineering, 7th ed. Addison Wesley,
2004, ISBN 0-3212-1026-3.

[6] WebCohort Inc., “Only 10% of web applications are secured

against common hacking techniques”, http://www.imperva.
com/company/news/2004-feb-02.html, February 2004.

[7] The Open Web Application Security Project (OWASP), “The ten
most critical web application security vulnerabilities”,

http://www.owasp.org/documentation/topten.html, January 2004.
[8] J. P. Anderson, “Computer security technology planning study”,

accessible from http://csrc.nist.gov/publications/history/ande72.
pdf, p. 61, October 1972.

[9] E. Levy (a.k.a. Aleph One), “Smashing the stack for fun and
profit”, Phrack magazine, vol. 7, no. 49, November 1996.

[10] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A.
Grier, P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic

adaptive detection and prevention of buffer-overflow attacks”, in
Proc. 7th USENIX Security Conference, San Antonio, Texas, jan

1998, pp. 63-78.
[11] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D.

D. Zovi, “Randomized instruction set emulation to disrupt binary
code injection attacks”, in CCS ’03: Proceedings of the 10th ACM

conference on Computer and communications security. New York,
NY, USA: ACM, 2003, pp. 281-289.

[12] J. Xu, Z. Kalbarczyk, and R. Iyer, “Transparent runtime randomi-
zation for security”, Reliable Distributed Systems, 2003.

Proceedings. 22nd International Symposium on, pp. 260-269, Oct.
2003.

[13] R. Riley, X. Jiang, and D. Xu, “An architectural approach to
preventing code injection attacks”, in DSN ’07: Proceedings of the

37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. Washington, DC, USA: IEEE Computer

Society, 2007, pp. 30-40.
[14] G. -V. Jourdan, “Securing large applications against command

injections”, 41st Annual IEEE International Carnahan Conference
on Security Technology, pp. 69-78, Oct. 2007.

[15] W3C, “XSL Transformations (XSLT)”, http://www.w3.org/TR/xslt,
November 1999.

[16] C. Anley, “Advanced sql injection in sql server applications”,
http://www.ngssoftware.com/papers/advanced sql injection.pdf,

January 2002.
[17] C. Anley, “(more) advanced sql injection”, http://www.

ngssoftware.com/papers/more advanced sql injection.pdf, June
2002.

[18] W. G. J. Halfond, and A. Orso, “Amnesia: analysis and monitoring
for neutralizing sql-injection attacks”, in ASE ’05: Proceedings of

the 20th IEEE/ACM international Conference on Automated
software engineering. New York, NY, USA: ACM Press, 2005, pp.

174-183.
[19] Z. Su, and G. Wassermann, “The essence of command injection

attacks in web applications”, in POPL ’06: Conference record of
the 33rd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages. New York, NY, USA: ACM Press, 2006,
pp. 372-382.

[20] T. A. Sudkamp, Languages and machines: an introduction to the
theory of computer science, 3rd ed. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2006, iSBN 0-32132221-5.
[21] J. Boyer, “Canonical xml”, http://www.w3.org/TR/xml-c14n, 2001.

[22] The Open Web Application Security Project (OWASP),
“Canonicalization, locale and unicode”, http://www.owasp.org/

index.php/Canonicalization%2C loc ale and Unicode, Novembre
2006.

[23] C. Linhart, A. Klein, R. Heled, and S. Orrin, “Http request
smuggling”, http://www.watchfire.com/resources/HTTP-Request-

Smuggling.pdf, 2005.
[24] M. Howard, and D. LeBlanc, Writing Secure Code, 2nd ed.

Microsoft Press, 2002, ISBN 0-7356-1722-8.
[25] The Open Web Application Security Project (OWASP), “Trust

boundary violation”, http://www.owasp.org/index.php/Trust
Boundary Violation, July 2006.

[26] M. Curphey, and D. Raphael, “Software security code review:
Getting it right before you release”, Software Magazine, http://

www.softwaremag.com/L.cfm?Doc=2005-04/2005-04coderev.
[27] Apache Software Foundation, “Apache struts 2 validation”,

http://struts.apache.org/2.x/docs/validation.html, September 2006.
[28] Apache Software Foundation, “The apache myfaces project”,

http://myfaces.apache.org/, 2006.
[29] Sun Microsystems, Inc., “Java platform, enterprise edition”,

http://java.sun.com/javaee, 2006.

54 The Open Software Engineering Journal, 2008, Volume 2 Guy-Vincent Jourdan

[30] A. Moore, “User input validation in asp.net”, http://msdn2.

microsoft.com/en-us/library/ms972961.aspx, March 2002.
[31] Microsoft Corporation, “Introduction to Validating User Input in

Web Forms”, http://msdn.microsoft.com/library/en-us/vbcon/html/
vbconintroductiontovalidatinguserinput inwebforms.asp, 2006.

[32] Microsoft Corporation, “NET framework”, www.microsoft.com/
net/, March 2002.

[33] I. Ristik, “Modsecurity”, http://www.modsecurity.org, 2006.
[34] S. de Vries, “A modular approach to data validation in web

applications”, http://www.corsaire.com/white-papers/060116-a-
modular-approach-to-data-validation.pdf, March 2006.

[35] D. Scott, and R. Sharp, “Abstracting application-level web
security”, in WWW ’02: Proceedings of the 11th international

conference on World Wide Web. ACM Press, 2002.
[36] D. Scott, and R. Sharp, “Specifying and enforcing application-level

web security policies”, IEEE Transactions on Knowledge and Data
Engineering, vol. 15, no. 4, pp. 771-783, 2003.

[37] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.

Kuo, “Securing web application code by static analysis and runtime
protection”, in WWW ’04: Proceedings of the 13th international

conference on World Wide Web. New York, NY, USA: ACM
Press, 2004, pp. 40-52.

[38] V. B. Livshits, and M. S. Lam, “Finding security errors in Java
programs with static analysis”, in Proceedings of the 14th Usenix

Security Symposium, Aug. 2005, pp. 271-286.
[39] C. Adams, and G.-V. Jourdan, “Why good software engineering

practices often do not produce secure software”, in IEEE Workshop
on Cyber Infrastructure Emergency Preparedness Aspects, Ottawa,

ON, Canada, April 2005.
[40] The Open Web Application Security Project (OWASP), “Data

validation”, http://www.owasp.org/index.php/Data Validation, June
2006.

Received: October 30, 2008 Revised: December 12, 2008 Accepted: December 18, 2008

© Guy-Vincent Jourdan; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

