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Abstract 

 
This paper discusses some of the reasons why 

software engineering practices are insufficient for 
producing software that is suitable for use in a 
security-sensitive environment. It suggests the need for 
education among system designers/developers, and the 
use of a team of software security specialists in all 
software development projects. 
 
 

1. Introduction 
 

Over the past three decades, a significant amount of 
research has been done in the field of software 
engineering, leading to a much better understanding of 
how software projects should be conducted. Yet, 
software security seems to have at best marginally 
improved during that same period. Much of the 
research related specifically to security and software 
has focused on implementation of cryptographic 
algorithms, secure protocols, and software protection 
mechanisms (including access control, antivirus tools, 
and the like). In these areas, much progress has been 
achieved. However, the security-relevant aspects of 
software applications themselves (i.e., as executing 
programs) has received less attention from the 
academic community. A major portion of the active 
research published in this area has come from outside 
academia. 

Many books about software engineering available 
today are essentially silent about software security. We 
believe that this should not be the case. The field of 
software engineering must address the security 
implications of creating software if there is ever to be a 
hope of producing and developing less-vulnerable 

software. Software built following the best software 
engineering practices available today has virtually no 
chance to be “secure software” ; instead, it is highly 
likely to exhibit several more or less critical security 
flaws, making that software unfit for use in a security 
sensitive environment. 

 In this paper, we look at some of the reasons why 
software engineering practices do not typically help to 
create secure software. We first show that classical 
testing is ill-suited for catching security related bugs. 
We then look at two other well-known software 
security issues: injection and session management. In 
both cases, we show that software engineering practices 
have little to offer in terms of protection against these 
common security problems.  

The paper concludes with some directions that 
would help software engineering practices to produce 
secure software. Until such practices are in place, it is 
unreasonable to expect much in terms of security from 
simply following good security engineering 
methodology. 

 

2. Passing the tests with flying colors 
 

If there is one type of security related issue that 
should be prevented when sound software engineering 
practices are followed, it is software security issues due 
to bugs. After all, bug-related security issues are just 
that: plain old bugs in the code. A good test plan aimed 
at eradicating most bugs in the system, therefore, 
should readily take care of the security bugs. 

In fact, it doesn’ t. Test plans will generally not find 
security related bugs, and even if these bugs are found, 
they will most likely remain uncorrected.  

 



2.1. Examples of bug related secur ity issues 
 

Simple bugs in the application may have very severe 
security consequences.  Consider two very common 
problems: denial of service and buffer overflow. 
 

2.1.1. Denial of service. Denial of service attacks 
have received a lot of attention lately [1]. With most 
modern software having a multi-tier architecture (in 
particular, virtually all Web-based applications), denial 
of service is becoming an almost ubiquitous type of 
attack, leaving no-one safe. 

Much of the focus and attention today is directed 
toward the difficult issue of distributed denial of 
service (also known as DDoS), but for the sake of 
illustration, consider the very simple case of a denial of 
service due to a crash of one of the tiers of the system 
(i.e., without massive flooding involved so that the 
attack comes from a single computer, for example after 
one single malicious request).  

If an attacker is able to locate one poorly handled 
request anywhere in the application, then this attacker 
can disrupt the service at will and can easily render the 
whole system essentially non-functional. All it takes is 
this one unexpected input and the service goes down 
for seconds, minutes, or more. 

Being able to remotely crash a service because of 
some mishandling in the processing of a request is thus 
a serious, bug-related security issue. 
  

2.1.2. Buffer  over flow. “Exploitable”  buffer 
overflows and related bugs are usually a step up from 
denial of service bugs. With an exploitable buffer 
overflow, the attackers can do more than crash the 
service: there is the possibility of uploading arbitrary 
code and having this code executed by the process 
running the attacked software, under the privileges of 
the original software program. It is not the aim of this 
paper to explain how this type of attack can be carried 
out; suffice it to say that it has until recently constituted 
the bulk of the “critical security advisory”  alerts, and is 
very widespread and well known across the security 
community. See [2, 3] for an overview. 

Here again, this type of issue is entirely the result of 
a simple bug in the code (in the case described here, 
typically a simple out-of-bounds array access) and is 
often a critical security issue (in that running an 
application having such a bug may give the attacker 
full access to the machine running the application).  

 
2.2. Usual “ proper”  testing will not catch these 
bugs 
 

It is important to note that a normal test plan that 
follows generally accepted software engineering 
practices will not catch the bugs that have been 
outlined above. The reason for this is that normal test 
plans have a strong bias toward functionality testing 
and, at best, graceful handling of unintentional ill-
conceived user input. Because of the general 
acknowledgment that complete coverage is not 
possible, the testing phase does little to protect against 
input that significantly departs from such cases. 

 
2.2.1. Unexpected situations. A typical denial of 

service attack consumes some resource until none is 
left available. Typical testing, on the other hand, 
considers the expected usage of the resource, and may 
add some comfortable padding to the test so that the 
software is tested under some multiple of the expected 
load. These tests ensure that in the worst “normal”  
situation, the service will remain available and 
reasonably responsive.  

The denial of service attack does not, however, 
consider what a bad “normal”  situation is, but rather 
what is the worst possible situation that can 
intentionally be created. It is, for example, easy to open 
hundreds of concurrent connections from a single 
machine (using an average desktop computer over a 
simple home based internet connection).  

No test plan that is not specifically designed to take 
denial of service attacks into account will base its 
metrics on the maximum load that can be intentionally 
put on the service using readily available computing 
means, rather than some small multiple of the expected 
load. 

Failing to test for the maximum load case, a test 
plan is not able to determine whether or not the 
resulting software offers any protection whatsoever 
against the simplest denial of service attacks.  
 

2.2.2. Unexpected inputs. Another type of security 
situation can occur as a result of unexpected inputs. A 
typical good test plan will make sure that the software 
has some resistance to wrong input (in particular, 
erroneous, missing, or malformed data entry). 

However, an attacker seeking a denial of service or 
buffer overflow attack will try to feed the software with 
totally unexpected values at every possible opportunity. 
Instead of inputting one erroneous character, the 
attacker will send massively corrupted data, where 
every single value is unexpected, defined relationships 
between input fields are ignored, and data not normally 
supplied by the user is modified if at all possible. 

A particularly common attack consists of feeding 
the software with extra large inputs, typically several 



kilobytes where the expected input is a few characters. 
This type of probing is done using tools that not only 
make it easy to submit very large amounts of data, but 
also bypass any user interface limitations and controls 
imposed by the application. 

Again, we find that test plans typically do not 
account for totally arbitrary input. In fact, testing 
activities are almost always run with the “normal”  user 
in mind. If the user interface permits the entry of 30 
characters in one field, a good test plan will try 
entering 0 characters, 30 characters, 50 characters, 
“strange”  characters, and maybe even non-
alphanumeric characters. But test plans typically do not 
use a tool to bypass the interface entirely, or to submit 
more than 10,000 characters to see what happens. 

Failing to perform such verifications, the test plan is 
not able ensure that the resulting software is resistant to 
the very type of attack that has been most widely 
publicized over the past 10 years!  
 

2.2.3. “ Tunnel vision”  testing. In the two simple 
examples provided above, the problem was not that 
testing was not done properly. It was as good a test as 
you will get following widely accepted software 
engineering practices. The problem was rather that 
security-related bugs are bugs that are not typically 
covered by the scope of testing done today. Bug-related 
security issues arise from very particular types of bugs 
and software must be tested for these bugs in addition 
to conventional testing. This will not happen unless 
software engineers and software testers have security in 
mind when they design and test their code. 

 
2.2. Even if caught, secur ity-related bugs may 
go uncorrected 

 
In the previous section, we showed that a security 

related bug is likely not to be caught using common 
testing practices. In fact, the situation is worse than 
this: even if the bug is somehow “stumbled upon”  and 
becomes known to the development/testing team (but 
the severe security sensitivity of the bug is not 
understood), chances are that it will remain uncorrected 
anyway. 

Most companies having good software engineering 
practices will provide for a defect tracking system. 
When a bug is found, a report is filled out and recorded 
in the system. The report is then evaluated for clarity 
and completeness and a decision is then taken to 
address the issue, ignore the issue, or postpone the 
decision. 

If the project is run according to good software 
engineering practices, then a bug-related report should 

never be ignored. Instead, a commitment will be made 
to resolve the issue in due course, and a priority will be 
associated with the resolution of the case. 

If the bug is a security-related bug of the sort 
described above, it will not be a bug that prevents 
normal usage of the software. In fact, according to the 
committee assessing the report, it will not be associated 
with any possible real situation at all. Faced with a 
report stating that “opening several thousand 
concurrent sessions crashes the system”, the committee 
will note that the projected peak usage is in the tens of 
concurrent users and assign the bug a very low priority. 
Faced with a report explaining that “ inputting 10,000 
characters in a particular field seems to create some 
problems” , the committee will note that (a) the 
expected maximum input for that field is 30 characters, 
and (b) the user interface indeed enforces the 30-
character limit; the committee will then conclude that 
this bug is relatively unimportant and, again, assign it a 
very low priority. 

With most busy development projects, low-priority 
bugs do not get fixed because there are likely to be a 
large number of defect reports that have been assigned 
higher priorities, and there are also a number of change 
requests that are going to be seen as much more 
important (from the perspective of satisfying customers 
or staying ahead of competitors, for example). 

Thus, even if the bug is discovered, it will probably 
not be addressed.  The security implications of the bug 
are not known to the development and testing teams 
and so the low priority assigned to the bug will never 
be elevated. 

 

3. Command or  Code Injection  
 

In the cases described so far, the problem leading to 
a software security issue was clearly a bug in the code. 
We have shown why the mechanisms put in place by 
sound software engineering practices to correct bugs 
typically do not detect these types of bugs but, at least, 
such mechanisms do exist. Thus, it can be argued that 
the scope and/or the techniques used should be 
expanded, but there is an existing place to catch these 
problems. 

There are, however, many scenarios that are not so 
clearly addressed by standard software engineering 
practices. For these types of problems, a simple re-
evaluation of current practices and improvement of 
existing techniques will not suffice. Additional, 
security-specific steps have to be incorporated. 

 One such scenario is “ injections”  [4]. Injection 
problems have been known for many years. For 
example, it used to be very common to have “command 



injection”  vulnerabilities in applications deployed on 
standard Unix-based systems in the 1980’s. Over the 
years, awareness of the problem has grown, but at the 
same time many more types of injections have been 
discovered and exploited. 

We first review several “ injection”  type problems, 
and then look at why prevention of these problems is 
not achieved by current software engineering practices.  

 
3.1. Examples of injection scenar ios 

 
Injection scenarios can be summarized as follows: 

the attacked software is used as a “doorway”  to get 
some data entered into the system. The data is harmless 
to the software, but is harmful to some other 
components of the underlying system. The injection 
may be direct (e.g., command injection or SQL 
injection), indirect (e.g., cross-site scripting), or more 
complicated (e.g., second-order injection), but the 
overall attack methodology is the same.  
 

3.1.1. Command injection. As mentioned above, 
this type of injection has existed for at least 2 decades. 
A typical scenario is the following: the attacked 
software gets some data, usually as user input, and part 
of this data is passed as a parameter to another 
program. Under Unix, a very typical example would be 
a system prompting for an email address and then 
proceeding to send an email by starting a shell and 
calling the “mail”  program, simply passing the received 
email address to the called program. 

The potential security issue is simple: if as part of 
the email address the attacker has entered some 
predefined characters and followed the right syntax, 
then any command can be concatenated to the call to 
the email program. The shell will thus execute 
whatever command the attacker the attacker wants it to 
(the only constraint being the privileges under which 
the shell was started).  
 

3.1.2. SQL injection. This type of injection has 
flourished with the development of internet-based 
applications, which typically have some interaction 
with a relational database. SQL injections are very 
similar to command injections: the attacked software 
uses some user-supplied information to construct an 
SQL query that is then sent to the database 
management system [4, 5]. The attacker can therefore 
insert within the data the necessary special characters 
and, by following the right syntax, an SQL command 
chosen by the attacker will be executed by the 
database. 

Here again, when such an injection is possible, the 
only mitigating factor is the privileges under which the 
legitimate SQL command was to be executed.  
 

3.1.3. Cross site scr ipting (XSS). The injections 
above are direct attacks on the system itself. Injection-
based attacks can also be used to indirectly attack other 
users of the system. The most common such attack is 
known as “cross site scripting” , or XSS [4, 6].  

With an XSS attack, the attacker uses the system to 
inject data that will later be delivered to other users and 
do some harm there. A typical example would be a 
bulletin board. The attacker may write a message to the 
bulletin board, and the message will later be displayed 
to all users of the bulletin board. This can be 
transformed into an attack if, again, there is a way to 
craft a special message that will then be interpreted as a 
command by the tool displaying the message to a user. 
Usually, the tool used is a Web browser, and Web 
browser “commands”  are scripts that are included in 
the Web page. The vulnerability thus lies in the 
possibility that the attacker may include scripting 
information as part of the submitted message. If this is 
possible, then every user viewing the attacker’s 
message will also get that attacker’s chosen scripting 
code executed on his/her machine.  

In this type of injection attack, the only migrating 
factor is any intrinsic limitations imposed by user 
machines on scripts coming from the host’s site. 
Therefore, because many users do not turn off 
scripting, in a user population of any reasonable size, 
there is a high probability that the attack will be 
successful on at least one user.  
 

3.1.4. Second order  injections. Injection type 
attacks can in fact be more complicated than those 
outlined above. So far, we have seen how it can be 
used to perform an attack from within the system itself 
(server side), and how it can be used to attack the users 
of the system (client side). In both these cases, the 
attack is carried out via some tools that are normal, 
expected components of the whole system (a database 
management system or a user browser, for example). 
But injection attacks can also be used to carry out 
attacks that do not directly use any software related to 
the system. 

An example of a second order injection [7] would 
be, in a Web environment, to request a page that does 
not exist, but send script information as part of the 
requested URL. The system (the Web server in this 
case) will return a “page not found”  error to the 
attacker. However, it will also likely record the 
erroneous request in the Web server log. Now, it is 



commonplace for the Webmaster of the system to 
regularly peruse the logs, in order to see trends in usage 
and detect potential problems (including, ironically, 
indication of attacks). Due to sheer volume, the 
Webmaster will not likely look at the raw logs, but will 
instead use a tool to create a “user friendly”  report (for 
example, in HTML format). This is where the injection 
opportunity lies: if the carefully crafted URL contains 
scripting information that is going to be incorporated as 
part of the report, then by merely opening the report the 
webmaster will cause the script to be automatically 
executed. 

This type of second-order attack is generally more 
difficult to carry out and is less controllable. When the 
attack will occur (if at all) is unknown to the attacker 
and may be several days away. On the other hand, if 
the attack succeeds, it has a high probability of being 
carried out from within the premises of the attacked 
system and under the privileges of a Webmaster or 
system administrator. A system susceptible to such a 
problem should therefore not be run in a security 
sensitive environment.  

 
3.2. Usual software engineer ing methods do 
not prevent injection flaws 
 

All the injection attacks described above work 
basically according to the same scenario: the attacked 
software is used as a means to deliver the attack to 
another part of the system, or to another user. The 
attack is harmless to the primary software, and causes 
no damage to it, either immediately or at a later time.  

It may be argued that an injection flaw is not a 
“bug” , at least not in the traditional sense. It is certainly 
not a bug in the component that is eventually attacked. 
This component is behaving in the normal, expected 
way. A command shell is, by design, able to execute 
several commands in a row. Similarly, support for 
complex SQL statements is not a bug, but rather is a 
useful feature of any modern database management 
system. Web browsers may offer the possibility to turn 
off scripting (and this would thwart the XSS attack as 
described above), but leaving scripting turned on is not 
a bug either – indeed, many users will choose to do so 
in order to gain enhanced functionality from their 
browsers.  

Clearly, if the responsibility is to fall anywhere, it 
should perhaps be on the shoulders of the software that 
is used to put the data into the system. However, that 
data is totally harmless to the software itself. 
Furthermore, it may be argued that software developers 
would have a hard time protecting other software and 
users from attacks, especially when they have little or 

no control over some of these other components (e.g., 
the user’s browser). 

From the viewpoint of software engineering, the 
difficulty of pinpointing an obvious source to the 
problem explains in part why, again, normal and sound 
techniques do not ensure protection against these 
security flaws. The issue is that the problem is not 
really located in one single place. It is a system-wide 
vulnerability, and can even be beyond the system for 
second-order injections. As the software is being 
designed and built, there is no clear point in most 
software engineering methods that provides an 
opportunity for such a global evaluation of the security 
implications of very specific, low-level technical 
details. 

We must also point out that if normal testing is not 
able to detect security-related bugs impacting the very 
software it is testing (as shown in Section 2), it is even 
less likely to detect a security-related “bug”  that is not 
really a “bug” , and that only impacts other system 
components. 
 

4. Session management flaws 
 

The last example of this study concerns software 
security flaws that are due to architectural problems. Of 
all the problems examined so far, this type seems to be 
the least likely to be addressed by proper usage of 
current software engineering techniques. 

We illustrate the issue using some of the security 
problems linked to session management, and we then 
evaluate why the problems in question will not be 
addressed by simply following current software 
engineering methods.  

 
4.1. Examples of session management 
problems 

 
It is now very common for an application to offer a 

Web front end. This is a convenient and fast way for 
developers to provide remote access to the application.  

One of the main problems with Web based 
applications is that the HTTP protocol on which the 
solution is based is a stateless, session-less protocol, 
meant to deliver one Web page after another. Most 
applications, however, do require the notion of state 
and session. Consequently, various “solutions”  (such as 
the use of client-side stored “cookies” ) have been 
developed to simulate a session. However, this is 
indeed a simulated session: sessions do not really exist.  
 

4.1.1. Session hijacking. The most obvious 
problem with Web session simulation is session 



“hijacking”  [4]. Loosely speaking, a session is 
simulated by generating a unique number and 
associating that number with the session; every request 
coming from the “owner”  of the session will be sent 
along with the session number. On the server side, the 
program will use that number to “recognize”  the user 
and infer the current state and values of server 
variables. 

The important point is that from the server 
viewpoint, the only way to identify the session is by the 
session number. If a request comes along with that 
number, then as far as the server is concerned, the 
request belongs to that session. 

  A session hijacking attack consists of sending a 
request to the server accompanied with another user’s 
session number, and consequently impersonating that 
user to the server.  

The security implication of session hijacking is 
clear: by definition, from the server viewpoint, the 
attacker is the user whose session number has been 
hijacked. The user’s data will be freely accessed by the 
attacker, and conversely any action done by the 
attacker will be recorded as having been done by the 
user. 

All it takes is for the attacker to “steal”  the user’s 
session number, or to guess it, or to randomly choose 
numbers until an active current session number is 
found. Needless to say, actual attacks based on all three 
alternatives have been reported. 

Session hijacking is a smaller problem than it once 
was, not because application developers got better in 
this particular area, but because existing programming 
environments and application servers provide a session 
number generation service that is now reasonably 
secure.  
 

4.1.2. Session “ r iding” . Much more difficult to 
address than session hijacking is an attack known as 
“session riding”  [8] (or “Cross-Site Request Forgeries”  
[9], amongst other names). 

In a session riding attack, the attacker doesn’ t send a 
request to the server using another user’s session 
number. Rather, the attacker manages to get the user to 
directly send the request, and therefore “rides”  on the 
current session of the user. 

Session numbers are typically sent via cookies. In 
practice, this means that the session number is 
automatically sent along with any request to the 
originating Web site. If the attacker wants to “ride”  on 
a user’s session and have this user request a particular 
URL with particular parameters, all that is needed is to 
convince the user to somehow “click”  on the requested 

URL. As already mentioned, the session number will 
be sent along automatically. 

Convincing a user to click on the attacker’s desired 
URL might seem difficult. However, the notion of 
“clicking”  is very broad. For example, doing an HTTP 
GET on an image within a Web page is equivalent to 
clicking. So all the attacker has to do is to convince the 
user to view a Web page containing an “ image”  which 
is in fact a reference to the URL of the attacker’s 
choice. By viewing this unrelated page, the user will 
indeed emit a request for the URL, along with his/her 
session number. 

There is still the problem of getting an arbitrary user 
to visualize a Web page while otherwise having a 
session currently active on the target web site. This, 
too, can sometimes be very easily achieved! Assume 
that the system under attack offers some means of 
displaying user data (e.g., with some message board 
functionality, either provided as a side tool, or because 
this is part of the application). The attacker can then 
post a message with an embedded “ image”  pointing at 
the target URL. Every user of the system viewing the 
message will subsequently request the target URL, 
passing along his/her current session number. 

As an example, imagine the Web site of a bank. 
From that site, an authenticated user can transfer 
money to another account by filling out a form 
identifying the account number to which the money 
should be transferred and the amount to be transferred. 
Submitting the form sends a request to a particular 
URL. The user is identified from his session number 
and the money is transferred from that user account to 
the requested account. Imagine now that this bank’s on-
line system also has a chat room. All an attacker has to 
do is open an account, then post a message in the chat 
room containing a link (for example via a fake image) 
to the “ transfer money”  URL, passing his own account 
number – and some fixed amount of money to be 
transferred – as parameters. Every bank user logged 
onto the system that happens to open the page 
containing the attacker’s message will automatically 
“ transfer”  the requested amount into the attacker’s 
account!  

 
4.2. Software engineer ing methods will 
typically not prevent session management 
flaws 
 

The problems illustrated in this section are 
architectural problems with the system. As with Section 
3, what has been described here is not a “bug”  in the 
software; on the contrary, the software is doing 
precisely what it was designed to do. However, the 



flaws can have serious security implications. Even if 
the incidence of session hijacking has been reduced (by 
the incorporation into most modern tools of a session 
manager, which frees the implementation team from the 
headache of a home-grown secure implementation), it 
is safe to say that the vast majority of Web-based 
applications today are completely vulnerable to 
“session riding”  attacks, as described above. And, 
again, it is very likely the case that Web applications 
developed following the most stringent software 
engineering techniques available will be no less 
vulnerable than the rest.  

With this attack, we have arguably raised the bar 
quite a bit. There is no particular application-level bug; 
there is no dangerous data or scripting program stored 
on the system; there is no other component to protect. 
In fact, there is what seems to be a legitimate request, 
which is indeed coming from the user. In some sense, 
we have to protect the user from himself/herself, 
without of course rendering the entire application 
useless. To take our example, we have to somehow 
enforce that a user-issued request to transfer money is 
processed only if the user “ truly means it” ! Needless to 
say, as the example clearly demonstrates, failure to 
catch and prevent this category of problems renders the 
application unfit for use in a security sensitive 
environment.  
 

5. Some directions that may help 
 

After such a bleak overview, what are the solutions 
that may be used when building software that is 
intended to be run in a security sensitive environment?  

 
5.1. Solutions exist for  the problems listed in 
the paper  
 

The first thing to clarify is that each issue listed in 
this paper does have clear, well understood, efficient 
solutions. It is not our goal to list these solutions here, 
but we are in no way suggesting that these problems are 
particularly hard to address once they are identified. In 
fact, there is a variety of tools that can help identify 
some of the problems listed here, for example through 
a static analysis of the source code (see, for example, 
UC Berkeley’s BLAST [10] or Microsoft’s SLAM 
[11]). Our point is rather that current software 
engineering techniques are not equipped to identify 
these problems in the first place. 

 
5.2. Toward more general solutions 
 

What seems to be the main shortcoming of software 
engineering methods with respect to secure system 
development is the lack of recognition of the unique 
nature of software security related issues.  

Many of the problems listed above do not get 
addressed because software engineering plans simply 
“don’ t look there”  at all. Even in the one case that is 
well-addressed (testing for bugs), the special character 
of security-related bugs is not recognized. Typically, 
the only way a security-related bug will be identified is 
when that bug happens to also have an impact in the 
areas that are typically looked at (such as functionality 
or usability). 

Security must be understood as an important issue, 
spanning the complete system, and it must be 
recognized as being broader than cryptography, secure 
protocols, or data access.  
 

5.2.1. Education. Raising the security awareness of 
software engineers and software project managers is 
clearly the number one priority. No professional today 
should be ignorant of the problems of the type listed 
above, but should instead have a precise understanding 
of the source and solution to these problems. No 
student should graduate with a software engineering 
degree while completely lacking the minimum 
background understanding of security issues. 

The idea is definitely not to transform every 
software engineer into a security specialist, but to 
ensure that every software engineer and every software 
manager has some technical understanding of the 
problem and knows that the question must be addressed 
somehow, as part of the normal software development 
activity.   
 

5.2.2. Secur ity team. A significant percentage of 
software programs have a user interface. It is generally 
understood by the profession that getting the user 
interface right is a specialized task and, consequently, 
any professional software organization has a team of 
user interface specialists. These specialists are part of 
the software building process. If good software 
engineering practices are followed, this team is 
involved early in the software development life cycle, 
and stays “ in the loop”  for as long as it is needed. 

It is time to reach similar conclusions with respect to 
the security aspects of any software that is built. A team 
of software security specialists should be created and 
should be involved in every project. In fact, it can be 
argued that no software should today be installed or 
maintained in a security sensitive environment if that 
software was not at least scrutinized and tested by such 
a team of software security specialists.  



It is worth noting that the growing emphasis on 
security over the past few years at Microsoft 
Corporation has led to similar conclusions, as recently 
described in [12]. Each project gets assigned a 
“security advisor”  who is the contact point between the 
project’s developers and the security team, and who 
serves as a security resource and guide thorough the 
software development life cycle. The security advisor 
accompanies the development during the complete life 
cycle, and involves the rest of the security team from 
time to time, as needed. The security advisor is 
involved right from the requirements phase in order to 
maximize the effect and minimize the impact of 
producing (more) secure software. During the design 
phase, this expert conducts threat modeling, designs the 
security architecture, evaluates and minimizes the 
application attack surface, and evaluates the need to 
define project-specific security ship criteria. During the 
implementation phase, the security advisor audits the 
code, uses static and dynamic security analysis tools on 
the code being produced, and makes sure that the 
development team follows secure coding and testing 
standards. During the verification phase, a thorough 
security analysis is performed on the near-shippable 
code (usually involving other members of the security 
team). Finally, once the release phase is reached, an 
“ independent”  security review is conducted by other 
experts from the security team and an assessment of the 
overall security level of the application is done. The 
security advisor will keep following the product during 
the maintenance phase, since security-related issues are 
still likely to appear from time to time. 

Only once such a team is integrated into the process 
can we have reasonable hope that proper security 
oriented testing will be performed as part of the test 
plan, including testing for the flaws listed here (and 
other flaws that are also well known), as well as testing 
for the flaws that are doubtless going to appear in the 
future. 

The user interface team focuses solely on user 
interface issues and does not interfere in the 
implementation of the actual functionalities of the 
system. In a similar way, the software security team 
will focus solely on software security analysis and 
provide this global security-oriented evaluation of the 
system, thus finally providing an opportunity to 
identify problems such as the ones listed above. 

 
5.3. Long term or  shor t term issue? 
 

There are reasonable grounds to suggest that many 
of the software security issues that are so widespread 
today are mainly due to a lack of maturity in the 

software building process and to a lack of 
understanding of the area of software security. Indeed, 
some of the topmost software security issues of the 
previous decade have diminished in current software 
development. The most obvious problems are now well 
known, and technological evolution has also played a 
role. For example, we have already mentioned the 
session management support offered by most systems 
now, and we can of course list the common native 
support for strong security solutions. In particular, 
widespread use of a new generation of programming 
languages has drastically reduced exploitable buffer 
overflow issues, even though the average software 
engineer has still no clear understanding of the 
problem. Similarly, the latest versions of the most 
popular programming environments provide very 
effective protection against many of the injection 
problems listed above. 

At the same time, new types of security issues keep 
appearing and so it seems unlikely that the stream of 
new problems is going to dry up any time soon. 

It is conceivable that at some point in the future the 
need for a software security specialist team (for every 
software development organization that can afford it) 
will vanish. At this moment, however, such a team 
seems to be the only practical way to have even a small 
chance of ending up with software that does not have 
critical security flaws. 
 

6. Discussion 
 

The primary focus of this paper has not been to 
suggest that the field of software engineering is flawed 
in any particular way. Rather, it has been to highlight 
the fact that software engineering does not necessarily 
produce secure code.  Building secure systems 
(sometimes referred to as “security engineering” ) 
overlaps with software engineering in some areas, but 
the two disciplines are not equivalent. 

The focus of software engineering is functionality:  
code should be produced that does what it is supposed 
to do, with development costs and time that are 
reasonable and predictable.  Because of this focus on 
functionality, particular consideration is given to the 
“normal”  user of the eventual system, with some 
attention also paid to the naïve user (so that the system 
will be tolerant of some mistakes and inadvertent 
input). 

Security engineering, on the other hand, has 
dependability as its focus:  code should be produced 
that starts off, and remains, consistent with an 
explicitly-specified security policy.  This focus on 
dependability leads to consideration not just of 



“normal”  and naïve users, but particularly of malicious 
users (those who apply all their resources and every 
means available to them to make the system diverge 
from the security policy in whatever way possible, 
typically for their own gain). 

Deliberately malicious users are not part of the 
picture in the mind of the typical software engineer, 
and so it is not surprising that good software 
engineering practices offer little protection against such 
users of the system.  However, as more and more of our 
world is controlled (or at least manipulated) by 
software, the need to take the malicious user into 
account cannot be overemphasized.  It is imperative 
that security engineering principles take a more 
prominent role in the design and development of 
systems, particularly those that deliver critical 
infrastructure services to society. 
 

7. Conclusions 
 

In this paper, we have demonstrated the need for 
general software security awareness amongst the 
developers and managers of software systems. We 
point out the need for systematic software security 
assessments covering all aspects of a software system 
and performed by a team of specialized security experts 
before any system can be used in a security sensitive 
environment.  

Using specific examples, we have shown that the 
current safeguard mechanisms in place – good software 
engineering practices and specialized engineers in 
charge of particular aspects of security (such as 
software protection mechanisms, cryptographic 
algorithms, or secure protocols) – fail to protect 
complete systems against a wide range of security 
critical issues.  
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