
Why Good Software Engineer ing Practices
Often Do Not Produce Secure Software

Carlisle Adams, Guy-Vincent Jourdan

School of Information Technology and Engineering (SITE)
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, Canada, K1N 6N5

{cadams , gvj}@site.uottawa.ca

Abstract

This paper discusses some of the reasons why

software engineering practices are insufficient for
producing software that is suitable for use in a
security-sensitive environment. It suggests the need for
education among system designers/developers, and the
use of a team of software security specialists in all
software development projects.

1. Introduction

Over the past three decades, a significant amount of
research has been done in the field of software
engineering, leading to a much better understanding of
how software projects should be conducted. Yet,
software security seems to have at best marginally
improved during that same period. Much of the
research related specifically to security and software
has focused on implementation of cryptographic
algorithms, secure protocols, and software protection
mechanisms (including access control, antivirus tools,
and the like). In these areas, much progress has been
achieved. However, the security-relevant aspects of
software applications themselves (i.e., as executing
programs) has received less attention from the
academic community. A major portion of the active
research published in this area has come from outside
academia.

Many books about software engineering available
today are essentially silent about software security. We
believe that this should not be the case. The field of
software engineering must address the security
implications of creating software if there is ever to be a
hope of producing and developing less-vulnerable

software. Software built following the best software
engineering practices available today has virtually no
chance to be “secure software” ; instead, it is highly
likely to exhibit several more or less critical security
flaws, making that software unfit for use in a security
sensitive environment.

 In this paper, we look at some of the reasons why
software engineering practices do not typically help to
create secure software. We first show that classical
testing is ill-suited for catching security related bugs.
We then look at two other well-known software
security issues: injection and session management. In
both cases, we show that software engineering practices
have little to offer in terms of protection against these
common security problems.

The paper concludes with some directions that
would help software engineering practices to produce
secure software. Until such practices are in place, it is
unreasonable to expect much in terms of security from
simply following good security engineering
methodology.

2. Passing the tests with flying colors

If there is one type of security related issue that
should be prevented when sound software engineering
practices are followed, it is software security issues due
to bugs. After all, bug-related security issues are just
that: plain old bugs in the code. A good test plan aimed
at eradicating most bugs in the system, therefore,
should readily take care of the security bugs.

In fact, it doesn’ t. Test plans will generally not find
security related bugs, and even if these bugs are found,
they will most likely remain uncorrected.

2.1. Examples of bug related secur ity issues

Simple bugs in the application may have very severe
security consequences. Consider two very common
problems: denial of service and buffer overflow.

2.1.1. Denial of service. Denial of service attacks
have received a lot of attention lately [1]. With most
modern software having a multi-tier architecture (in
particular, virtually all Web-based applications), denial
of service is becoming an almost ubiquitous type of
attack, leaving no-one safe.

Much of the focus and attention today is directed
toward the difficult issue of distributed denial of
service (also known as DDoS), but for the sake of
illustration, consider the very simple case of a denial of
service due to a crash of one of the tiers of the system
(i.e., without massive flooding involved so that the
attack comes from a single computer, for example after
one single malicious request).

If an attacker is able to locate one poorly handled
request anywhere in the application, then this attacker
can disrupt the service at will and can easily render the
whole system essentially non-functional. All it takes is
this one unexpected input and the service goes down
for seconds, minutes, or more.

Being able to remotely crash a service because of
some mishandling in the processing of a request is thus
a serious, bug-related security issue.

2.1.2. Buffer over flow. “Exploitable” buffer
overflows and related bugs are usually a step up from
denial of service bugs. With an exploitable buffer
overflow, the attackers can do more than crash the
service: there is the possibility of uploading arbitrary
code and having this code executed by the process
running the attacked software, under the privileges of
the original software program. It is not the aim of this
paper to explain how this type of attack can be carried
out; suffice it to say that it has until recently constituted
the bulk of the “critical security advisory” alerts, and is
very widespread and well known across the security
community. See [2, 3] for an overview.

Here again, this type of issue is entirely the result of
a simple bug in the code (in the case described here,
typically a simple out-of-bounds array access) and is
often a critical security issue (in that running an
application having such a bug may give the attacker
full access to the machine running the application).

2.2. Usual “ proper” testing will not catch these
bugs

It is important to note that a normal test plan that
follows generally accepted software engineering
practices will not catch the bugs that have been
outlined above. The reason for this is that normal test
plans have a strong bias toward functionality testing
and, at best, graceful handling of unintentional ill-
conceived user input. Because of the general
acknowledgment that complete coverage is not
possible, the testing phase does little to protect against
input that significantly departs from such cases.

2.2.1. Unexpected situations. A typical denial of

service attack consumes some resource until none is
left available. Typical testing, on the other hand,
considers the expected usage of the resource, and may
add some comfortable padding to the test so that the
software is tested under some multiple of the expected
load. These tests ensure that in the worst “normal”
situation, the service will remain available and
reasonably responsive.

The denial of service attack does not, however,
consider what a bad “normal” situation is, but rather
what is the worst possible situation that can
intentionally be created. It is, for example, easy to open
hundreds of concurrent connections from a single
machine (using an average desktop computer over a
simple home based internet connection).

No test plan that is not specifically designed to take
denial of service attacks into account will base its
metrics on the maximum load that can be intentionally
put on the service using readily available computing
means, rather than some small multiple of the expected
load.

Failing to test for the maximum load case, a test
plan is not able to determine whether or not the
resulting software offers any protection whatsoever
against the simplest denial of service attacks.

2.2.2. Unexpected inputs. Another type of security
situation can occur as a result of unexpected inputs. A
typical good test plan will make sure that the software
has some resistance to wrong input (in particular,
erroneous, missing, or malformed data entry).

However, an attacker seeking a denial of service or
buffer overflow attack will try to feed the software with
totally unexpected values at every possible opportunity.
Instead of inputting one erroneous character, the
attacker will send massively corrupted data, where
every single value is unexpected, defined relationships
between input fields are ignored, and data not normally
supplied by the user is modified if at all possible.

A particularly common attack consists of feeding
the software with extra large inputs, typically several

kilobytes where the expected input is a few characters.
This type of probing is done using tools that not only
make it easy to submit very large amounts of data, but
also bypass any user interface limitations and controls
imposed by the application.

Again, we find that test plans typically do not
account for totally arbitrary input. In fact, testing
activities are almost always run with the “normal” user
in mind. If the user interface permits the entry of 30
characters in one field, a good test plan will try
entering 0 characters, 30 characters, 50 characters,
“strange” characters, and maybe even non-
alphanumeric characters. But test plans typically do not
use a tool to bypass the interface entirely, or to submit
more than 10,000 characters to see what happens.

Failing to perform such verifications, the test plan is
not able ensure that the resulting software is resistant to
the very type of attack that has been most widely
publicized over the past 10 years!

2.2.3. “ Tunnel vision” testing. In the two simple
examples provided above, the problem was not that
testing was not done properly. It was as good a test as
you will get following widely accepted software
engineering practices. The problem was rather that
security-related bugs are bugs that are not typically
covered by the scope of testing done today. Bug-related
security issues arise from very particular types of bugs
and software must be tested for these bugs in addition
to conventional testing. This will not happen unless
software engineers and software testers have security in
mind when they design and test their code.

2.2. Even if caught, secur ity-related bugs may
go uncorrected

In the previous section, we showed that a security

related bug is likely not to be caught using common
testing practices. In fact, the situation is worse than
this: even if the bug is somehow “stumbled upon” and
becomes known to the development/testing team (but
the severe security sensitivity of the bug is not
understood), chances are that it will remain uncorrected
anyway.

Most companies having good software engineering
practices will provide for a defect tracking system.
When a bug is found, a report is filled out and recorded
in the system. The report is then evaluated for clarity
and completeness and a decision is then taken to
address the issue, ignore the issue, or postpone the
decision.

If the project is run according to good software
engineering practices, then a bug-related report should

never be ignored. Instead, a commitment will be made
to resolve the issue in due course, and a priority will be
associated with the resolution of the case.

If the bug is a security-related bug of the sort
described above, it will not be a bug that prevents
normal usage of the software. In fact, according to the
committee assessing the report, it will not be associated
with any possible real situation at all. Faced with a
report stating that “opening several thousand
concurrent sessions crashes the system”, the committee
will note that the projected peak usage is in the tens of
concurrent users and assign the bug a very low priority.
Faced with a report explaining that “ inputting 10,000
characters in a particular field seems to create some
problems” , the committee will note that (a) the
expected maximum input for that field is 30 characters,
and (b) the user interface indeed enforces the 30-
character limit; the committee will then conclude that
this bug is relatively unimportant and, again, assign it a
very low priority.

With most busy development projects, low-priority
bugs do not get fixed because there are likely to be a
large number of defect reports that have been assigned
higher priorities, and there are also a number of change
requests that are going to be seen as much more
important (from the perspective of satisfying customers
or staying ahead of competitors, for example).

Thus, even if the bug is discovered, it will probably
not be addressed. The security implications of the bug
are not known to the development and testing teams
and so the low priority assigned to the bug will never
be elevated.

3. Command or Code Injection

In the cases described so far, the problem leading to
a software security issue was clearly a bug in the code.
We have shown why the mechanisms put in place by
sound software engineering practices to correct bugs
typically do not detect these types of bugs but, at least,
such mechanisms do exist. Thus, it can be argued that
the scope and/or the techniques used should be
expanded, but there is an existing place to catch these
problems.

There are, however, many scenarios that are not so
clearly addressed by standard software engineering
practices. For these types of problems, a simple re-
evaluation of current practices and improvement of
existing techniques will not suffice. Additional,
security-specific steps have to be incorporated.

 One such scenario is “ injections” [4]. Injection
problems have been known for many years. For
example, it used to be very common to have “command

injection” vulnerabilities in applications deployed on
standard Unix-based systems in the 1980’s. Over the
years, awareness of the problem has grown, but at the
same time many more types of injections have been
discovered and exploited.

We first review several “ injection” type problems,
and then look at why prevention of these problems is
not achieved by current software engineering practices.

3.1. Examples of injection scenar ios

Injection scenarios can be summarized as follows:

the attacked software is used as a “doorway” to get
some data entered into the system. The data is harmless
to the software, but is harmful to some other
components of the underlying system. The injection
may be direct (e.g., command injection or SQL
injection), indirect (e.g., cross-site scripting), or more
complicated (e.g., second-order injection), but the
overall attack methodology is the same.

3.1.1. Command injection. As mentioned above,
this type of injection has existed for at least 2 decades.
A typical scenario is the following: the attacked
software gets some data, usually as user input, and part
of this data is passed as a parameter to another
program. Under Unix, a very typical example would be
a system prompting for an email address and then
proceeding to send an email by starting a shell and
calling the “mail” program, simply passing the received
email address to the called program.

The potential security issue is simple: if as part of
the email address the attacker has entered some
predefined characters and followed the right syntax,
then any command can be concatenated to the call to
the email program. The shell will thus execute
whatever command the attacker the attacker wants it to
(the only constraint being the privileges under which
the shell was started).

3.1.2. SQL injection. This type of injection has
flourished with the development of internet-based
applications, which typically have some interaction
with a relational database. SQL injections are very
similar to command injections: the attacked software
uses some user-supplied information to construct an
SQL query that is then sent to the database
management system [4, 5]. The attacker can therefore
insert within the data the necessary special characters
and, by following the right syntax, an SQL command
chosen by the attacker will be executed by the
database.

Here again, when such an injection is possible, the
only mitigating factor is the privileges under which the
legitimate SQL command was to be executed.

3.1.3. Cross site scr ipting (XSS). The injections
above are direct attacks on the system itself. Injection-
based attacks can also be used to indirectly attack other
users of the system. The most common such attack is
known as “cross site scripting” , or XSS [4, 6].

With an XSS attack, the attacker uses the system to
inject data that will later be delivered to other users and
do some harm there. A typical example would be a
bulletin board. The attacker may write a message to the
bulletin board, and the message will later be displayed
to all users of the bulletin board. This can be
transformed into an attack if, again, there is a way to
craft a special message that will then be interpreted as a
command by the tool displaying the message to a user.
Usually, the tool used is a Web browser, and Web
browser “commands” are scripts that are included in
the Web page. The vulnerability thus lies in the
possibility that the attacker may include scripting
information as part of the submitted message. If this is
possible, then every user viewing the attacker’s
message will also get that attacker’s chosen scripting
code executed on his/her machine.

In this type of injection attack, the only migrating
factor is any intrinsic limitations imposed by user
machines on scripts coming from the host’s site.
Therefore, because many users do not turn off
scripting, in a user population of any reasonable size,
there is a high probability that the attack will be
successful on at least one user.

3.1.4. Second order injections. Injection type
attacks can in fact be more complicated than those
outlined above. So far, we have seen how it can be
used to perform an attack from within the system itself
(server side), and how it can be used to attack the users
of the system (client side). In both these cases, the
attack is carried out via some tools that are normal,
expected components of the whole system (a database
management system or a user browser, for example).
But injection attacks can also be used to carry out
attacks that do not directly use any software related to
the system.

An example of a second order injection [7] would
be, in a Web environment, to request a page that does
not exist, but send script information as part of the
requested URL. The system (the Web server in this
case) will return a “page not found” error to the
attacker. However, it will also likely record the
erroneous request in the Web server log. Now, it is

commonplace for the Webmaster of the system to
regularly peruse the logs, in order to see trends in usage
and detect potential problems (including, ironically,
indication of attacks). Due to sheer volume, the
Webmaster will not likely look at the raw logs, but will
instead use a tool to create a “user friendly” report (for
example, in HTML format). This is where the injection
opportunity lies: if the carefully crafted URL contains
scripting information that is going to be incorporated as
part of the report, then by merely opening the report the
webmaster will cause the script to be automatically
executed.

This type of second-order attack is generally more
difficult to carry out and is less controllable. When the
attack will occur (if at all) is unknown to the attacker
and may be several days away. On the other hand, if
the attack succeeds, it has a high probability of being
carried out from within the premises of the attacked
system and under the privileges of a Webmaster or
system administrator. A system susceptible to such a
problem should therefore not be run in a security
sensitive environment.

3.2. Usual software engineer ing methods do
not prevent injection flaws

All the injection attacks described above work
basically according to the same scenario: the attacked
software is used as a means to deliver the attack to
another part of the system, or to another user. The
attack is harmless to the primary software, and causes
no damage to it, either immediately or at a later time.

It may be argued that an injection flaw is not a
“bug” , at least not in the traditional sense. It is certainly
not a bug in the component that is eventually attacked.
This component is behaving in the normal, expected
way. A command shell is, by design, able to execute
several commands in a row. Similarly, support for
complex SQL statements is not a bug, but rather is a
useful feature of any modern database management
system. Web browsers may offer the possibility to turn
off scripting (and this would thwart the XSS attack as
described above), but leaving scripting turned on is not
a bug either – indeed, many users will choose to do so
in order to gain enhanced functionality from their
browsers.

Clearly, if the responsibility is to fall anywhere, it
should perhaps be on the shoulders of the software that
is used to put the data into the system. However, that
data is totally harmless to the software itself.
Furthermore, it may be argued that software developers
would have a hard time protecting other software and
users from attacks, especially when they have little or

no control over some of these other components (e.g.,
the user’s browser).

From the viewpoint of software engineering, the
difficulty of pinpointing an obvious source to the
problem explains in part why, again, normal and sound
techniques do not ensure protection against these
security flaws. The issue is that the problem is not
really located in one single place. It is a system-wide
vulnerability, and can even be beyond the system for
second-order injections. As the software is being
designed and built, there is no clear point in most
software engineering methods that provides an
opportunity for such a global evaluation of the security
implications of very specific, low-level technical
details.

We must also point out that if normal testing is not
able to detect security-related bugs impacting the very
software it is testing (as shown in Section 2), it is even
less likely to detect a security-related “bug” that is not
really a “bug” , and that only impacts other system
components.

4. Session management flaws

The last example of this study concerns software
security flaws that are due to architectural problems. Of
all the problems examined so far, this type seems to be
the least likely to be addressed by proper usage of
current software engineering techniques.

We illustrate the issue using some of the security
problems linked to session management, and we then
evaluate why the problems in question will not be
addressed by simply following current software
engineering methods.

4.1. Examples of session management
problems

It is now very common for an application to offer a

Web front end. This is a convenient and fast way for
developers to provide remote access to the application.

One of the main problems with Web based
applications is that the HTTP protocol on which the
solution is based is a stateless, session-less protocol,
meant to deliver one Web page after another. Most
applications, however, do require the notion of state
and session. Consequently, various “solutions” (such as
the use of client-side stored “cookies”) have been
developed to simulate a session. However, this is
indeed a simulated session: sessions do not really exist.

4.1.1. Session hijacking. The most obvious
problem with Web session simulation is session

“hijacking” [4]. Loosely speaking, a session is
simulated by generating a unique number and
associating that number with the session; every request
coming from the “owner” of the session will be sent
along with the session number. On the server side, the
program will use that number to “recognize” the user
and infer the current state and values of server
variables.

The important point is that from the server
viewpoint, the only way to identify the session is by the
session number. If a request comes along with that
number, then as far as the server is concerned, the
request belongs to that session.

 A session hijacking attack consists of sending a
request to the server accompanied with another user’s
session number, and consequently impersonating that
user to the server.

The security implication of session hijacking is
clear: by definition, from the server viewpoint, the
attacker is the user whose session number has been
hijacked. The user’s data will be freely accessed by the
attacker, and conversely any action done by the
attacker will be recorded as having been done by the
user.

All it takes is for the attacker to “steal” the user’s
session number, or to guess it, or to randomly choose
numbers until an active current session number is
found. Needless to say, actual attacks based on all three
alternatives have been reported.

Session hijacking is a smaller problem than it once
was, not because application developers got better in
this particular area, but because existing programming
environments and application servers provide a session
number generation service that is now reasonably
secure.

4.1.2. Session “ r iding” . Much more difficult to
address than session hijacking is an attack known as
“session riding” [8] (or “Cross-Site Request Forgeries”
[9], amongst other names).

In a session riding attack, the attacker doesn’ t send a
request to the server using another user’s session
number. Rather, the attacker manages to get the user to
directly send the request, and therefore “rides” on the
current session of the user.

Session numbers are typically sent via cookies. In
practice, this means that the session number is
automatically sent along with any request to the
originating Web site. If the attacker wants to “ride” on
a user’s session and have this user request a particular
URL with particular parameters, all that is needed is to
convince the user to somehow “click” on the requested

URL. As already mentioned, the session number will
be sent along automatically.

Convincing a user to click on the attacker’s desired
URL might seem difficult. However, the notion of
“clicking” is very broad. For example, doing an HTTP
GET on an image within a Web page is equivalent to
clicking. So all the attacker has to do is to convince the
user to view a Web page containing an “ image” which
is in fact a reference to the URL of the attacker’s
choice. By viewing this unrelated page, the user will
indeed emit a request for the URL, along with his/her
session number.

There is still the problem of getting an arbitrary user
to visualize a Web page while otherwise having a
session currently active on the target web site. This,
too, can sometimes be very easily achieved! Assume
that the system under attack offers some means of
displaying user data (e.g., with some message board
functionality, either provided as a side tool, or because
this is part of the application). The attacker can then
post a message with an embedded “ image” pointing at
the target URL. Every user of the system viewing the
message will subsequently request the target URL,
passing along his/her current session number.

As an example, imagine the Web site of a bank.
From that site, an authenticated user can transfer
money to another account by filling out a form
identifying the account number to which the money
should be transferred and the amount to be transferred.
Submitting the form sends a request to a particular
URL. The user is identified from his session number
and the money is transferred from that user account to
the requested account. Imagine now that this bank’s on-
line system also has a chat room. All an attacker has to
do is open an account, then post a message in the chat
room containing a link (for example via a fake image)
to the “ transfer money” URL, passing his own account
number – and some fixed amount of money to be
transferred – as parameters. Every bank user logged
onto the system that happens to open the page
containing the attacker’s message will automatically
“ transfer” the requested amount into the attacker’s
account!

4.2. Software engineer ing methods will
typically not prevent session management
flaws

The problems illustrated in this section are
architectural problems with the system. As with Section
3, what has been described here is not a “bug” in the
software; on the contrary, the software is doing
precisely what it was designed to do. However, the

flaws can have serious security implications. Even if
the incidence of session hijacking has been reduced (by
the incorporation into most modern tools of a session
manager, which frees the implementation team from the
headache of a home-grown secure implementation), it
is safe to say that the vast majority of Web-based
applications today are completely vulnerable to
“session riding” attacks, as described above. And,
again, it is very likely the case that Web applications
developed following the most stringent software
engineering techniques available will be no less
vulnerable than the rest.

With this attack, we have arguably raised the bar
quite a bit. There is no particular application-level bug;
there is no dangerous data or scripting program stored
on the system; there is no other component to protect.
In fact, there is what seems to be a legitimate request,
which is indeed coming from the user. In some sense,
we have to protect the user from himself/herself,
without of course rendering the entire application
useless. To take our example, we have to somehow
enforce that a user-issued request to transfer money is
processed only if the user “ truly means it” ! Needless to
say, as the example clearly demonstrates, failure to
catch and prevent this category of problems renders the
application unfit for use in a security sensitive
environment.

5. Some directions that may help

After such a bleak overview, what are the solutions
that may be used when building software that is
intended to be run in a security sensitive environment?

5.1. Solutions exist for the problems listed in
the paper

The first thing to clarify is that each issue listed in
this paper does have clear, well understood, efficient
solutions. It is not our goal to list these solutions here,
but we are in no way suggesting that these problems are
particularly hard to address once they are identified. In
fact, there is a variety of tools that can help identify
some of the problems listed here, for example through
a static analysis of the source code (see, for example,
UC Berkeley’s BLAST [10] or Microsoft’s SLAM
[11]). Our point is rather that current software
engineering techniques are not equipped to identify
these problems in the first place.

5.2. Toward more general solutions

What seems to be the main shortcoming of software
engineering methods with respect to secure system
development is the lack of recognition of the unique
nature of software security related issues.

Many of the problems listed above do not get
addressed because software engineering plans simply
“don’ t look there” at all. Even in the one case that is
well-addressed (testing for bugs), the special character
of security-related bugs is not recognized. Typically,
the only way a security-related bug will be identified is
when that bug happens to also have an impact in the
areas that are typically looked at (such as functionality
or usability).

Security must be understood as an important issue,
spanning the complete system, and it must be
recognized as being broader than cryptography, secure
protocols, or data access.

5.2.1. Education. Raising the security awareness of
software engineers and software project managers is
clearly the number one priority. No professional today
should be ignorant of the problems of the type listed
above, but should instead have a precise understanding
of the source and solution to these problems. No
student should graduate with a software engineering
degree while completely lacking the minimum
background understanding of security issues.

The idea is definitely not to transform every
software engineer into a security specialist, but to
ensure that every software engineer and every software
manager has some technical understanding of the
problem and knows that the question must be addressed
somehow, as part of the normal software development
activity.

5.2.2. Secur ity team. A significant percentage of
software programs have a user interface. It is generally
understood by the profession that getting the user
interface right is a specialized task and, consequently,
any professional software organization has a team of
user interface specialists. These specialists are part of
the software building process. If good software
engineering practices are followed, this team is
involved early in the software development life cycle,
and stays “ in the loop” for as long as it is needed.

It is time to reach similar conclusions with respect to
the security aspects of any software that is built. A team
of software security specialists should be created and
should be involved in every project. In fact, it can be
argued that no software should today be installed or
maintained in a security sensitive environment if that
software was not at least scrutinized and tested by such
a team of software security specialists.

It is worth noting that the growing emphasis on
security over the past few years at Microsoft
Corporation has led to similar conclusions, as recently
described in [12]. Each project gets assigned a
“security advisor” who is the contact point between the
project’s developers and the security team, and who
serves as a security resource and guide thorough the
software development life cycle. The security advisor
accompanies the development during the complete life
cycle, and involves the rest of the security team from
time to time, as needed. The security advisor is
involved right from the requirements phase in order to
maximize the effect and minimize the impact of
producing (more) secure software. During the design
phase, this expert conducts threat modeling, designs the
security architecture, evaluates and minimizes the
application attack surface, and evaluates the need to
define project-specific security ship criteria. During the
implementation phase, the security advisor audits the
code, uses static and dynamic security analysis tools on
the code being produced, and makes sure that the
development team follows secure coding and testing
standards. During the verification phase, a thorough
security analysis is performed on the near-shippable
code (usually involving other members of the security
team). Finally, once the release phase is reached, an
“ independent” security review is conducted by other
experts from the security team and an assessment of the
overall security level of the application is done. The
security advisor will keep following the product during
the maintenance phase, since security-related issues are
still likely to appear from time to time.

Only once such a team is integrated into the process
can we have reasonable hope that proper security
oriented testing will be performed as part of the test
plan, including testing for the flaws listed here (and
other flaws that are also well known), as well as testing
for the flaws that are doubtless going to appear in the
future.

The user interface team focuses solely on user
interface issues and does not interfere in the
implementation of the actual functionalities of the
system. In a similar way, the software security team
will focus solely on software security analysis and
provide this global security-oriented evaluation of the
system, thus finally providing an opportunity to
identify problems such as the ones listed above.

5.3. Long term or shor t term issue?

There are reasonable grounds to suggest that many
of the software security issues that are so widespread
today are mainly due to a lack of maturity in the

software building process and to a lack of
understanding of the area of software security. Indeed,
some of the topmost software security issues of the
previous decade have diminished in current software
development. The most obvious problems are now well
known, and technological evolution has also played a
role. For example, we have already mentioned the
session management support offered by most systems
now, and we can of course list the common native
support for strong security solutions. In particular,
widespread use of a new generation of programming
languages has drastically reduced exploitable buffer
overflow issues, even though the average software
engineer has still no clear understanding of the
problem. Similarly, the latest versions of the most
popular programming environments provide very
effective protection against many of the injection
problems listed above.

At the same time, new types of security issues keep
appearing and so it seems unlikely that the stream of
new problems is going to dry up any time soon.

It is conceivable that at some point in the future the
need for a software security specialist team (for every
software development organization that can afford it)
will vanish. At this moment, however, such a team
seems to be the only practical way to have even a small
chance of ending up with software that does not have
critical security flaws.

6. Discussion

The primary focus of this paper has not been to
suggest that the field of software engineering is flawed
in any particular way. Rather, it has been to highlight
the fact that software engineering does not necessarily
produce secure code. Building secure systems
(sometimes referred to as “security engineering”)
overlaps with software engineering in some areas, but
the two disciplines are not equivalent.

The focus of software engineering is functionality:
code should be produced that does what it is supposed
to do, with development costs and time that are
reasonable and predictable. Because of this focus on
functionality, particular consideration is given to the
“normal” user of the eventual system, with some
attention also paid to the naïve user (so that the system
will be tolerant of some mistakes and inadvertent
input).

Security engineering, on the other hand, has
dependability as its focus: code should be produced
that starts off, and remains, consistent with an
explicitly-specified security policy. This focus on
dependability leads to consideration not just of

“normal” and naïve users, but particularly of malicious
users (those who apply all their resources and every
means available to them to make the system diverge
from the security policy in whatever way possible,
typically for their own gain).

Deliberately malicious users are not part of the
picture in the mind of the typical software engineer,
and so it is not surprising that good software
engineering practices offer little protection against such
users of the system. However, as more and more of our
world is controlled (or at least manipulated) by
software, the need to take the malicious user into
account cannot be overemphasized. It is imperative
that security engineering principles take a more
prominent role in the design and development of
systems, particularly those that deliver critical
infrastructure services to society.

7. Conclusions

In this paper, we have demonstrated the need for
general software security awareness amongst the
developers and managers of software systems. We
point out the need for systematic software security
assessments covering all aspects of a software system
and performed by a team of specialized security experts
before any system can be used in a security sensitive
environment.

Using specific examples, we have shown that the
current safeguard mechanisms in place – good software
engineering practices and specialized engineers in
charge of particular aspects of security (such as
software protection mechanisms, cryptographic
algorithms, or secure protocols) – fail to protect
complete systems against a wide range of security
critical issues.

8. References

[1] Cheswick, W. R., Bellovin, S. M., Rubin, A. D.,
Firewalls and Internet Security: Repelling the Wily Hacker,
Addison-Wesley, February 2003 (second edition). ISBN: 0-
201-63466-X

[2] E. Levy (Aleph One), “Smashing The Stack For Fun And
Profit” , Phrack magazine, Volume 7, Issue 49, November
1996. Available from http://www.phrack.org

[3] Viega, J., McGraw, G., Building Secure Software: How
to Avoid Security Problems the Right Way, Addison-Wesley,
September 2001. ISBN: 0-201-72152-X

[4] Curphey, M. et al., OWASP Guide to Building Secure
Web Applications, Open Web Application Security Project
(OWASP), September 2002. Available from

http://www.owasp.org/documentation/guide/guide_about.htm
l

[5] SPI Dynamics, Inc., SQL Injection: Are Your Web
Applications Vulnerable?, 2002. Available from
http://www.spidynamics.com/papers/SQLInjectionWhitePap
er.pdf

[6] Cgisecurity.com, The Cross Site Scripting FAQ, May
2002. Available from
http://www.cgisecurity.com/articles/xss-faq.txt

[7] Ollmann, G., Second Order Code Injection Attacks:
Advanced Code Injection Techniques and Testing
Procedures, Next Generation Security Software, Ltd.,
November 2004. Available from
http://www.nextgenss.com/papers/SecondOrderCodeInjectio
n.pdf

[8] Schreiber, T., Session Riding: A Widespread
Vulnerability in Today’s Web Applications, SecureNet
GmbH, December 2004. Available from
http://www.securenet.de/papers/Session_Riding.pdf

[9] Message sent by “Peter W” on the BugTraq mailing list,
Cross-Site Request Forgeries (Re: The Dangers of Allowing
Users to Post Images), June 15, 2001. Available from
http://www.securityfocus.com/archive/1/191390

[10] Berkeley Lazy Abstraction Software Verification Tool
(BLAST). Available from http://www-
cad.eecs.berkeley.edu/~rupak/blast

[11] The Software, Languages, Analysis and Model checking
project (SLAM). Available from
http://www.research.microsoft.com/slam

[12] Lipner, S., Howard, M., “The Trustworthy Computing
Security Development Lifecycle” , Microsoft Corporation,
March 2005. Available from
http://msdn.microsoft.com/security/sdl

