
 1

Minimizing the Number of Inputs while Applying Adaptive Test Cases

Guy-Vincent Jourdan, Hasan Ural and Nejib Zaguia
School of Information Technology and Engineering

University of Ottawa,
800 King Edward Avenue

Ottawa, Ontario, K1N 6N5, Canada
{gvj, ural, zaguia}@site.uottawa.ca

Keywords:
Software engineering, adaptive testing, adaptive test cases, minimization of test inputs

1. Introduction

State-based formalisms such as Finite State Machine and its derivatives have been used

extensively for the specification of the externally observable behavior of a wide range of

reactive systems [3-7]. A use of such specifications is to construct a set of test cases to

be employed during testing of potential implementations of the specified system. Test

cases constructed from such a specification are in the form of sequences of pairs of test

input and the corresponding expected output (as in preset testing), unless it is recognized

that there are more than one valid expected response and thus the next test input depends

on the actual output produced in response to the current input (as in adaptive testing). If

the latter is the case, then the test case is in the form of a tree, called adaptive test case.

For example, Figure 1 depicts an adaptive test case where the test inputs are given in the

nodes, the expected outputs are given on the edges, and the verdicts are given in the leaf

nodes. A verdict is the representation of the test result which is either pass, fail, or

inconclusive. A test language, called Testing and Test Control Notation (TTCN) [1]

formalizes this notion and has been used for the description of adaptive test cases for

testing internet related systems, services and protocols, mobile communication systems,

middleware platforms, object- and component-based systems, Web services and

embedded systems where there may be a variety of expected responses or options that are

left to the discretion of the implementers.

 During the application of a set of adaptive test cases to an implementation under test

(IUT), the IUT is reset to its initial state after the application of each adaptive test case. A

major component of the cost of applying a set of adaptive test cases is given in terms of

 2

the number of inputs that are applied during testing. For a deterministic IUT, it is

reasonable to assume that it is unnecessary to execute on the IUT twice with the same

sequence of inputs and that an execution of an IUT on a sequence of inputs subsumes the

execution of the IUT on any prefix sub-sequence. Under this assumptions, it is sometimes

possible to deduce the IUT’s response to an adaptive test case t2 from the response of

another adaptive test case t1 that has already been applied. When this is the case, there is

no need to apply t2 which leads to the reduction of the cost of testing.

 Hence, it might seem that ordering the set of adaptive test cases might yield a

substantial reduction in the number of test inputs during the application of these test

cases. However, it is shown that the problem of finding an optimal order of application of

a set of adaptive test cases is NP-hard [2]. In order to elude the problem of finding an

optimal order, this paper proposes the simultaneous application of subsets of a given set

of adaptive test cases to a given IUT, proves a lower bound on the number of inputs that

need to be sent to the IUT for the application of the set of adaptive test cases and then

presents an algorithm for the application of the set of adaptive test cases to the IUT that

achives this lower bound.

Figure 1. An adaptive test case

2. Optimizing the Number of Test Inputs

Let T={t1, t2, …, tn} be a set of adaptive test cases and IUT be a given deterministic

implementation. The sequence of inputs that is sent during the application of an adaptive

test case (henceforth called test) t to an IUT is called the IUT’s tested word of t and

written Lt,IUT. The set of all tested words of a test set T forms a language, which is called

the tested language of T and written LT,IUT. We have that LT,IUT={L1, L2, …, Ln}where Li =

a

0 1

c
0 1

b
0 1

c
0 1

a
0 1

Pass Fail Inconclusive Pass

Pass Fail

 3

Lti,IUT. Let LmaxT,IUT be the set of tested words in LT,IUT such that none of these words is a

prefix of another.

 We start by proving a lower bound to the number of input sequences needed to apply

all tests in T to a given IUT.

Proposition 1: LmaxT,IUT is exactly the minimum set of input sequences that should be

sent to the IUT in order to apply all the tests in T.

Proof: By definition, any word w of the tested language LT,IUT is either in LmaxT,IUT or is a

prefix of at least one word in LmaxT,IUT.

If w is in LmaxT,IUT, then clearly applying all words of LmaxT,IUT will give the result of

applying w.

Otherwise, let p be a word of LmaxT,IUT such that w is a prefix of p. Such a word exists by

definition of LmaxT,IUT. The result of applying w can be inferred from the application of

p: since the IUT is deterministic, applying w will produce exactly the result of applying

the |w| first inputs of p.

This shows that applying LmaxT,IUT is sufficient. It is also necessary because by

definition, any word in LmaxT,IUT is not contained in any other word of the tested

language LT,IUT, so the result of applying that word cannot be inferred from the

application of any tests in T. ð

 Let I be the number of inputs sent to an IUT during the application of T to the IUT

and let |w| be the number of inputs in an input sequence w. A lower bound MinT,IUT for I

can be easily deduced from the Proposition 1:

Proposition 2: The minimum number of inputs that are needed in order to apply all the

tests in T to an IUT is:

MinT,IUT = Σ w in LmaxT,IUT |w|

 3. Algorithm

We now present an algorithm that achieves the lower bound on the number of inputs

proved in Proposition 2. According to Proposition 1, in order to minimize the number of

 4

input sequences sent to the IUT, we need to apply the tests that are going to produce

tested words that are not prefixes of any other word in LT,IUT, i.e. we need to apply

LmaxT,IUT. The results for all the other tests can be inferred from these tests.

 The problem is that we do not know a priori what tests are going to produce tested

words that are not prefixes of any other word in LT,IUT before applying the tests in T to the

IUT. Instead of actually choosing a particular subset of tests from T to apply one after the

other, our solution is to apply a group of tests together, and automatically converge

toward the application of the subset of T that produces the words of LmaxT,IUT.

 The algorithm works with a set of tests called currentSet, which contains all the tests

that have the same prefix of the tested word being formed. This constitutes the tests that

are currently being considered. Initially, we select all the tests that have the same first

input. We send that input to the IUT, observe the response r of the IUT and trace this

response in all the tests in currentSet by following in each of the corresponding trees the

outgoing edge labeled r, thus moving to the next node. We then look at the second input

of the tests, and again select a subset of tests that have the same second input. We

proceed until we have sent the last input of the last test in currentSet. We then select the

next set of tests to form the new currentSet.

 In the algorithm, we use a vector V to store several sets of tests. At any moment, all

the tests stored at an index i of V have the same input sequence consisting of the i-1

inputs already sent to the IUT. We call that common input sequence the prefix of V[i].

We also call sorting V[i] ordering the tests stored V[i] in ascending order of their next

input (ith input). Initially, we store all the tests in T in V[1]. This is compatible with our

definition since all tests have initially the same input sequence of size 0, i.e. no input has

been sent yet. Sorting V[1] is thus sorting all the tests in T in ascending order of their first

input. The algorithm is detailed in Figure 2.

Analysis of the algorithm

The correctness of the proposed algorithm directly follows from Proposition 1, saying

that applying the words of LmaxT,IUT is equivalent to applying all the tests in T. We are

 5

indeed applying the words of LmaxT,IUT because each time we go through the outer while-

loop (line 3), we reset the IUT and start a new test. By construction, we carry out this test

until the tested word cannot possibly be extended. We are therefore generating maximal

tested words, i.e. words of LmaxT,IUT. Moreover, a test is marked as “finished” in only one

case (line 16), when the test actually finishes. Since we carry out the computation until all

tests are marked as finished, we cannot possibly miss any word of LmaxT,IUT.

Our algorithm is optimal in terms of the number of inputs by virtue of Proposition 2,

since we have shown that we stay within the language of LmaxT,IUT and that we

completely cover it.

Figure 2. Algorithm for testing an IUT using the minimal number of inputs

 To analyze the complexity of the algorithm we will consider separately both parts of

the algorithm: the sorting part at the beginning of the algorithm and the repetitive part.

 1: index =1;
 2: V[1] = T;
 3: While index � 0 do
 4: If V[index] is not sorted then sort it;
 5: Reset the IUT and apply the prefix of V[index] to the IUT;
 6: Let nextSymbol be the next input of the first test in V[index];
 7: Initialize currentSet with all tests in V[index] having nextSymbol\
 as the next input;
 8: While currentSet � ∅�do
 9: Apply nextSymbol to the IUT. Let IUTResponse be the response\

of the IUT;
10: index = index + 1;
11: nextSymbol = null;
12: For each test t in currentSet do
13: Trace IUTResponse in t;
14: If the next input of t == null then
15: Mark test t as finished;
16: Remove test t from currentSet;
17: else if the nextSymbol == null then
18: nextSymbol = the next input of t;
19: else if the next input of t � nextSymbol then
20: V[index] = V[index] ∪ t;
21: Remove test t from currentSet;
22: end if
23: end for
24: end while
25: Do
26: index = index – 1;
27: until (index == 0) or V[index] � ∅
28: end while

 6

Let length (t) be the size of the longest path in a test t, w(t) be the maximum number of

children of any node in t, and |T| be the number of tests in T.

 For the repetitive part, we go through the outer while-loop (line 3) |T| times

maximum, because we remove at least one test each time. For each iteration of the outer

while-loop, we go through the inner while-loop (line 8) at most max(length(t)) times

where t belongs to currentSet, because at each iteration of the inner while-loop, we move

to the next input of the set of tests in currentSet. Regarding the complexity of the inner

while-loop, line 13 can be done in O(w(t)) for each test t in currentSet, while every other

step of the loop is done in constant time. Therefore, if length(T) is the maximum length(t)

for t in T and w(T) is the maximum of w(t) for t in T, the complexity of the repetitive part

of the algorithm is bounded by O(|T|.length(T).w(T)).

 For the sorting, and for a given value of index, each test is stored in V[index] at most

once. If we consider that all the tests are sorted at the same time, the sorting can be done

in O(|T|log(|T|)). Because index is bounded by length(T), the total sorting time is bounded

by O(length(T).|T|log(|T|)).

The overall complexity of the algorithm is thus bounded by

O(length(T).|T|.(w(T) + log(T)).

4. Concluding Remarks

The algorithm presented above is optimal in terms of the number of inputs sent to the

IUT to apply a set of tests T. However, if we make further assumptions regarding the

nature of the IUT, the number of inputs can be reduced further.

Resetable IUTs

It is usually assumed that the IUT can only be reset to its initial state. However, in some

instances, it is reasonable to assume that the IUT can be reset under some conditions to

some or any “recorded” state. For example, the IUT can be a distributed system that can

be reset to any stable state (a state where all the sent messages have been received), or the

 7

IUT can be a computer program running under a debugger, where it is sometimes

possible to record a state and reset the program to that state at a later stage.

 In general, if we assume that any state of the IUT can be recorded and that the IUT

can be reset to a recorded state at will and that the IUT implements this reset function

correctly, then the algorithm can be improved in the following way:

1) in line 20 of our algorithm, when a test is first stored in V[index], the current state of

the IUT must be stored as well

2) when the next test is picked up (line 5), instead of resetting the IUT to its initial state

and resend the prefix of V[index], we simply need to directly reset the IUT to the state we

now stored along with V[index].

 In that case, the reduction in the number of inputs comes from not sending the prefix

of V[index] to the IUT every time a new currentSet is selected. Instead, we directly reset

the IUT to the state where we can start extending the tested word again.

Reversable Units

Another assumption could be that for every input to the IUT, we can send a “reverse

input” that will bring back the IUT to its previous state. This is not unlike the “undo”

function commonly available in many applications. Under that assumption, the IUT

cannot be directly reset to any state, but can be gradually set back to a previous state by

sending a reversing sequence. Suppose that the IUT implements these reversing

sequences correctly.

 Under these assumptions, the algorithm can be modified in the following way: as we

find the next branching point (lines 25, 26 and 27), we count how many steps we have to

go through. Say we go back from index k to index j. In other words, we move back from

V[k] to V[j]. If k-j > j, then instead of resetting the IUT to its initial state (line 5), we send

the reverse sequence of inputs to the IUT, from V[k] to V[j].

 8

 In other words, once a set of tests in currentSet is completed, we will go back until we

find the next set of tests to work with. If that set is relatively close to our starting point

(less than half way through to the beginning), it is less costly to “undo” the input

sequence in order to bring the IUT to the right state. If the next branching point is further

away than half way through, then it is less costly to just reset the IUT to the initial state

and bring it to the right state from there.

Acknowledgements

This work was supported in part by Natural sciences and Engineering Research Council
of Canada under grant OGP976. The authors thank the anonymous referees for their
valuable comments and suggestions of improvements of the presentation of this paper.

References

[1] J. Grabowski, A. Wiles, C. Willcock, and D. Hogrefe. On the design of the new
testing language TTCN-3. In Testing of Communicating Systems, 161-176, Ottawa,
Canada, Sept. 2000. Kluwer Academic Publishers.

[2] R. M. Hierons and H. Ural. Concerning the ordering of adaptive test sequences. In
23rd IFIP International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE 2003), LNCS Volume 2767, 289-302, Berlin, Germany, Oct. 2003.
Springer-Verlag.

[3] R. Lai, A survey of communication protocol testing, Journal of Systems and
Software, 62(1), 21-46, 2002.

[4] D. Lee and M. Yannakakis. Principles and methods of testing finite-state machines : a
survey. Proceedings of the IEEE, 84(8):1089-1123, 1996.

[5] A. Pelc and E. Upfal, Reliable Fault Diagnosis with Few Tests, Combinatorics,
Probability and Computing, 7(3), 323 – 333, 1998.

[6] A. Watanabe and K. Sakamura, A specification-based adaptive test case generation
strategy for open operating system standards, In the 18th International Conference on
Software Engineering, 81–89, Berlin, Germany, May 1996.

[7] M. Yannakakis, Testing finite state machines, In the 23th Annual ACM Symposium
on Theory of Computing, 476–485, New Orleans, Louisiana, United States, Jan. 1991.

