
Lightweight protection against brute force login
attacks on web applications

Carlisle Adams, Senior Member, IEEE, Guy-Vincent Jourdan, Member, IEEE,
Jean-Pierre Levac and François Prevost

School of Information Technology and Engineering
University of Ottawa

Ottawa, Canada
cadams@site.uottawa.ca, gvj@site.uottawa.ca, jleva084@uottawa.ca, fprev019@uottawa.ca

Abstract— Password-based systems and, more generally,
authentication systems based on something you know, are
commonplace on the Internet. Web applications using these
systems can be the target of brute force login attacks, in which an
attacker tries to compromise a given account or any user account
on the system. These applications rarely implement effective
protection mechanisms against these attacks. In this paper, we
review the situation and propose a practical, simple, security
mechanism. Our system is non-intrusive and can be incorporated
into most web applications with very little modification to the
application code.

Keywords- web applications, brute force attacks, trawling
attacks, denial of service

I. INTRODUCTION

Password-based authentication mechanisms are both
extremely common and highly criticized in the world of
computer systems. They are criticized because they do not
provide adequate protection in practice. For example, in [1]
Bishop and Klein, reporting on an experiment conducted in the
late 1980s, explained how they attempted to crack a set of
nearly 14,000 real Unix passwords gathered from various
sources. To perform their attack, they used a variety of brute
force methods and some more adaptive techniques. They report
that they were able to crack about 3.2% of the password set in
the first 15 minutes, and that they cracked about 40% of the
data set in about three CPU years (about 21% of them in the
first week). Their result confirmed the already well known fact
that human users tend to pick poor passwords (in that these
passwords are relatively easy to guess), as documented, for
example, in the late 1970s by Morris and Thomson [2].
However, in retrospect, these early results were in fact
encouraging, even though they were not presented as such by
the authors. Indeed, for example, Bishops and Klein were able
to crack only 40% of the passwords in 3 CPU-years! The main
conclusion that could be drawn at the time was that passwords
as such were fine, as long as “good ones” were chosen.
Unfortunately, the situation has become significantly worse
since then: despite years of user education, strong evidence
shows that end users still tend to use easy-to-guess passwords.
It is difficult to blame end users for this, since the number of
passwords to remember has ballooned to several dozen for a

typical user, making it very impractical to expect people to pick
hard-to-guess, yet memorable, passwords for so many
accounts. But the main problem lies with password cracking
techniques and computer speed. It is very likely that Bishop
and Klein would now successfully guess the vast majority of
their database, and do so in much less than three CPU years. It
is also the case that they would have easy, cheap access to a lot
more than three CPU years to run their attack if they wished. It
can be argued, and it sometimes is, that the times when it was
possible to create a password that a human can remember and
that a determined, well equipped attacker cannot crack are
behind us1.

Even though password-based authentication systems are
known not to provide very good security, they are still very
popular, and represent the vast majority of authentication
systems that are deployed currently. The reasons for this are
simple: despite its poor security value, a password-based
authentication mechanism is very easy to deploy, does not
require any additional hardware, and is well accepted amongst
the potential user population. It is arguably the simplest, most
cost effective solution to use when you have to authenticate
users with some minimal level of security. Because of this,
these systems appear to be here to stay.

This bleak situation may not be as bad as it first seems. It is
true that password-based authentication mechanisms do not
provide adequate protection against well equipped attackers,
but this analysis is based on so-called “offline” attacks, in
which the attackers have direct access to some encrypted
version of the passwords. In this situation, the only thing that
slows down the attack is the generation of encrypted passwords
on the one hand, and the comparison of the result with the list
on the other hand. Thankfully, this situation is not the most
common one. If we assume that the attacker does not have
access to the database of passwords directly, then the attack
must be performed online, through the system’s legitimate
gateway. The situation is very different in that case: for one
thing, it is likely much slower, and for another thing designers
of the system have an opportunity to act against such attacks

1 For an interesting discussion regarding techniques followed by

“professional password crackers”, that is, vendors of password recovery
solutions, see the overview published by Schneier in Wired in 2007:
http://www.wired.com/politics/security/commentary/securitymatters/2007/01/
72458

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada

(e.g., by slowing them down or by stopping them completely).
In fact, in a recent paper published in 2007 tellingly titled “Do
strong web passwords accomplish anything?”, Florêncio,
Herley and Coskun point out that very little actual entropy is
required to adequately protect Web applications as long as the
right mechanisms are in place on the server side to prevent
brute force attacks [3]. Unfortunately, one can fairly assume
that for most current Web applications, the desired “right
mechanisms” are actually not in place.

In this paper, we try to address this situation: we define
what properties such a mechanism must possess, and we then
propose a very simple solution, along with an implementation
in Java. Our solution is meant to enhance very significantly the
security of Web applications when it comes to protecting
against online brute force attacks, and is designed in such a
way that it can be easily integrated into both new and existing
systems.

The paper is organized as follows: in Section II, we review
the situation as it is currently: the types of attacks Web
application are facing in the area of brute force attacks, the
types of protections that are typically in place and their
shortcomings, and what would be required for a good
protection system. In Section III, we provide an overview of
our proposed solution, as a combination of three simple ideas:
separate the protection from the authentication; apply
protection along all possible entry points; and use a sliding
window approach when protecting. We describe an
implementation of our system in Section IV, and we discuss the
strengths and weaknesses of our solution in Section V.

II. THE PROBLEM TO SOLVE

A. Various Types of Brute Force Attacks
There are different types of (on-line) brute force attacks on

authentication systems based on something the user knows.
The first one that comes to mind is the so called “targeted
attack”, where the attacker is trying to guess, using some kind
of brute force strategy, the value (e.g., the password) that
would authenticate a given user. In this case, the success of
such an attack depends on the strength of the password used on
the attacked account. The brute force strategy followed might
be totally blind (e.g., try every possible password in some
domain space), or it could be directed by various heuristics
(such as trying all words in a dictionary for example).
Whatever the strategy is, with a targeted attack the chosen
account is going to receive a large number of attempted logins.
This is the type of attack for which it is most common to find
some level of built-in defense in existing systems, although
typically the defense is not a very good one, as will be
discussed below.

The second type of attack, sometimes called a “trawling
attack”, can be seen as the reverse of a targeted attack: in this
case, the attacker chooses a password and tries to find a user
account that uses this password. This kind of attack will
typically be successful if, on the one hand, some accounts do
use simple “common” passwords (see section II B. for a
discussion of trawling attacks) and if the namespace used for
the account identifier is either known or easy to guess. In [3],

Florêncio, Herley and Coskun suggest spreading the entropy
somewhat evenly between the account identifier and the
password to make this kind of attack more difficult. This is,
however, rarely done in practice and the domain space used for
the account identifier is usually much less constrained than the
one used for passwords in systems that constrain the domain
space at all. It seems that many of the systems deployed today
have no real defense mechanism to speak of against trawling
attacks, and therefore are very vulnerable to it. As we discuss
in Section II C., there are technical reasons to explain this lack
of built-in defense mechanism, and our solution will address
this.

The third kind of brute force attack, which we call “blind”,
is an attack that searches both the account identifier name space
and the password name space at the same time. Here again, the
search might follow some heuristic strategy, or simply attempt
to exhaust the spaces methodically. Systems frequently offer
some weak level of protection using IP address tracking (see
Section II C.) which, incidentally, is typically the only
protection offered indirectly against trawling attacks.

Note that it would be a mistake to limit this discussion only
to searching account identifiers and corresponding passwords.
One very common authentication system is the “knowledge
question” approach, where the system challenges the user with
a personal question which must be answered correctly,
according to an answer previously provided by the user. This
approach is prevalent in particular for on-line email systems, as
a backup strategy used to authenticate users that have forgotten
their passwords. In effect, however, when such a secondary
authentication system is available, it provides another entry
point and must naturally be protected as effectively as the
primary authentication system, for otherwise the entire security
is downgraded to the level of the less secure one. It is worth
noting that many systems do not have “knowledge question”
backup systems, and instead offer an option to email the
forgotten password to a previously provided email account.
This of course is a false sense of security, since the provider of
the email account itself will quite often have a “knowledge
question” backup system, and so if this system is vulnerable to
attacks then indirectly every system that emails passwords to it
is vulnerable as well.

Securing knowledge question systems against targeted
attack is notoriously difficult: on the one hand, the same kind
of exhaustive search that was possible on a password can be
done here, but usually there is a much smaller domain space.
On the other hand, specialized target attacks can be carried out
by searching the actual answer to the question on public
record2. Recently, Bonneau, Just and Matthews pointed out in
[4] that knowledge questions are also highly vulnerable to
trawling attacks. Indeed, if the questions are for example
“What is your mother’s maiden name?” or “What was the last
name of your favourite school teacher?” (two questions that
were found to be common in the survey conducted in [4]) then,
to an American user base at least, it is likely that “Smith”,
“John” or “Johnson” are frequent answers, simply because

2 Notoriously, an email account of US vice-presidential candidate Sarah

Palin was compromised by an attacker who found the answers to the account’s
knowledge questions online, for example on the Sarah Palin Wikipedia page.

these last names are the most common ones in the population.
Therefore, if a system uses one of these questions as a
knowledge question (or any question whose answer is a last
name, for that matter), then an effective attack strategy is to try
“Smith” on as many accounts as possible. Again, it is fair to
suggest that most systems providing knowledge questions do
not provide any serious protection mechanism against trawling
attacks.

B. About Trawling Attacks
Trawling attacks have been discussed in the security

literature, but are they actually carried out in practice? We
offer the following indicators that suggest an affirmative
answer to this question.

First, there is strong evidence that trawling attacks would in
practice be quite effective.
• In October 2007, a set of 43,713 passwords was leaked

from the MySpace social network. According to various
reports 3 , the most common password in the set,
“password1”, was used by 0.23% of the users.

• In September 2009, a set of 9,843 passwords was leaked
from the Hotmail online email service. This time,
according to the reports4, the most common password in
the set, “123456”, was used by 0.65% of the users.

• In December 2009, a set of almost 32,000,000
passwords was leaked from the site RockYou.com.
According to the reports5, the most common password
in the set, which was again “123456”, was used by
0.90% of the users.

• According to the calculation presented in [4], the
amount of entropy in knowledge questions is usually so
low that it doesn’t provide any significant security
against trawling attacks. For example, they have
calculated that a trawling attack on a knowledge
question requiring a last name as an answer, and for
which three guesses are allowed, will break into 1 in 84
accounts on average by using the most common last
names!

Second, there is also some evidence that these attacks are
actually carried out. Anecdotally, we are told that the network
of a major university in Canada is routinely targeted by such
attacks. More importantly, groups such as the WASC
Distributed Open Proxy Honeypot Project 6 have reported
instances of such attacks, for example a distributed brute force
attack against the Yahoo email service7.

3 See http://www.the-interweb.com/serendipity/index.php?/archives/94-A-

brief-analysis-of-40,000-leaked-MySpace-passwords.html
4 See http://www.acunetix.com/blog/websecuritynews/statistics-from-

10000-leaked-hotmail-passwords/
5 See

http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
6 See http://projects.webappsec.org/Distributed-Open-Proxy-Honeypots
7 See http://tacticalwebappsec.blogspot.com/2009/09/distributed-brute-

force-attacks-against.html

C. Defense Mechanisms in Existing Systems
Most systems do provide some kind of defense mechanism

against brute force login attacks. Perhaps the most common
one, sometimes referred to as the “three strikes rule”, consists
of blocking access to an account after a number of failed login
attempts (usually three). The obvious problem with such a
mechanism is that it provides an easy denial of service attack
vector, since any attacker can trivially prevent any user from
logging in by providing the wrong credential for that account
enough times. Another point of interest to us is the
questionable choice of number of attempts, which is usually
very low (3 most of the time) before the defense mechanism
kicks in. With such a low number, it is easy for legitimate users
to get their own account locked out. Using a larger number of
attempts before locking the account, say 20 or 30 attempts,
would be a lot more user-friendly and should not significantly
impact the security of the system8.

A more appropriate mechanism, a variation of the “three
strikes” rule, is to temporarily disable the account for some
period of time after the set number of failed attempts (the time
could be preset or it could increase with the number of
consecutive failed attempts). This reduces the problem of the
denial of service attack, but does not completely solve it since
the attacker can regularly attempt logging in to deny access to
legitimate users. Another variation on this idea is to provide a
set minimum interval between two login attempts for an
account. All of these variations suffer from at least two flaws:
first, in most cases of which we are aware, only existing
accounts are monitored. The reason for this is that the
information is stored along with the account data in the
database, and thus cannot be stored for non-existing accounts.
This provides an easy way for an attacker to validate whether
an account exists or not. More importantly, these mechanisms
do not provide any kind of protection against trawling attacks.

Some systems will modify the authentication mechanism
after a set number of failed attempts, for example by showing a
CAPTCHA. This, however, simply at best increases the
entropy, and sometimes not very effectively since it may be
possible to write a specialized program to break the CAPTCHA
itself; see, for example, [5] as a starting point on CAPTCHAs.

Other systems implement similar mechanisms, but based on
the IP address of the requester rather than on the user account
being accessed. This simple modification is more effective,
since it can be used to prevent target, trawling and blind brute
force attacks at once, and does not pose the same risk of denial
of service attacks, since it is the IP address of the attacker that
is banned, not the account being targeted. If well implemented,
it also works with existing and non-existing accounts. This
solution is however more difficult to employ since it does not
integrate nicely with the application database and requires
building and storing a list of IP addresses separately. This is
likely why it does not seem very common in the systems
deployed today. Moreover, it suffers from at least two flaws:
first it does not provide adequate defense against distributed
brute force attacks, in which several thousand computers
(usually themselves compromised) are used to carry out the

8 Said differently, if the system is at significant risk after four attempts,

then perhaps the problem lies elsewhere.

attack. In this case, the range of IP addresses used can be very
large. Moreover, it opens up another vector for denial of
service, even in an all-legitimate usage situation, because it is
common for a large set of users in the same network to access
the Internet via a single gateway (because they use DHCP
usually) and thus share the same IP address. If enough users
access the system with a shared IP address, then the system’s
defense mechanisms will be enacted on this IP address. (It
should be noted that the reverse situation is also possible,
where a user is assigned a different IP address by his/her
Internet service provider at each request.)

Instead of using IP address, a more commonly deployed
mechanism is to use the notion of session provided by all
common Web server applications today (apache, IIS, etc.)
usually via cookies and URL rewriting. This solution is
simpler to implement, but is unfortunately inadequate and
should never be used. An attacker can without difficulties
create new session at will.

None of the defense systems described so far directly
addresses trawling attacks (IP-based mechanisms do so
indirectly). In fact, as far as we are aware, systems usually do
not address this issue, possibly because system designers fail to
understand the importance of the attack, but certainly also
because it is a difficult problem to address: indeed, most
systems have unique identifiers for the users, but the password
is not stored as a unique system-wide value, so the database
typically is indexed by user identifiers, with passwords being
stored along with the user credential. In other words, the
passwords are repeated if they are used by several users. In this
situation, it is not easy to track attempts on the same password.
Doing so in an efficient way would probably require a new
table, indexed by the passwords, and a join table between the
user identifiers and the passwords. This would in turn create a
new set of problems when dealing with password changes and
removal of unused passwords.

None of the systems addresses the problem of attacks on
knowledge questions either (even the system based on IP
address will probably not address it in practice since such
tracking will likely occur only during the identifier and
password verification step in most systems). We are not aware
of any system at all trying to address the issue of trawling
attacks on knowledge question. Doing so would be as difficult
as doing it on passwords, and the problem may not be well
understood by many systems designers.

D. Requirements for an Effective Defense System
Our aim is to provide a system that can adequately protect

against the attacks identified above but, in order to be practical,
the solution must also be easy to use. More precisely, we want
to create a system with the following properties:

• Can slow down targeted, trawling, and blind attacks on
user identifiers, passwords, knowledge questions, and
whatever other direct means are employed to
authenticate users based on something they know;

• Cannot be misused as a denial of service tool to prevent
access to legitimate users (or by legitimate users
accidentally denying themselves access to the system);

• Does not leak information regarding the existence or the
absence of the identifier, password, knowledge question
answer, etc., in the database, not even through timing
attacks (where the time required to respond to a request
is measurably different on average depending on
whether the identifier/password exists or not);

• Gracefully handles distributed attacks, in that if the
system becomes overwhelmed by the magnitude of the
attack, it will at least recover automatically soon after
the attack stops;

• Can be adapted to any Web application, from the largest
to the smallest, providing the appropriate level of
protection for each situation;

• Is fast and can be used on an existing system without
noticeable penalty in the system’s response time;

• Can work with passwords in any format (clear text,
hashed, encrypted, etc.);

• Is very easy to use even in an existing application, does
not require any change in the structure of the database or
in the architecture of the application, and requires very
minimal change in the application code.

III. OUR SOLUTION
In this Section, we provide a very simple, yet effective

solution to the problem. We split our solution into three
separate ideas which must be combined to provide the
protection we want, with the characteristics outlined in Section
II D:

A. Separate the Subsystems
The first simple idea is that it is not necessary to integrate

the protection mechanism with the authentication mechanism.
Because the two subsystems work with the same data (user
identifiers, password, knowledge questions …), it is customary
to implement the protection mechanisms within the
authentication subsystem. We believe that this is not the best
approach, for at least two reasons.

The first problem with coupling the two activities is the
coupling itself: the actual authentication mechanism is system
dependant and can be relatively complex. The protection
mechanisms are also often somewhat complex and serve a
different purpose. It makes good software engineering sense to
cleanly separate the two activities to avoid code entanglement,
and to facilitate maintenance and evolution of both sub-
systems. Moreover, in our case, a coupling of both subsystems
would mean that it would be more difficult to integrate our
solution into existing systems.

The second problem is that coupling the two subsystems
seems natural only when the provided identifier exists in the
database. If not, then the authentication subsystem has nothing
to do while the protection subsystem must still act. It is even
more difficult when it comes to passwords or knowledge
questions, since what is typically available to the authentication
subsystems (repeated values associated with unique user
identifiers) is not what is required by the protection subsystem.

We therefore suggest a complete decoupling of both
activities. One criticism that can be made against such a
decoupling is that it seems inefficient to search for the
identifiers and passwords twice, once with each subsystem. We
believe that such a penalty is acceptable, especially with our
solution that provides a fast, in-memory lookup for the
protection subsystem.

B. Identify Independent “Directions”
Another simple idea is to recognize the fact that attacks are

done along various “directions” and that while it is necessary to
protect all possible directions, it may not be useful to tackle all
of the directions simultaneously.

As it stands, the following directions can be easily
identified.

• Id direction: tracking the authentication request for each
user identifier (existing or not in the database). This
direction is important for protecting against trawling
attacks and blind attacks.

• Password direction: tracking the authentication request
for each password (existing or not in the database). The
passwords could be tracked in plain text form, or any
consistently transformed form, and the tracking does not
need to be aware of the form being used. This direction
is important for protecting against targeted attacks and
blind attacks.

• IP direction: tracking the IP address from which
authentication requests originate. This direction is
important for protecting against all types of attacks, and
against all identifiers (user identifiers, passwords,
knowledge questions …).

• Knowledge question category direction: tracking
knowledge question by “category” of expected answers,
such as “family name”, “first name”, “pet name”,
“location”, and so on. If a site offers a choice of
knowledge questions, then the questions should be
grouped by category of answers (that is, all the
knowledge questions that require an answer which is a
last name will be bundled up together in the same
tracked direction etc.). This direction is important for
protecting against trawling attacks and blind attacks
against knowledge questions.

• A few important clarifications are in order: first, even
though the directions are handled independently from
each other, it is important to track them all. In particular,
it is not enough to just track the IP direction as a catch-
all for all of the attacks. It would simply fail to detect
distributed attacks. Second, the IP direction must be
handled with caution: as explained above, it is
misleading to think that a given IP address necessarily
represents a single user. It may well be the case that
users reaching the application from the same network
will all share the same IP address, and it may conversely
be the case that a user will be assigned a different IP
address with each request. Third, if various data
(identifiers, passwords, answers to knowledge questions
…) must be tracked, the sole purpose of assigning

different directions is to be able to adjust the parameters
of the protection to the data being tracked, based on the
domain space and the expected rate of legitimate
request. If several data items will be monitored with the
same global parameters, then these items can be
bundled together along the same direction. In particular,
if one does not want to adapt the level of tracking by
category of answers for knowledge questions, then a
single general “knowledge question direction” can be
used. It is even possible (although perhaps not
advisable) to track all the parameters along a single
direction.

C. Sliding Window
The last simple idea that our solution uses is a sliding

window along each direction. The principle is the following:
for each direction, define a size of a window (in time units) and
a number of acceptable “hits” in that window, that is, a
maximum number of times a particular value can appear (a

Figure 1. A sliding window tracking of two values (represented by red circles
and green squares), over w time units. At time t1, there are two hits for the
green square value and one for the red circle. At time t2, there are still two hits
for the green square (although not because of the same instances), and three for
the red circle. The situation reverses at time t3. If the maximum number of hits
allowed is three, then defensive measures against the red circle value will be
taken when the third hit in the sliding window occurs, slightly before time t2,
while preventive action against the green square value will be taken slightly
before time t3.

“hit”) within the window. All the values of the data items being
tracked along this direction will be monitored for the length of
the window, and if a value reaches the maximum number of
hits allowed in this direction, then a defensive measure will be
taken against that value.

It is important to note that the tracking is done at the level
of the value of the data, not at the level of the direction. Each
value is tracked independently. Figure 1 illustrates the concept
with two values being tracked along the same direction.

The “defensive measures” that are taken when the
maximum number of hits is reached is in fact a refusal to
process requests for this value for a given period of time. A
possible choice for the period could be the width of the window
(so once the maximum number of hits allowed has been
received for a given value over the last w units of time, then
subsequent requests for this value will not be processed for w
units of time). However, a different choice can be made, and
this parameter can be set in our implementation.

One point of interest is whether to count the attempts for a
value even when the value is being denied. In Figure 1, if the
threshold is 3 and the penalty time is w, then at time t2 the red
circle value is being blocked, and it is still blocked when the
last red circle value arrives later. In time, when the red circle
that created the blocking exits from the sliding window, the
current number of hits for red circle value can be 0 (if we just
ignore non-processed requests) or 1 (if we don’t). In our
implementation, we have decided to ignore the attempts that
are received while a value is being blocked, in effect resetting
the counter when a value is unblocked. The main reason is to
avoid denial of service attacks that would simply “hit” the
system regularly to keep a value above the threshold.

In the next section, we will explain how to efficiently
compute the number of hits within a window of size w. The
solution based on sliding windows seems like a particularly
good choice, since it only requires a limited amount of
“history” for each value (the size of the window) and as time
progresses, the older history can be safely ignored. Thus, there
are no long-lasting effects with this solution; everything is
always temporary and once the window is cleared the
processing resumes.

Since the number of hits and the size of the window are
adapted for each direction, it is clear that any brute force attack
can be slowed down as required. Imagine that your system
forces passwords with 20 bits of entropy for example (which is
only 6 digits, so very easy to search). If the system is set to
limit the requests to 60 per minute, then a targeted attack
cannot exhaust the search space in less than 291 hours (12
days). If the system is set to a more reasonable threshold of 3
attempts per minute, then 242 days are necessary for an
exhaustive search.

IV. AN IMPLEMENTATION

A. Technical Details
We have created an implementation of the solution outlined

above. Our implementation is in Java, using Servlet
technologies, and should be easily deployable in any Web

application using compatible technology. It currently consists
of 11 Java classes totaling about 2000 lines of code.

For each direction, we maintain a list of current values,
along with the current “front tile” value (see below) for each
value. These lists are stored in memory using a hash table for
fast access. It is important to note that because we do not store
our information in a database, we can provide very fast access,
but the information is volatile and will disappear every time the
application is restarted. We claim that this is in fact not a
problem: as explained previously, the only important data is
that within the sliding window, typically a few seconds to a
couple of minutes, and older information is obsolete. If the
application must be restarted, then in effect the windows are
reset, and the running system will very shortly be in the state it
would have been in if we had saved the data and restored it at
startup. Since such a restart is rare and the difference obtained
by storing the lists in a database is minuscule and the gains for
not storing it are very large (both in terms of execution time
and in terms of setup) we have opted for an all in-memory
solution.

B. Maintaining Hit Count
One problem to address is to efficiently maintain the

number of “hits” for each value within the sliding window. A
naïve approach would be to maintain a list of values, along
with a timestamp for each of them. When the value is accessed
again, the list is scanned, values falling outside the window are
removed, the new hit is recorded in the list, and the new hit
count is calculated. Such an approach would work but would
be too inefficient. Instead, we approximate this number using
the notion of “front tile” in the window, which gives us a single
value recording how open or closed the sliding window
currently is.

Specifically, if the sliding window has a width of w time
units, and the threshold is n hits within that time frame, in
effect each hit closes the window by w/n, so that after n hits it
is completely closed. We thus associate a “tile” of width n/w to
each hit, and whenever a new hit is recorded for that value, a
tile is added after the last one. If that tile closes the window
entirely, then the corresponding value is blocked. Calling
VFrontTile the current position of the front tile for the value V,
CurrentTime the time at which a hit for the value V occurs and
WindowTail = CurrentTime- w the current tail of the sliding
window, we update VFrontTile as follows:

If VFrontTile > WindowTail then

VFrontTile = VFrontTile + w/n

Else

VFrontTile = WindowTail + w/n
Once VFrontTile has been updated, V is blocked if and only if

VFrontTile > CurrentTime, that is, the tiling process has
completely closed the window.

This technique is just an approximation (it is possible,
depending on the pattern, to have up to 2n-1 hits in the
window), but it is enough for our purpose, it is fast to compute,
and requires only a small constant amount of memory per
value.

C. Using The Tool
Using our tool is very simple. By default, it defines three

directions: Id, Passwords, and IP. For each direction, one can
define three values: the size of the window, the number of hits
allowed within the window, and the duration of the penalty for
going over that limit. All these values are stored in a
configuration file, and one can remove and add directions at
will by editing the file.

Once this is done, using the tool merely involves calling a
method of our main object, passing as parameters the name of
the direction and the value of the hit. Our function will return a
Boolean value TRUE if the value must be blocked. For
example, assume that a direction “KnowledgeQuestionName”
has been defined in the configuration file, and that the name
“Smith” has been received by the application. The following
call must be added, where “doSomething();” is what the
application does when a value is blocked (usually simply refuse
to process the request) and answeredName is a variable that
stores the answer provided by the user (“Smith” in this case):

if(AttackCheck.isBlocked(
 “KnowledgeQuestionName”, answeredName){
 doSomething(); return();

}
For convenience, a single method to check Id, Password

and IP direction at once is provided as well. A typical usage in
a Web application is as follows, where the user identifier is
obtained from the parameter “ID” and the password from the
parameter “PWD” (“request.getRemoteAddr()” returns the IP
address of the client)

if(AttackCheck.isBlocked(request.getParameter(“ID”),
 request.getParameter(“PWD”),
 request.getRemoteAddr()){
 doSomething(); return();

}
As can be seen, the impact of the tool on the existing code

is very minimal, basically a single method invocation (and
subsequent preventive action if necessary). It is of course
important to invoke the method each time a new value is
provided, for all the relevant directions. So a typical web
application, with a backup knowledge question system, will
usually add two method invocations, one for the primary login,
and one for handling the knowledge question. Everything else
remains unmodified.

In terms of efficiency, we ran tests on a Linux server with
an Intel Dual core processor at 3 GHz with 3 Gigabytes of
RAM, running apache TomCat. The server was “attacked” by a
similar machine executing 10 threads, each attempting 10,000
“login” operations, choosing uniformly randomly from a
domain space of size 30,000 for both Ids and passwords.
Checking all three default directions (Id, password, and IP)
took an average of 7 milliseconds during the attack when the
lists are stored in a hash table. This time includes the “cleanup”
done in the background to remove older values from the list.

V. DISCUSSION

A. Strengths of the System
Our system does provide an adequate solution to the goals

outlined in Section II D. It can slow down all the outlined
attacks as much as deemed necessary by modifying the
parameters, and can do it in any number of directions required.
It does not leak any information regarding the validity of the
processed values in the database, since it does not know the
information to begin with9. Thanks to the sliding window
approach, it has no long lasting effect; any denial is temporary.
Thus, users cannot lock themselves out by mistake, and in fact
will not notice that the system is in place as long as the
parameters used are not too stringent. A targeted denial of
service attack will need to be distributed (since otherwise the
attacker’s IP will soon be blocked if the system is properly
configured), and its effect will disappear very soon after the
attack stops. The system is fast (checking all three default
directions under stress takes on average 7 milliseconds in our
tests), and requires minimal code modification and no
architecture or database changes. Alternatively, it is possible to
modify the flow of login requests to go through our system
first, then to the original login, in which case no modification
of code at all is required.

B. Weaknesses of the System
Although the proposed system has many advantages, it also

has some weaknesses and shortcomings.
• If the database has a few known values that are

extremely frequent, then it will be difficult to adequately
protect such a system, since the window will have to be
sufficiently small that it will inconvenience users. If, for
example, the password “123456” is used by close to 1%
of the user base, as seems to be the case in some of the
reported database leaks (see Section 2 B.), and the user
identifiers are known, then it seems very difficult in
practice to protect such a database without seriously
inconveniencing the other users.

• One side effect of the Password direction is that a
distributed denial of service attack is now possible on
frequent passwords. In the case above, it means that a
group of attackers can deny access to users that have
“123456” as a password. On the other hand, this will
stop when the attack stops, and the accounts of these
users would otherwise be at high risk of being
compromised.

• It is very important to have the tightest parameters on
the IP direction, so that a single attacker cannot create
denial of service attacks. This is possibly problematic
for a large number of users coming to the system with
the same IP address. Also, the IP address direction is
truly effective only if the system’s architecture
guaranties at least one complete message exchange
between the client and the server prior to the IP

9 Of course, care should be taken so that the web application itself does not

leak this information during the subsequent login process.

verification (otherwise, an attacker can just spoof login
messages with a random IP addresses).

• Finding the right values for the parameters of a given
application might be difficult (See Section VI).

• It is theoretically possible to flood the system itself to
have it store very large lists and in turn impact the
server using it. Given the small amount of information
stored for each value, this would seem to require a
massive distributed attack. Nevertheless, our system is
equipped with a garbage collector that discards expired
values in the background, and it can be parameterized to
not consume more than a set amount of memory (if the
amount is reached, then every request is denied until
garbage collection occurs).

Despite these shortcomings, we believe that this system is a
clear, practical step forward in securing Web applications and
we encourage everyone to install it or include similar measures
in their applications.

VI. CONCLUSION AND FUTURE WORK
We have presented a system, based on the idea of a sliding

window, which can be used to slow down targeted brute force
attacks (where a single account is being attacked), trawling
brute force attacks (where accounts are being attacked based on
common passwords), and blind attacks (where both user
identifiers and passwords are being searched). Our system can
also prevent trawling attacks on knowledge questions. By
providing several “directions”, we allow our users to adjust the
level of allowed requests per time unit for different types of
information. By decoupling the protection subsystem from the
authentication subsystem, we provide a solution that is non-
intrusive and can be easily incorporated into existing
applications without significant time penalty and with almost
no code modification and no database changes at all.

Finding the parameters for a specific application might be
difficult. For the time being, the default values are four hits per
minute for id and password, and four hits every 55 seconds for

IP address, but these values may not be appropriate for all sites;
finding reasonable defaults for different environment types is
an area of further research. Another possible extension of this
work is to provide a “reporting” mode that does not actually
block any requests but records the traffic as experienced on the
site, and then shows what effect particular parameter settings
would have had on the site over the recorded period of time.
Another direction would be to come up with a more accurate
but as efficient formula to compute the number of hits in the
window. It would also be interesting to investigate the
possibility of identifying users in a better way, beyond simple
IP address. Porting the tool to other environments would also
be worthwhile and increase its potential impact.

Our tool is available to use now and will soon be made
more publically available; in the meantime, it can be requested
by email. We are currently in discussion with some companies
that are considering including it as part of their product and we
are looking for more such opportunities.

REFERENCES

[1] M. Bishop and D. Klein, “Improving System Security Through Proactive
Password Checking,” Computers and Security 14(3), 1995, pp. 233–249.

[2] R. Morris and K. Thompson, “Password security: a case history.”
Communications of the. ACM 22(11),1979, pp 594 – 597.

[3] D.Florêncio, C. Herley, and B. Coskun. “Do strong web passwords
accomplish anything?”. In Proceedings of the 2nd USENIX workshop on
Hot topics in security (HOTSEC'07), 2007, pp 1 – 6.

[4] J. Bonneau, M. Just and G. Matthews, "What's in a Name? Evaluating
Statistical Attacks on Personal Knowledge Questions," In Proceedings
of the 14th international conference on Financial Cryptography and
Data Security (FC'10), January 2010.

[5] L. v. Ahn, B. Maurer, C. McMillen, D. Abraham and Manuel Blum,
"reCAPTCHA: Human-Based Character Recognition via Web Security
Measures", Science, 321, 2008. pp. 1465 – 1468.

