
November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

The International Journal of Parallel, Emergent and Distributed Systems
Vol. 00, No. 00, Month 200x, 1–23

RESEARCH ARTICLE

Toward Better Understanding of the Behavior of Bluetooth

Networks Distributed Algorithms

Ahmed Jedda, Guy-Vincent Jourdan, Nejib Zaguiaa∗

a∗School of Electrical Engineering and Computer Science

(v1.0 released November 2011)

The use of Frequency Hopping Spread Spectrum (FHSS) in Bluetooth significantly differenti-
ates its networks from classical radio networks. In order to observe such differences, we studied
basic algorithms, in particular, neighbor discovery and message exchange algorithms. Some of
the major differences are found in the procedures of device discovery and link establishment,
which are studied in this paper. We focus on their impact on Bluetooth networks’ distributed
algorithms. We show through detailed simulation experiments that minor modifications to
the Bluetooth specifications or their implementation may significantly affect the performance
of well-known neighbor discovery algorithms. We then study the impact of the procedures
of link establishment with the purpose of finding time-efficient implementations of commu-
nication rounds for Bluetooth networks. We study OrderedExchange and RandomExchange
as both algorithms implement communication rounds in Bluetooth, but use the PAGE and
PAGE SCAN states differently. Theoretical analysis shows that RandomExchange has a bet-
ter time complexity, while simulation experiments show that OrderedExchange significantly
outperforms RandomExchange in networks with a practical size (110 nodes and less). We use
the previous results to improve the time efficiency of Bluetooth Scatternet Formation (BSF)
algorithms through the introduction of the time-efficient algorithm OrderedExchangeCMIS.
We believe that the study of some other basic algorithms (such as broadcasting, spanning
tree, and election) will lead to a better understanding of Bluetooth networks, and as a conse-
quence, to more efficient algorithms that fully leverage the strength of this type of network.

Keywords: Bluetooth, Frequency Hopping, Bluetooth Scatternet Formation, Distributed
algorithms

1. Introduction

Our interest in Bluetooth stems from five of its features: 1) its wide availability
in the market (about 75% of all phones in the market are equipped with Blue-
tooth [20]); 2) its efficiency in energy consumption; 3) its robustness against in-
terference and noise; 4) its low cost; and 5) the ad hoc network capabilities that
it provides. With these features, Bluetooth has contributed heavily to providing
solutions for many wireless ad hoc networks problems (such as, low cost and low
energy consumption). A major advantage of Bluetooth comes from using Frequency
Hopping Spread Spectrum (FHSS) for communication. FHSS significantly differ-
entiated Bluetooth networks from classical radio networks. Some of the main dif-
ferences are apparent in the device discovery and link establishment procedures.
These procedures are briefly described in the follow.
According to Bluetooth specifications, a Bluetooth node that needs to discover

neighboring nodes must switch to a state called INQUIRY. While in the INQUIRY

∗Corresponding author. Email: ajedd077@uottawa.ca

ISSN: 1023-6198 print/ISSN 1563-5120 online
c© 200x Taylor & Francis
DOI: 10.1080/1023619YYxxxxxxxx
http://www.informaworld.com

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

2 Taylor & Francis and I.T. Consultant

state, the inquirer broadcasts small packets to announce its existence. A node that
wants to be discovered switches to a state called INQUIRY SCAN and listens to
inquiry packets generated by its neighbors. If two neighbors discover each other
(i.e. met in opposite states), they exchange information that facilitates the link
establishment procedures. For the link establishment, a node u that wants to es-
tablish a link with a previously discovered neighbor v switches to a state called
PAGE and sends small packets specifically designated to v. Node v, on the other
hand, must switch to the PAGE SCAN state to listen to the requests of u. Further
packets are exchanged to set up the connection.
The Bluetooth specifications list only the guidelines that a Bluetooth network

algorithm must follow to implement the device discovery and link establishment
procedures. Any method to implement these procedures may be used as long as it
complies with the specifications guidelines. These procedures have a major impact
on many distributed algorithms especially in terms of their execution time. We
found that few research efforts were conducted to develop efficient implementa-
tions for the device discovery and link establishment procedures. In this paper we
study the INQUIRY, INQUIRY SCAN, PAGE and PAGE SCAN states and their
impact on Bluetooth networks. We focus on the execution time of the distributed
algorithms of these networks.
In the first part we study the impact of the inquiry states on some neighbors dis-

covery algorithms. The neighbor discovery problem is the problem of letting each
node in the network discover all (or a sufficient number of) its neighbors. Bluetooth
ver1.2 introduced a minor modification to the device discovery procedures of Blue-
tooth ver1.1. This modification reduced the time required to establish a link for
nodes that discovered each other for the first time. This modification exists in all
Bluetooth versions appearing after Bluetooth ver1.2; however, its impact on neigh-
bor discovery algorithms has not been studied. We studied two well-known neighbor
discovery algorithms under the two Bluetooth versions. We called these algorithms
ALTERNATE (used in [16], [17], [28] and others), and LIM-ALTERNATE [5]. We
conducted two sets of experiments on these algorithms, noting a substantial im-
provement in their performances caused by the modifications of Bluetooth ver1.2.
We observed an increase of about 20% in the number of discovered edges.
We perform another set of experiments in which we show how a minor change

in the implementation of the Bluetooth specifications can lead to a substantial
degradation in the performance of ALTERNATE . The specifications state that,
during the device discovery and link establishment procedures, the nodes use 32
frequency channels for the search. These frequencies are divided into two trains,
Train A and Train B. A more specific definition of frequency trains is available in
4.2. The specifications state that it does not matter which train a device starts
with at the beginning of a new INQUIRY procedure. We showed in this set of
experiments that if we forced each new inquiry procedure to start with a specific
train and not the other, then the performance of ALTERNATE is significantly
degraded (approximately 40% decrease in the number of discovered edges). These
experiments are elaborated in Section 4.
The second part of this paper studies the impact of the page states on the

communication mechanisms used in Bluetooth networks. We show that major im-
provements in the execution time of some distributed algorithms may be obtained
by the use of a communication mechanism more adapted to Bluetooth networks.
Our results are based on the study of message exchange algorithms. We define a
message exchange algorithm as an implementation of one or more communication
rounds, where in a communication round every node sends and receives a message
to and from all its neighbors. In the literature on Bluetooth network algorithms

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

Parallel, Emergent and Distributed Systems 3

are message exchange algorithms. Some examples can be found in [16] [17] [28]. We
note as well that many other distributed algorithms, not necessarily in the Blue-
tooth literature, can be seen as message exchange algorithms. Examples can be
found in some solutions of maximal independent set [14][10], coloring algorithms
[11], minimum spanning tree [7], self-stabilizing algorithms [23] and others.
In this paper we study two algorithms that implement communication rounds

for Bluetooth networks, RandomExchange and OrderedExchange. The difference
between the two algorithms is in the use of the PAGE and PAGE SCAN states.
Theoretical analysis show that the time complexities of RandomExchange and Or-
deredExchange are O(∆) and O(n) respectivley, where ∆ is the maximum nodal
degree in the network and n is the number of nodes in the network 1. Simulation ex-
periments on the other hand show the superiority of OrderedExchange in relatively
small networks of 110 nodes and less. As Bluetooth is mainly used for personalized
and indoor networks, we suggest that it is more practical to use OrderedExchange
to implement communication rounds for Bluetooth networks in comparison to Ran-
domExchange.
In Section 6, we introduce applications of our previous results in order to de-

sign time-efficient Bluetooth Scatternet Formation algorithms. The problem can
be defined as forming Bluetooth network topologies that are efficient with respect
to some performance metrics, and this problem has been the focus of most of the
research in Bluetooth networks distributed algorithms. Any two Bluetooth nodes
communicating with each other must be either in the same piconet or scatternet.
A piconet is a star topology of one master node and one or more slaves. As a result,
all packets exchanged inside a piconet must pass through its master. It is preferable
to limit the number of slaves in a piconet to 7 slaves. Piconets with larger numbers
of slaves are allowed, but with a penalty on the performance of the nodes of the
piconet. A scatternet is an interconnection of a number of piconets. Piconets can
be interconnected to each other by bridge nodes (that is, nodes that have roles in
different piconets). Ideally, a scatternet should be connected and outdegree limited
(that is, the size of each piconet in the scatternet is limited to 7 slaves). We intro-
duce in Section 6 OrderedExCMIS, which is a time-efficient algorithm that forms
connected and outdegree limited scatternets. Our algorithm outputs the same re-
sults of BlueMIS [28] but with an improved execution time. This improvement is
obtained from the use of OrderedExchange for the implementation of communica-
tion rounds.
The paper is organized as follows. Section 2 includes background knowledge on

the Bluetooth specifications. Section 3 surveys some related works. Section 4 is a
study of the inquiry states. It includes two case studies that show the impact of
some minor changes in the Bluetooth specifications on two well known neighbors
discovery algorithms for Bluetooth networks. Section 5 studies the impact of the
page states on the communication mechanisms used in Bluetooth networks. Sec-
tion 6 provides some applications of OrderedExchange and Section 7 concludes the
paper.

2. Background Knowledge

Bluetooth uses the Frequency Hopping Spread Spectrum (FHSS) technique for
communication. Using FHSS, devices communicate using a pseudo-random order
of frequency channels, which is known to both communicating devices. FHSS influ-

1A detailed analysis can be found in Section 5.3.

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

4 Taylor & Francis and I.T. Consultant

Figure 1.: Differences in the inquiry procedures in Bluetooth ver1.1 and Bluetooth ver1.2. Master is the node
that establish the link, while Slave is the node scanning for masters to establish a link

ences the device discovery and link establishment procedures in Bluetooth. These
procedures are described in the next two subsections.

2.1 Device Discovery Procedures

The device discovery procedures are controlled by the INQUIRY and INQUIRY
SCAN states. A node that needs to discover another (inquirer) switches to the
INQUIRY state. To announce its existence, it broadcasts small packets (called ID1)
in a sequence of different frequency channels, drawn randomly among a preset set.
On the other hand, a node that needs to be discovered (scanner) switches to the
INQUIRY SCAN state and listens to different frequency channels for neighboring
inquirers. When a scanner receives an inquirer’s message, its action depends on the
Bluetooth version used:

• For Bluetooth ver1.1 or older: The scanner backs off (that is, does not scan
for ID packets anymore), then after a duration drawn randomly it switches back
to the INQUIRY SCAN state and listens again for ID packets. If it receives any
ID packet within a time limit (not necessarily from the inquirer that made it
back off), the scanner sends back to the inquirer a packet called FHS. The FHS
packet includes the identifier of the scanner and its clock 2. The scanner and
inquirer have the option to either establish a link or not. Note, that at this step
the inquirer know the identity of the scanner, and the opposite is not true (see
Figure 1).

• For Bluetooth ver1.2 or newer: The scanner sends back the FHS packet.
The scanner has the option of either backing off or starting the establishment of
the link (which is a procedure initiated by the inquirer) (see Figure 1).

2.1.1 Frequency trains and the interlaced scanning

We show in Section 4 that the previously mentioned modifications to the answer
from a scanner to ID packets introduced in Bluetooth ver1.2 have a major positive
impact on some neighbors discovery algorithms. We show as well that there is
another modification introduced in ver1.2, called interlaced scanning, that also has
a positive impact on the same algorithms. In the inquiry procedures, both the

1Despite the name, ID packets do not contain the identifier of their senders.
2Having the clock of the sender facilitates the link establishment procedure

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

Parallel, Emergent and Distributed Systems 5

inquirer and scanner alternate within a preset set of 32 frequency channels. These
channels are equally divided into two frequency trains called Train A and Train B
each having 16 frequency channels. Without interlaced scanning, a scanner scans
each train alternately for 2.56 seconds3 each, and each frequency channel is scanned
for Tw inquiry scan msec (set to 11.25 msec by default). With interlaced scanning,
the scanner scans a frequency channel from a different train each Tw inquiry scan

period of time.

2.2 Link Establishment Procedures

Link establishment procedures are controlled by the PAGE and PAGE SCAN
states. After two neighbors u and v discovered each other, if node u wants to
contact v then u switches to the PAGE state while node v must be in the PAGE
SCAN state. Few control packets are exchanged between the two nodes until a link
is established.
All algorithms in this paper use the following technique for point-to-point com-

munication. If two nodes u and v want to communicate with each other, they
establish a link for a period during which the messages are exchanged, and then
the link is destroyed. This technique is used in most Bluetooth network algorithms
that assume no nodes mobility.

3. Related Works

Most of the related works available in the literature focus only on the inquiry states.
In [6] [9], an analysis of the inquiry procedures is done to obtain faster neighbor
discovery algorithms. Other authors proposed to improve the inquiry procedures
by modifying the specifications of device discovery [26][2]. None of these studies
considered the effects of PAGE and PAGE SCAN states.
Another related study can be found in [13]. In this work, the authors suggested

the use of two connected Bluetooth chips instead of one. This would make the
procedures of neighbor discovery full-duplex instead of half-duplex. The suggestions
can be used to improve the communication mechanisms in Bluetooth networks as
well, although the main goal of the authors was to reduce the neighbors discovery
time. The work of Zurbes [29] is also close to ours. The author studied the different
types of packets in Bluetooth to understand their impact on Bluetooth scatternets
and piconets, which is a goal close to our attempt to better understand the behavior
of Bluetooth networks.

3.1 Bluetooth Scatternet Formation algorithms

The Bluetooth Scatternet Formation (BSF) problem attracts a large portion of
research in Bluetooth networks algorithms. A Bluetooth scatternet is defined as a
combination of multiple interconnected piconets; where a piconet is a star network
of one master and up to 255 slaves. Piconets interconnect with each through M/S
bridges (a master for one piconet and slave to one or more others), or S/S bridges (a
slave to more than one piconet). For any two Bluetooth nodes to communicate with
each other they must belong to the same scatternet or piconet. BSF algorithms
are compared by a number of metrics, a discussion of which can be found in [22].
We focus in this paper on the execution time metric. Some of the well known BSF

3This value can be controlled by the developer

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

6 Taylor & Francis and I.T. Consultant

algorithms are BlueStars [16], BluePleidas [5], BlueMesh [17] and BlueMIS [28].
We introduce in section 6.1 a modified version of BlueMIS that is more efficient in
term of execution time.

3.2 Neighbor Discovery and Message Exchange Algorithms

We focus in this paper on two types of algorithms to obtain our results: neighbors
discovery and message exchange algorithms. The neighbor discovery algorithms
that we study are referred as ALTERNATE [3] and LIM-ALTERNATE [5]. In AL-
TERNATE, all the nodes alternates between the INQUIRY and INQUIRY SCAN
states. When two nodes discover each other: 1) they establish a temporary piconet;
2) they exchange their identifiers and some other information that may be useful
later; and 3) they then destroy the piconet after that. The algorithm terminates
after a period of time is passed. ALTERNATE is used in many BSF algorithms
such as [28], [16] and [17].
LIM-ALTERNATE [5] is similar to ALTERNATE except that it allows a node

to discover (or be discovered by) at most c of its neighbors, where c is a constant
integer between 5 and 7. Limiting the size of piconets of a scatternet to 7 slaves is
significant to its efficiency. This is because, according to the specifications, a master
can control only 7 slaves at a time, all others slaves are kept in a parking state
(that is, they do not communicate with the master for a specific period of time).
This parking introduces a degradation in the throughput of the scatternet. It is
shown in [5], theoretically and experimentally, that LIM-ALTERNATE generates,
with a high probability, connected degree limited networks given that the nodes
are uniformly distributed in the network.
Unfortunately, we did not find any research work that studied message exchange

algorithms in Bluetooth networks. When analyzing these types of algorithms, we
refer to results obtained from previous research, some of which come from the
Bluetooth research community.

4. The Impact of the Inquiry States on Neighbors Discovery Algorithms

In this section we present two case studies examining the impact on the in-
quiry states on two neighbor discovery algorithms, ALTERNATE and LIM-
ALTERNATE. In the first, we show that a minor change in the specifications
of Bluetooth introduced an increase of 10% to 30% in the number of discovered
edges in both ALTERNATE and LIM-ALTERNATE. We then show how a minor
change in the implementation of the specifications may lead to a decrease of about
35% in the number of discovered edges when ALTERNATE is used for neighbors
discovery. All our experiments were done using the UCBT simulator [25] which is
an NS-2 [24] library specifically designed for Bluetooth.

4.1 First Case Study: A minor change, substantial improvement

We conducted a number of experiments on ALTERNATE under Bluetooth ver1.1,
Bluetooth ver1.2 and Bluetooth ver1.2 with the interlaced scanning option. We
first generated 250 unit disk graphs and uniformly distributed them in a squared
area of 30m × 30m. Each node had a radio range of 10m. We considered five groups
of connected networks with 30, 50, 70, 90 and 110 nodes. For each type of network,
we conducted 50 different experiments. For the parameters of ALTERNATE, we
used the recommended values of [2].

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

Parallel, Emergent and Distributed Systems 7

Figure 2.: The percentage of discovered edges against time (number of nodes = 30)

Figure 3.: The percentage of discovered edges against time (number of nodes = 110)

We first studied the rate at which new edges were being added to (i.e., discovered
in) the networks. Figure 2 and Figure 3 show this rate for the networks of 30 nodes
and 110 nodes. It can be seen that ver 1.2 has a faster rate than ver 1.1, and
that that the interlaced scanning option improves the performance slightly. This is
because, in ver1.2, a node in the INQUIRY SCAN state starts establishing a link
directly after the receipt of the first ID packet of an inquirer. In ver 1.1, when a node
in the INQUIRY SCAN receives an ID packet, it must first wait for a period of time
(the backoff time). After the backoff time, it has to wait for the receipt of another
ID packet to start establishing a link, which it may not receive at all (see Figure
1). Therefore, in ver1.2, the probability of a successful establishment of a link is
increased and the time needed to establish a link is decreased. As a consequence,
this leads to a faster rate of links discovery. The improvement obtained from the
interlaced option is obvious. A device using this option receives messages from more
inquirers as it scans both frequency trains at a higher rate. Also, a device using the
interlaced option must necessarily use the modifications introduced in Bluetooth
ver1.2.
We now look at the time required for the networks to be connected (the connec-

tivity time). In order to measure the connectivity time, we consider the time at
which at least 98% of the network becomes connected. Our experiments are run for
20 simulation seconds each. The results are shown in Table 1. ALTERNATE using
Bluetooth ver1.1 requires on average about 6 seconds to reach the connectivity
threshold. The impact of the modifications of Bluetooth ver1.2 is clear in Table
1. Bluetooth ver1.2 needs an average of 3.5 seconds to guarantee the connectivity
of 98% of the networks. With the interlaced scanning option in Bluetooth ver1.2,
only 1.77 seconds on average are needed, which is about 3.5 times better than the
connectivity time obtained using ver1.1. Note that the results of ALTERNATE
running under ver1.1 match those published in [2].
After a period of time, almost no new edges are discovered and thus the per-

centage of discovered edges never reaches 100% (see Figure 2 and Figure 3). Thus,
even with the new modifications to the specifications, it cannot be expected that

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

8 Taylor & Francis and I.T. Consultant

Table 1.: Results of the 98% connectivity (in seconds)

Number of nodes ver1.1 ver1.2 ver1.2 interlaced scanning
30 8.9 8.1 1.7
50 5.2 1.7 1.4
70 5.3 2.2 1.5
90 6.6 2.4 1.8
110 5.5 2.5 2.2

a complete unit disk graph can be discovered using ALTERNATE only. The use
of ver1.2 and the interlaced scanning option may lead to a high percentage of
discovered edges (about 100%) when the nodal degree is low.
We then studied the performance of LIM-ALTERNATE under the two versions.

It should be noted that the difference between LIM-ALTERNATE and ALTER-
NATE lies in that a node in LIM-ALTERNATE is not allowed to discover or be
discovered by more than c of its neighbors, where c is 5,6 or 7. As a result, we
observed that the connectivity time of LIM-ALTERNATE and ALTERNATE are
affected in approximately the same way. Moreover, we found in [8] that there is no
significant statistical difference between the connectivity times of ALTERNATE
and LIM-ALTERNATE in all versions. The experiments details are omitted from
this paper and can be found in [8].

4.2 Second Study Case 2: Another minor change, substantial degradation

As mentioned in Section 2.1.1, the nodes in the INQUIRY and INQUIRY SCAN
states alternate between 32 frequency channels. These channels are equally divided
into two trains; Train A and Train B. The alternation is based on the following
equation:

F = [Clk16−12 + k + (Clk4−2,0 − Clk16−12)%16]%32 (1)

F is the frequency that is used for the inquiry, and % is the modulo operation.
Clki−j are the ith to the jth bits of the device clock Clk. The value of Clk0 is
switched every 312.5 usec. The formula generates only 32 frequency hops. These
32 frequencies are divided into two equal sets, which are Train A and Train B. The
variable k can have only two values. It is used to select the current train. The trains
are switched every 2.56 seconds (by default), and can be switched more frequently
depending on the user requirements. We show in the following that the variable k
has a substantial impact on the performance of the ALTERNATE algorithm.
The specifications of Bluetooth (in all its versions) state that Train A must

always be the first train used in any new PAGE procedure. The specifications also
state that it does not matter which train a device starts with at the beginning
of a new INQUIRY procedure. In other words, we must start the PAGE hopping
sequence in Train A, but we can start the INQUIRY in either Train A or Train B
(see page 257 and page 258 in [21]).
To evaluate the impact of starting the inquiry with one train or the other, we

consider two implementations of ALTERNATE that differ only on the way they
deal with the k variable. In the first implementation, we force a device that enters
the INQUIRY state to always start its inquiry in Train A. We call this the restricted
case. The second implementation keeps the counter that controls the toggling of
the k variable constantly running, meaning that a device can start the inquiry

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

Parallel, Emergent and Distributed Systems 9

Figure 4.: A comparison of the percentage of discovered edges against time between the restricted and non-
restricted case. Experiment simulation time is 20 seconds

procedure in any train. We call this the non-restricted case. Note that these two
implementations comply with the specifications of Bluetooth.
In this experiment, we generated 250 unit disk graphs. We arranged the graphs

into five groups based on the number of nodes (30, 50, 70, 90 and 110). Note
that in previous experiments the implementation of ALTERNATE was the non-
restricted case. We only report here the 30-nodes and 110-nodes networks. Figure
4 shows a comparison of the percentage of discovered edges against time between
the restricted and non-restricted case.
We found a surprising degradation in the performance of ALTERNATE when

the restricted case is used. Figure 4 shows that the experiments of the restricted
case of ALTERNATE could not discover more than 60% of the edges, while the
non-restricted case discovered about 98% in the 30-nodes networks and about 83%
in the 110-nodes networks. A minor alteration to the specifications can make a
40% difference in the percentage of discovered edges. Of course, a low discovery
percentage leads to a lower percentage of generating connected networks. For in-
stance, we found that about 50% of the networks with 30 nodes were connected
after the simulation. For networks with larger number of nodes, the percentage was
close to 95%-100%.
We observed two phenomenon in these experiments. The first is the low per-

centage of edge discovery. The second is the higher percentage of generating dis-
connected networks. The second is a consequence of the first. We provide in the
following a brief explanation of the first phenomena. Recall Eq 1 shown above
which is used to generate the pseudo-random sequence of inquiry frequency hops.
Figure 5 depicts a sequence generated by Eq 1. Each line of those shown in Figure 5
is a sequence of frequencies that the inquirer follows. The inquirer spends 10 msec
to visit all of the frequencies of one line. At the toggle of the 12th bit of the clock
(i.e. after 1.28 seconds), a new line is generated. Therefore, each line of Figure 5
appears for 1.28 seconds (or 1.28 seconds/ 10 msec = 128 iterations for each line).
Note that between an even-numbered line and its following line, there is only one
different frequency hop. This is caused by the toggle of the 12th bit of Clk. This
is a swap of two frequencies with each belonging to a different train. Note also
that between an odd-numbered line and its following line, there are 15 different
frequency hops. This is caused by the toggle of the k variable (i.e., after every 2.56
seconds).
It is important to note herein that the frequency sequence the scanner follows is

derived from its clock. This sequence is not dependent on the train value (i.e., the
k value). We can assume that these frequencies are drawn randomly from all the
32 available frequencies.
Note that, in our implementation of ALTERNATE (whether in the restricted

or non-restricted case), a node spends less than 1.28 seconds in the INQUIRY or
INQUIRY SCAN states (that is, a node switches from one state to another in less

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

10 Taylor & Francis and I.T. Consultant

Figure 5.: The inquirer’s hopping sequence. The k variable toggles each 2.56 seconds

Figure 6.: The inquirer’s hopping sequence. The k variable never toggles

than 1.28 seconds). Let us consider the restricted case. Given that the train is
switched every 2.56 seconds (See Section 2.1.1), and that we are obliged to use
Train A each time a new INQUIRY starts in the restricted case, we find that an
inquirer never uses Train B. This means that the value of k points to Train A during
the whole period of the device discovery. Figure 6 shows the frequency sequence
visited by an inquirer if Train B was never used.
Let us consider the difference between the Figure 5 and Figure 6. In both cases

(restricted and non-restricted), a frequency swap (between a frequency from Train
A and another from Train B) occurs every 1.28 seconds. In the non-restricted
case a new train is used every 2.56 seconds, whereas this does not happen in the
restricted case. As a result, the rate of visiting all the 32 hops of inquiry is slower
in the restricted case. For instance, while an inquirer in the non-restricted case
needed only 6.40 seconds to pass through all the 32 frequency hops, the inquirer
needed 20.48 seconds for the same task in the restricted case. In the non-restricted
case 31 frequency hops (out of 32) were visited by an inquirer in a period of 5.12
seconds, while an inquirer in the restricted case visits only 19 frequency hops in
the same period of time. Given the slower rate of visiting the inquiry frequencies,
and given that the scan frequencies (that is, those visited in the INQUIRY SCAN)
are selected randomly among the 32 available frequency hops, we can deduce that
an inquirer node has a lower probability of discovering its scanning neighbors in
the restricted case. As a consequence, inquirers in the non-restricted case discovers
more neighbors in a shorter period of time.

5. The Impact of the Page States on Message Exchange Algorithms

In this section we study the PAGE and PAGE SCAN states. These states control
the procedures of link establishment. We show that a careful study of these states
may lead to more efficient algorithms in term of execution time.
We observe from the literature that many BSF algorithms are built over commu-

nication rounds (see [28] [16][17]), where in a communication round, each node

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

Parallel, Emergent and Distributed Systems 11

sends/receives a message to/from all its neighbors. We call an algorithm that
consists of communication rounds a message exchange algorithm. Obviously, algo-
rithms based on communication rounds are not restricted only to BSF algorithms.
Examples of similar algorithms can be found in some maximal independent sets
algorithms [14] [10], coloring algorithms [11], minimum spanning tree algorithms
[7], self-stabilizing algorithms [23] and others.
The purpose of the following experiments is to obtain a better understanding

of the behavior of message exchange algorithms in Bluetooth networks. We study
two algorithms that implements communication rounds, called RandomExchange
and OrderedExchange. The two algorithms differ only in how they use the PAGE
and PAGE SCAN states. We show that message exchange algorithms that use
OrderedExchange are faster than those that use RandomExchange in networks with
a relatively small number of nodes. This is mainly due to the fact that the time
to transmit a message using OrderedExchange is lower than if RandomExchange is
used.
Three important points of the experiments conducted with the message exchange

algorithms used in this paper should be noted:

(1) Neither RandomExchange nor OrderedExchange require modifications on
the Bluetooth specifications to work correctly.

(2) The simulation experiments take into consideration the exact specifications
of the baseband and link layers of Bluetooth. The execution time of Blue-
tooth networks is mostly affected by these two layers.

(3) We implement communication between two neighboring devices using a
technique that is used in major BSF algorithms [2]. The technique can be
described as follows. For any pair of neighbor nodes to communicate with
each other, a temporary piconet of one master and one slave is constructed.
The nodes exchange messages. If no more messages have to be exchanged,
the piconet is destroyed. The time to establish such piconets is relatively
short, given that both nodes already know each other identifiers and the
frequency sequence they are following. Such information can be obtained
using any neighbors discovery algorithm.

5.1 RandomExchange and OrderedExchange

A Bluetooth node is not able to broadcast a message simultaneously to all its
neighbors. Instead, a node needs to establish a link separately with each of its
neighbors and send a copy of the same message 1. This is the main challenge to
implementing communication rounds for Bluetooth networks. The procedures of
link establishment impose another challenge that needs to solved. To establish a
link between two nodes, one of them must be in the PAGE state and the other in the
PAGE SCAN state. This may lead to a deadlock situation, where two nodes attempt
to contact each other indefinitely but never succeed since they are not in opposite
states. An algorithm that implements a communication round must avoid such
deadlock situations. We describe in the following paragraphs RandomExchange
and OrderedExchange.
RandomExchange is described in Algorithm 1. RandomExchange may have a

deadlock situation that occurs when two neighbor nodes use the exact same alter-
nation sequence indefinitely. Such situations occur with a low probability. Simu-
lation experiments back this arguments. Interested readers may refer to [18] for a

1It should be noted that this is true only in the absence of a scatternet or a piconet that contain all the
nodes, which is our case.

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

12 Taylor & Francis and I.T. Consultant

comprehensive mathematical analysis that considers a similar case.

Algorithm 1 RandomExchange

1: Each node u alternates randomly and independently between states PAGE
and PAGESCAN for periods of time tpi

followed by tpsi (that is,
{(tp1

, tps1), ..., (tpk
, tpsk)}. The values of tpi

and tpsi are drawn independently
and randomly from a distribution T with a mean µp.

2: A node u does not switch to the PAGESCAN state if it already received a
message from all its neighbors.

3: A node u does not switch to the PAGE state if it already sent a message to
all its neighbors.

4: The algorithm terminates once each node send/receive a message to/from all
its neighbors.

OrderedExchange uses the unique identifiers of the Bluetooth devices. For
simplicity, we assume that the identifier id(u) of a node u is u, where u is an
integer unique to each node in the network. For any two neighbors u and v, we say
u is a larger neighbor of v if u > v. Respectively, we say v is a smaller neighbor of u.
OrderedExchange is described in Algorithm 2. In OrderedExchange, nodes having
no larger neighbors start sending messages to all their smaller neighbors. For all
other nodes, if a node u receives a message from all its larger neighbors, then u
starts sending messages to all its smaller neighbors. We say that OrderedExchange
is descending if the communication starts from the largest nodes to the smaller
ones. OrderedExchange is said to be ascending if the communication starts from
the smallest nodes to the larger ones. If we assume that the edge (u, v) and (v, u) are
not equivalent, then a round of descending OrderedExchange followed by a round of
ascending OrderedExchange are required to contact all edges of the network. Note
that a descending round of OrderedExchange can be seen as a transformation of
the graph G into a directed acyclic graph GD such that any edge (u, v) is directed
toward v if u > v.

Algorithm 2 OrderedExchange at node u (descending)

1: Nl ← {v : v is a larger neighbor of u }
2: Ns ← {v : v is a smaller neighbor of u }
3: while Nl 6= ∅ do
4: Upon reception of a message from neighbor v ∈ Nl, Nl ← {Nl − v}
5: end while
6: for each v ∈ Ns do
7: Send a message to v
8: end for

5.2 Algorithmic Models for Bluetooth Networks

A suitable algorithmic model for Bluetooth networks is required in order to math-
ematically analyze RandomExchange and OrderedExchange. When modeling Blue-
tooth networks, we should note two important features. First, packet collisions
and interference have a minor impact and thus can be neglected. Second, message
broadcasting is not allowed in Bluetooth (that is, for a node to broadcast a mes-
sage to all its k neighbors, it must perform k sequential send operations). Schmid
and Wattenhofer surveyed in [19] the algorithmic models used for wireless sensor

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

Parallel, Emergent and Distributed Systems 13

networks. Bluetooth networks cannot be modeled by any of these models because
of the inability to broadcast. Interestingly, the Bluetooth networks’ model is closer
to that of classical wired networks.
We model the network as a geometric graph G(V,E). The vertices represent the

nodes. An edge is assigned between two nodes (u, v) if d(u, v) ≤ R (that is, the
distance between the nodes u and v is less than a threshold R). We assume that each
node u has a unique identifier id(u). For simplicity, we let id(u) = u. We denote
N(u) as the set of neighbors of u. We assume that G is an edge-independent random
graph (that is, each edge in the graph is drawn with a uniform probability p ∈
O(1)). These types of graphs have been used widely in the mathematical analysis
of wireless networks (see [4]). The synchronous model SYNC is used to analyze
the time complexity (see [11]). The model SYNC divides the time into equal slots.
In a single time slot, a node can receive messages from all its neighbors, perform
local computation, and send messages to all its neighbors. This model was used to
analyze the time complexities of Bluetooth algorithms in the studies that analyzed
execution time mathematically such as [12] [28] [17]. The results of the execution
time obtained from our simulation experiments cannot be explained by SYNC.
Therefore, we present a slightly modified model we call SYNC′. In the new model,
a node can receive messages from all its neighbors, perform local computation,
and send messages to only one neighbor in one time slot. The theoretical results
obtained from SYNC′ match those obtained from simulation experiments.

5.3 Mathematical Analysis of RandomExchange and OrderedExchange

Clearly the time complexity of RandomExchange TR(n) under SYNC is O(1), since
only one communication round is required. For the analysis of the time complexity
TO(n) of OrderedExchange we define the graph GD. The graph GD is constructed
by orienting each edge (u, v) from u to v if u > v, where (u, v) is an edge in the
graph G(V,E). The graph GD is thus the directed acyclic graph of G(V,E). We
denote the directed path that has the maximum length in GD as π = {x1, .., xk},
where xi > xi+1 for 1 ≤ i < k. The length of π is denoted as l(π). Thus, we note
that the time complexity of OrderedExchange TO(n) is equal to l(π). It was shown
in [1] that l(π) ∈ Θ(n) in edge-dependent random graph. Therefore, TO(n) ∈ Θ(n).

Theorem 5.1 . Under SYNC, the time complexity of RandomExchange TR(n)
is in O(1), whereas the time complexity of OrderedExchange TO(n) is in O(n).

The analysis is different under SYNC′. For a node to contact all its k neighbors,
k time slots are required. Thus, TR(n) should be expressed in terms of ∆ (the
maximum degree of the graph G) or deg(G) (the average degree of the graph G).
The time complexity of RandomExchange is probabilistic due to the random nature
of the algorithm. An analysis to a behavior similar to that of RandomExchange can
be found in [18]. According to [18], the time to establish link between two nodes
alternating between PAGE and PAGE SCAN is bounded by a constant (that is,
O(1)). This makes the average time complexity of RandomExchange bounded by
Θ(deg(G)) ∈ O(n). The time complexity TO(n) of OrderedExchange under SYNC′
varies depending on the strategy (or order) a node uses to contact its neighbors.
We consider in this section three strategies:

Strategy 1: The neighbors are contacted in the same order of OrderedExchange. Neigh-
bors are contacted from larger to smaller neighbors if OrderedExchange is de-
scending, or from smaller to larger neighbors if OrderedExchange is ascending.

Strategy 2: The neighbors are contacted in the opposite order of OrderedExchange.

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

14 Taylor & Francis and I.T. Consultant

Figure 7.: Example of the three strategies. The order of the nodes is given above. The symbol Ti: v− > u indicates
that v sends a message to u at time slot Ti. Note that Strategy 1 required only 4 time slots to terminate, whereas
Strategy 2 required 6 time slots

Neighbors are contacted from smaller to larger ones if OrderedExchange is de-
scending, or from larger to smaller neighbors if OrderedExchange is ascending.

Strategy 3: The neighbors are contacted uniformly randomly (i.e., no specific order).
If k is the number of neighbors to be contacted, then each neighbor is selected
with a probability 1/k.

Figure 7 illustrates an example of the execution of OrderedExchange using the
three strategies. These strategies are important since some algorithms may force
the nodes to contact their neighbors using a specific order (see XTC algorithm [27]
for example). We analyze in Theorem 5.2 the time complexity of OrderedExchange
using Strategy 1.

Theorem 5.2 . Under SYNC′, the worst case time complexity of OrderedEx-
change using Strategy 1 is O(n). The average time complexity is Θ(n).

Proof . The time complexity TO1
(n) is at least max(α, l(π)). α is the size of the

largest set of neighbors to be contacted by any node. Note that α ≤ δ. l(π) is the
length of the longest path π in GD. We prove that TO1

(n) ≤ n. Assume that the
identifiers of the nodes V = {v1, v2, ..., vn} are unique and are assigned from the
set I = {1, 2, ..., n}, where |V | = n. Let π = {x1, ..., xk} represents the longest path
in GD where k = l(Gd). Consider any pair of nodes xi and xi+1 in π for 1 ≤ i < k.
To maximize TO1

(n), we let each node xi ∈ pi contact as many neighbors as
possible before contacting xi+1. We denote the set of these neighbors as m1(xi) =
{xj1 , ...xjm}. Any node xji′ for 1 ≤ i′ < m must be less than xi and greater than
xi+1 (that is, xi > xji′ > xi+1). The length of such a sequence cannot exceed n.
This completes the proof of the first part. Given that l(π) ∈ Θ(n) on average in
edge-dependent random graphs and p ∈ O(1), we conclude that T1(n) ∈ Θ(n) on
average. �

Theorem 5.3 and Theorem 5.4 show that the worst case complexity of OrderedEx-
change using Strategy 2 and Strategy 3 are quadratic with respect to n. Moreover,
OrderedExchange using Strategy 3 has a lower time complexity than OrderedEx-
change using Strategy 2 in the average case. The proof of both theorems can be
found in Appendix 1.

Theorem 5.3 . Under SYNC′, the worst case time complexity of OrderedEx-

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

Parallel, Emergent and Distributed Systems 15

Figure 8.: A comparison of the execution time of OrderedExchange under different strategies

change using Strategy 2 is O(n2).

Proof . See Appendix 1. �

Theorem 5.4 . Under SYNC′, the worst case time complexity of OrderedEx-
change using Strategy 3 is O(n2).

Proof . See Appendix 1. �

The average case time complexities of the OrderedExchange is more important
in our case. Its mathematical derivation is more difficult. We obtain the average
execution time of the three strategies using simulation experiments. The experi-
ments show that the average execution time follow the worst case time complexity.
The details of these experiments in Section 5.4.

5.4 Simulation results of OrderedExchange and RandomExchange

In this section we discuss the experiments we conducted to analyze OrderedEx-
change and RandomExchange. All experiments are implemented using the NS2
network simulator environment [24] and the UCBT library for Bluetooth networks
simulation [25]. The networks are modeled as random geometric graphs constructed
by randomly placing points on a plane with an area of 30× 30m2. Each point on
the plane represents a node. An edge between two nodes u and v is assigned if and
only if the distance between u and v is less or equal to a threshold R. The value of
R is set to 10m which is the radio range of Bluetooth Class 2 [21]. We categorize
our networks according to their size into networks of 30, 50, 70, 90 and 110 nodes.
We compared the behavior of OrderedExchange under Strategy 1, Strategy 2,

and Strategy 3. The results are shown in Figure 8. The results show that Strategy
1 is the best strategy and follows a linear behavior with respect to the number of
nodes. We see that Strategy 2 and Strategy 3 follow a quadratic behavior. Strategy
3 outperforms Strategy 2.
We compared the execution time of RandomExchange and OrderedExchange.

Figure 9 shows the results of the experiments. We can see that OrderedExchange
outperforms RandomExchange in all networks on average. The results are within
a confidence interval of 97%.
We conducted experiments under networks with limited average nodal degrees.

The average degrees we considered were 5, 10, 15, 20 and 25. To generate a graph
with average nodal degree d, the length of the Nd/2 edge was set as the threshold
R. Every edge with length greater than R is deleted from the network [15]. The
results are shown in Table 2. The value Pij of the cell that lies in the intersection
of the ith row and jth column represents the ratio of performance of the algorithms

(that is, Pij =
TRij

−TOij

TRij

, where TO and TR are the average execution time of

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

16 Taylor & Francis and I.T. Consultant

Figure 9.: A comparison of the execution time of RandomExchange and OrderedExchange

Table 2.: Ratio of the average execution time of RandomExchange to OrderedExchange

number of nodes /degree 5 10 15 20 25
30 0.919 0.746 0.697 0.723 0.772
50 0.890 0.637 0.605 0.627 0.652
70 0.894 0.607 0.629 0.563 0.573
90 0.882 0.630 0.551 0.484 0.506
110 0.846 0.669 0.550 0.521 0.450

Figure 10.: A comparison of the execution time of RandomExchange and OrderedExchange with multiple con-
secutive phases

RandomExchange and OrderedExchange respectively).
In all experiments, we note that the ratio is always greater than zero, which

means that OrderedExchange outperforms RandomExchange in all experiments.
Notice that when the average degree is limited and the number of nodes increases,
the performance of RandomExchange moves toward being equal to that of Ordere-
dExchange.
We studied the performance of OrderedExchange and RandomExchange when

they run z consecutive communication rounds. A node u completes a communica-
tion round if it sends and receives a message to and from all its neighbors. A mes-
sage exchange algorithm runs z consecutive rounds if each node completes z com-
munication rounds. We studied the execution time of both OrderedExchange and
RandomExchange with z = 1, 2, 3, 4, 5. Figure 10 shows the results of z = 2, 3, 5.
We assume that an edge (u, v) is equivalent to (v, u). OrderedExchange still outper-
forms RandomExchange. These results can be confirmed with a confidence interval
greater than 99.5%. We should note that the average degree of the networks was
not limited during these experiments.
We studied the impact of the messages sizes on the algorithms. Since the Blue-

tooth packets sizes are constant, we modeled the long messages by a series of con-
secutive messages sent between the sender and the receiver. The results of these
experiments still show the superiority of OrderedExchange.
We should note that we assumed that in all previous experiments nodes of Ran-

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

Parallel, Emergent and Distributed Systems 17

Figure 11.: A comparison of OrderedExchange using Strategy 1 and Strategy 2

domExchange had no order to contact their neighbors, whereas OrderedExchange
was run under Strategy 1. This was to guarantee that we obtained the performance
out of the two algorithms.
We atudied the impact of Strategy 1, Strategy 2 and Strategy 3 on the average

execution time of OrderedExchange. We studied the worst case time complexity
of both algorithms in Section 5.3. Results of the experiments are shown in Figure
11. Interestingly, the average execution time follows a similar behavior to that of
the worst case execution time. Strategy 1 gives the best performance with a linear
execution time with respect to the number of nodes. Both Strategy 2 and Strategy
3 give a quadratic execution time. We note that Strategy 3 outperforms Strategy
2 similar to what was indicated in the worst case time analysis.
These experiments were all conducted using networks of 110 nodes or less, which

is a practical size for Bluetooth networks. If we extrapolate the results of Table
2 we find that RandomExchange may outperform OrderedExchange in networks
with larger sizes and a limited average degree. This shows the correctness of our
mathematical analysis, since time complexity analysis is only relevant for a large
size of input. The results show that the constant in the time complexity of Ordere-
dExchange is larger than the time complexity of RandomExchange. This constant
represents the cost of transmitting a message. Thus, the results show that the cost
of transmitting a message in a Bluetooth network depends on the communication
mechanism used to transmit it. We conclude that OrderedExchange is more efficient
than RandomExchange in term of execution time in networks of a practical size.

6. Applications

We now discuss applications of the results we found in Section 4 and Section 5. We
show first how these results lead to the design of more efficient Bluetooth Scatternet
Formation algorithms in terms of execution time.

6.1 Improving Bluetooth Scatternet Formation Algorithms

In Section 4.1, we showed how to improve the performance of ALTERNATE and
LIM-ALTERNATE. These neighbors discovery algorithms are the most used in
Bluetooth scatternet formation algorithms. Thus, it is obvious that the substantial
improvements in ALTERNATE and LIM-ALTERNATE lead to more efficiency in
the BSF algorithms that use them.
There are less obvious applications for our results. We focus on applications

of OrderedExchange. We introduce improvements on the BlueMIS algorithm [28],
which is a well known algorithm for Bluetooth Scatternet Formation algorithms.
BlueMIS consists of three stages. A simple scatternet is formed in the first stage.

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

18 Taylor & Francis and I.T. Consultant

This scatternet is guaranteed to be connected and outdegree limited given that
the network is connected and can be modeled as a unit disk graph. A scatternet
is said to be connected if there is a path between any two nodes in the scatternet.
A scatternet is said to be outdegree limited if the size of its piconets does not
exceed 7 slaves. The scatternets formed in the first stage of BlueMIS may contain
a large number of masters, which is not preferable in scatternets. The second and
third stages are two procedures that heuristically reduce the number of masters
with simple local rules. We focus solely on the first stage in this paper. We show
that it can be seen as an algorithm based on message exchange rounds. We also
show that using OrderedExchange, instead of RandomExchange, as an underlying
message exchange leads to a faster algorithm. It should be noted that, although
not formalized, the original design of BlueMIS uses RandomExchange.
The first stage of BlueMIS forms directed local maximal independent sets (DL-

MIS). A DL-MIS is a directed subgraph H(V,E′) of G(V,E), where E′ ⊂ E. The
set V represents the network nodes. Each node v ∈ V constructs a local maximal
independent set N ′(v) of its neighbors N(v) (that is, N ′(v) is a maximal subset of
N(v) such that no two nodes in N ′(v) are neighbors to each other). Symmetries in
N ′(v) are then broken (that is, for two neighboring nodes u and v such that u > v,
if u ∈ N ′(v) and v ∈ N ′(u), then u is deleted from N ′(v)). The set E′ is defined as
the union of all sets N ′(v) for all v ∈ V (that is, E′ =

⋃
v∈V N ′(v)). The subgraph

H(V,E′) is connected if G(V,E) is connected. The maximum size of N ′(v) for any
v is at most five if G(V,E) is a unit disk graph.
Two different implementations of the first stage of BlueMIS are proposed in the

following. The first is based on RandomExchange (shown in algorithm 3) and the
second is based on OrderedExchange (shown in Algorithm 4). It is easy to see that
algorithm 3 is a message exchange algorithm of one round based on RandomEx-
change. Therefore, its time complexity is Θ(deg(G)); where deg(G) is the average
degree of G. Note also that the for loop (line 12-14) in Algorithm 3 is necessary for
the correctness of the algorithm and therefore algorithm 3 is a message exchange
algorithm. Algorithm 4 is a sequence of two consecutive message exchange rounds
of OrderedExchange.

Algorithm 3 BlueMIS first stage based on RandomExchange - at node u

1: U ← N(u), B ← ∅, R← N(u)
2: Alternate between states PAGE and PAGE SCAN to send and receive mes-

sages.
3:

4: @ state PAGE:
5: while U 6= ∅ do
6: v ← min(U)
7: u sends a slave message to v
8: N ′(u)← {N ′(u) ∪ v}
9: B ← {B ∪N(v)}

10: U ← {U − {v ∪N(v)}
11: end while
12: for each b ∈ {B ∪N(u)} do
13: u sends a dummy message to b.
14: end for
15:

16: @ state PAGE SCAN:
17: Upon receipt of a message (slave or dummy) from a neighbor v; R← {R− v}
18: Terminate when U = ∅ and R = ∅

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

Parallel, Emergent and Distributed Systems 19

Figure 12.: Execution time of first stage of BlueMiS using RandomExchange and OrderedExchange

Algorithm 4 BlueMIS first stage based on OrderedExchange - at node u

1: u exchanges the list N(u) with all its neighbors, using OrderedExchange.
2: u computes N ′(u) locally.
3: u exchange the locally constructed N ′(u) with all its neighbors, using Ordere-

dExchange.
4: u breaks the symmetries found in N ′(u), that is if u ∈ N ′(v) and v ∈ N ′(u)

and v > u then N ′(u)← N ′(u)− v.

Experimental results of Algorithm 3 and Algorithm 4 were obtained by means
of simulation experiments. Figure 12 shows the execution time of the two algo-
rithms. The experiments were categorized into different sized networks of number
of nodes 30, 50, 70, 90 and 110. Each node was presented as a point in a unit disk
graph uniformly distributed in an area of 30×30m2. The radio of each node was set
to 10m.OrderedExchangeCMIS outperformed RandomExchangeCMIS by 172.5%,
113.56%, 74.59%, 27.5% and 2.83% in the networks of size 30, 50, 70, 90 and 110
respectively.
Note in Figure 12 that the execution time of OrderedExchange in the simulation

experiments tends to be quadratic as the number of nodes increases. This is due to
the increase of the size of the neighbor lists exchanged in the first round (see line
1, algorithm 4). This was caused by the way we implemented an OrderedExchange
communication round in this experiments. We implemented Strategy 1 which opti-
mizes the execution time of OrderedExchange. In order to do this, a node u contacts
its smaller neighbors Ns(u) from smallest to largest. Let Ns(u) = {v1, v2, ..., vk} be
the smaller neighbors of u such that v1 is the smallest neighbor, v2 is the second
smallest, and so on. We let a node u wait for a node vi for a period of time tx. In case
the time period tx is passed without u being able to contact vi, u starts contacting
vi+1modk. A node vi is not available to u only if it is busy exchanging messages with
another node w. Also, the larger the size of the neighbor list exchanged between
two nodes, the longer the period of time they are unavailable. This in consequence
increases the proportion of neighbors of u which are unavailable. In this case, u
does not contact its smaller neighbors in Ns(u) by order from smaller to larger,
but instead in a random manner. This leads to the use of Strategy 3 instead of
Strategy 1. Recall from section 5.3 that the execution time of Strategy 3 is Θ(n2).
This explains the quadratic behavior seen in Figure 12. The experiments still show
the superiority of OrderedExchangeCMIS in scenarios with relatively small number
of nodes of 110 and less.

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

20 REFERENCES

7. Conclusion

In this paper, we attempted to understand the impact of the INQUIRY, INQUIRY
SCAN, PAGE and PAGE SCAN states on the behavior of Bluetooth networks
in order to design more efficient distributed algorithms. We studied two types of
algorithms: neighbor discovery and message exchange algorithms. We showed how
minor changes in the Bluetooth specifications or their implementations may lead
to a substantial impact on two well known neighbors discovery algorithms; namely
ALTERNATE and LIM-ALTERNATE.
Then, we studied two message exchange algorithms suitable for Bluetooth net-

works, namely RandomExchange and OrderedExchange. We showed the superior-
ity of the later in practical scenarios with relatively small number of nodes. We
used these results to improve the execution time of a well known BSF algorithm
BlueMIS.
In future work, we will focus on two questions. First, we will look at Bluetooth

networks communication mechanisms using a dynamic network model, in which
nodes have the ability to move. The difficulty will arise from the combination of
neighbor discovery and messages exchange algorithms. Second we will evaluate
other classical distributed algorithms using the model we used in this paper. For
example, we will look at algorithms such as spanning trees, broadcasting, and
election. In these cases, we hope to be able to optimize known solutions to fully
leverage the strengths of Bluetooth networks, and end up with solutions that are
significantly more adapted to this technology than the generic solutions that are
found today.

References

[1] M. Albert and A. Frieze, “Random graph order,” Order, vol. 6, no. 1, March
1989.

[2] S. Basagni, R. Bruno, G. Mambrini, and C. Petrioli, “Comparative perfor-
mance evaluation of scatternet formation protocols for networks of bluetooth
devices,” Wirel. Netw., vol. 10, no. 2, pp. 197–213, 2004.

[3] S. Basagni, R. Bruno, and C. Petrioli, “Device discovery in bluetooth net-
works: A scatternet perspective,” in Proceedings of the Second International
IFIP-TC6 Networking Conference on Networking Technologies, Services, and
Protocols; Performance of Computer and Communication Networks; and Mo-
bile and Wireless Communications, ser. NETWORKING ’02. London, UK:
Springer-Verlag, 2002, pp. 1087–1092.

[4] S. Basagni, A. Faragó, M. A. Nanni, and D. T. Tran, “Increased connectivity
at lower cost: The case for multi-radio nodes in multi-hop wireless networks,”
in Proceedings of the 28th IEEE conference on Global telecommunications, ser.
GLOBECOM’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 3940–3945.

[5] D. Dubhashi, O. Häggström, G. Mambrini, A. Panconesi, and C. Petrioli,
“Blue pleiades, a new solution for device discovery and scatternet formation
in multi-hop bluetooth networks,” Wirel. Netw., vol. 13, pp. 107–125, January
2007.

[6] M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker, “A formal analysis
of bluetooth device discovery,” International Journal on Software Tools for
Technology Transfer (STTT), vol. 8, pp. 621–632, 2006, 10.1007/s10009-006-
0014-x.

[7] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

REFERENCES 21

minimum-weight spanning trees,” ACM Trans. Program. Lang. Syst., vol. 5,
pp. 66–77, January 1983.

[8] A. Jedda, “The device discovery in bluetooth scatternet formation algo-
rithms,” Master’s thesis, University of Ottawa, 2009.

[9] A. Jedda, N. Zaguia, and G.-V. Jourdan, “Analyzing the device discovery
phase of bluetooth scatternet formation algorithms,” jun. 2009, pp. 468–471.

[10] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer, “Fast determin-
istic distributed maximal independent set computation on growth-bounded
graphs,” in Distributed Computing, ser. Lecture Notes in Computer Science,
P. Fraigniaud, Ed. Springer Berlin / Heidelberg, 2005, vol. 3724, pp. 273–287,
10.1007/11561927 21.

[11] F. Kuhn and R. Wattenhofer, “On the complexity of distributed graph color-
ing,” in Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing, ser. PODC ’06. New York, NY, USA: ACM, 2006,
pp. 7–15.

[12] C. Law, A. K. Mehta, and K.-Y. Siu, “A new bluetooth scatternet formation
protocol,” Mob. Netw. Appl., vol. 8, pp. 485–498, October 2003.

[13] M. Liberatore, B. N. Levine, and C. Barakat, “Maximizing transfer oppor-
tunities in bluetooth dtns,” in CoNEXT ’06: Proceedings of the 2006 ACM
CoNEXT conference. New York, NY, USA: ACM, 2006, pp. 1–11.

[14] M. Luby, “A simple parallel algorithm for the maximal independent set prob-
lem,” in Proceedings of the seventeenth annual ACM symposium on Theory of
computing, ser. STOC ’85. New York, NY, USA: ACM, 1985, pp. 1–10.

[15] F. Onat, I. Stojmenovic, and H. Yanikomeroglu, “Generating random graphs
for the simulation of wireless ad hoc, actuator, sensor, and internet networks,”
Pervasive and Mobile Computing, pp. 597–615, 2008.

[16] C. Petrioli, S. Basagni, and I. Chlamtac, “Configuring bluestars: Multihop
scatternet formation for bluetooth networks,” IEEE Transactions on Com-
puters, vol. 52, pp. 779–790, 2003.

[17] ——, “Bluemesh: degree-constrained multi-hop scatternet formation for blue-
tooth networks,” Mob. Netw. Appl., vol. 9, pp. 33–47, February 2004.

[18] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire, “Distributed topology
construction of bluetooth personal area network,” in Proc. IEEE INFOCOM
2001, 2001.

[19] S. Schmid and R. Wattenhofer, “Algorithmic models for sensor networks,” in
In 14th International Workshop on Parallel and Distributed Real-Time Sys-
tems (WPDRTS), Island of Rhodes, 2006, pp. 51–54.

[20] B. S. I. G. SIG, “Does the word billion mean anything ?” Tech. Rep., Nov.
2008.

[21] ——, Bluetooth Specifications ver4.0, 2010.
[22] I. Stojmenovic and N. Zaguia, “Bluetooth scatternet formation in ad-hoc wire-

less networks,” in Chapter 9 in: Performance Modeling and Analysis of Blue-
tooth Networks: Network Formation, Polling, Scheduling, and Traffic Control
(J. Misic and V. Misic), 2006, pp. 147–171.

[23] G. Tel, Introduction to Distributed Algorithms, second edition ed., 2000.
[24] Vint, “The network simulator - ns-2 - http://www.isi.edu/nsnam/ns/,” Tech.

Rep.
[25] Q. Wang, “Ucbt - bluetooth extension for ns2 at the university of cincinnati

- http://www.cs.uc.edu/ cdmc/ucbt/,” Tech. Rep.
[26] ——, “Scheduling and simulation of large scale wireless personal area net-

works,” Ph.D. dissertation, University of Cincinnati, Cincinnati, USA, 2006.
[27] R. Wattenhofer and A. Zollinger, “Xtc: a practical topology control algorithm

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

22 REFERENCES

for ad-hoc networks,” in Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, April 2004, p. 216.

[28] N. Zaguia, Y. Daadaa, and I. Stojmenovic, “Simplified bluetooth scatter-
net formation using maximal independent sets,” Integr. Comput.-Aided Eng.,
vol. 15, no. 3, pp. 229–239, 2008.

[29] S. Zurbes, “Considerations on link and system throughput of bluetooth net-
works,” vol. 2, 2000, pp. 1315–1319 vol.2.

8. Appendix 1

We prove herein Theorems 5.3 and Theorem 5.4. We denote π = {x1, ..., xk} be a
longest path in GD. Since the length of π (that is, l(π)) is in Θ(n), then we can
assume that l(π) = k = n/t. Let the identifiers of the nodes be represented by V
= {v1, v2, ..., vn}. Let r(vi) be a function that returns the rank of a node vi in the
set V (that is, r(vi) = i). Given a longest path π = {x1, ..., xk}, the rank r(xi) of
node xi is less than or equal to n − i (that is, r(xi) ≤ n − i). We consider graphs
in which each edge exist with a constant probability p ∈ O(1) (that is, random
graphs).

Theorem 8.1 . Under SYNC′, the worst case time complexity of OrderedEx-
change using Strategy 2 is O(n2).

Proof . Let T2(n) represents the the time complexity of OrderedExchange using
Strategy 2. Let xi and xi+1 be any two pair of nodes in π for 1 ≤ i < k. For each
xi there exist a set of nodes m2(xi) that xi contacts before contacting xi+1. Then:

T2(n) =
∑
xi∈π
|m2(xi)|+ 1 (2)

Note that m2(xi) is drawn (with probability p) from the set of all available neigh-
bors of xi that are smaller than both xi and xi+1. This leads to |m2(xi)| =
(r(xi+1) − 1)p. We know already that r(xi+1) ≤ r(xi) + 1. Also, r(xi) ≤ (n − i).
This leads to:

T2(n) =
∑
xi∈π
|m2(xi)|+ 1 (3)

=

k∑
i=1

(r(xi+1)− 1)p+ 1 (4)

≤
k∑

i=1

((r(xi) + 1)− 1)p+ 1 (5)

≤
k∑

i=1

((n− i) + 1)− 1)p+ 1 (6)

∈ O(pnk) ∈ O(pn2) (7)

�

Note that the time complexity of OrderedExchange cannot exceed |E|. This can
be found in the equation above, since if p ∈ Θ(1), then |E| ∈ O(n2).

November 23, 2011 11:57 The International Journal of Parallel, Emergent and Distributed Systems
journal˙ver1

REFERENCES 23

Theorem 8.2 . Under SYNC′, the worst time complexity of OrderedExchange
using Strategy 3 is O(n2).

Proof . The proof is similar to the previous one. Let xi and xi+1 be any two pair
of nodes in π for 1 ≤ i < k. For each xi there exist a set of nodes m3(xi) that xi
contacts before contacting xi+1. Then:

T3(n) =
∑
xi∈π

m3(xi) + 1 (8)

The set m3(xi) is the set drawn with equal probability from the set of smaller
neighbors of xi except xi+1 (that is, {Ns(xi)− xi+1}). This makes the |m3(xi)| =
|Ns(xi)| − 1)/2. The expected value of |Ns(xi)| = (r(xi)− 1)p. This leads to:

T3(n) =
∑
xi∈π
|m3(xi)|+ 1 (9)

=
∑
xi∈π

(|Ns(xi)| − 1)/2 (10)

=
∑
xi∈π

((r(xi)− 1)p− 1/2) (11)

≤
k∑

i=1

(n− i)p+ 1 (12)

∈ Θ(pnk) ∈ Θ(pn2) (13)

�

Note from the equation above that T3(n) is less than T2(n).

