
Recovering Repetitive Sub-Functions From

Observations

Guy-Vincent Jourdan1, Hasan Ural1, Shen Wang1, and Hüsnü Yenigün2

1 School of Information Technology and Engineering (SITE)
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, Canada, K1N 6N5

{gvj,ural,swang010}@site.uottawa.ca
2 Faculty of Engineering and Natural Sciences

Sabancı University
Tuzla, Istanbul, Turkey 34956
yenigun@sabanciuniv.edu

Abstract. This paper proposes an algorithm which, given a set of ob-
servations of an existing concurrent system that has repetitive sub-func-
tions, constructs a Message Sequence Charts (MSC) graph where repeti-
tive sub-functions of the concurrent system are identified. This algorithm
makes fewer assumptions than previously published work, and thus re-
quires fewer and easier to generate observations to construct the MSC-
graph. The constructed MSC-graph may then be used as input to exist-
ing synthesis algorithms to recover the design of the existing concurrent
system.

1 Introduction

A concurrent system is a system with two or more processes that are commu-
nicating among themselves using message exchanges. Message Sequence Charts
(MSCs) [1, 2] provide a visual description of a series of message exchanges among
communicating processes in a concurrent system. MSCs are often used by design-
ers to depict individual intended behaviors of the concurrent system. However,
a collection of such MSCs can only be viewed as providing information on a
representative sample of the intended behavior rather than a design represen-
tation of the system giving a complete description of the functionalities to be
provided [3]. A design representation is useful not only for implementing the sys-
tem, but also for maintaining it, for example to detect and eliminate errors, to
adapt it to a different environment, or simply to better understand the system.
It also helps reusing parts of the system in new developments. Unfortunately,
complete, up-to-date designs of evolving existing systems are seldom available.

Consequently, one of the aims of reverse engineering [4–6] is to recover the
design of an existing concurrent system through an analysis of its runtime behav-
ior. Such an analysis requires a finite set of observations of the running system.
Each observation is a serialization of the events occurring possibly concurrently



during a system run. Due to the possible interleavings of these concurrent events,
there are other serializations for the same run, all of which can be derived from
the given serialization [4]. Each such observation can be seen as a word, which
is made of the events being observed, belonging to the language of the system.
From one word (observation), it is possible to derive other words corresponding
to all remaining interleavings of the concurrent events in that word. If we are
given a set of observations, we can thus infer a set of words as a union of the
subsets of words where each subset corresponds to all possible interleavings of
the events in each of these observations. However, this set is only a representa-
tive subset of the complete language of the system. Our aim is to derive, under
some assumptions, an MSC-graph [7] that represents the complete language of
the system from which a design of the system can be constructed using existing
synthesis algorithms [4].

Since many concurrent systems have repetitive sub-functionality, some ev-
idence for such sub-functions should at least be implicitly given in the set of
observations. For a complete and accurate recovery of the design of a concurrent
system, the given set of observations must provide evidence for each repetitive
sub-function and must imply its relative position among other repetitive sub-
functions of the system. This places some constraints on the nature of the obser-
vations which need to be taken into consideration when the set of observations
are formed.

Existing methods to infer repetitive sub-functions require several restrictive
assumptions on the set of observations. For example, the method presented in [8]
requires (among others) the following assumptions:

i. Repetitive sub-functions must be iterated the same number of times in each
observation,

ii. Repetitive sub-functions need to be introduced in a specific order,
iii. The ordering of the sub-functions must be totally unambiguous,
iv. Each sub-function must be “introduced” individually by an observation that

contains only “known” sub-functions and this new sub-function.

In [9], the authors introduce a new concept, the lattice of repetitive sub-
functions, a structure that provides all possible selections of n repetitive sub-
functions. Using that lattice, they are able to infer the set of repetitive sub-
functions of an application from a set of observations waiving several of the
assumptions made in [8]. In particular, the first three assumptions listed above
are waived. However, the fourth and the strongest assumption is still required
by the approach taken in [9].

In this paper, we eliminate that assumption and provide an algorithm that
is capable of recovering several repetitive sub-functions at once under a new as-
sumption that repetitive sub-functions have a single initiator. We believe this to
be a significant practical improvement over both previous methods [8, 9] since it
relieves the user from the requirement of isolating each repetitive sub-function
within its own observation, which could be fairly difficult in practice, and some-
times simply impossible if two or more repetitive sub-functions are tied together
in the design of the system. The new assumption regarding the unique initiator



to repetitive sub-functions does not seem too constraining, since a repetitive sub-
function is primarily a function and thus is usually initiated by a single process.
In addition, the assumption is introduced for efficiency only and can be waived
at the cost of increased complexity.

The paper is organized as follows: in Section 2, we introduce the concepts
and definitions required. In Section 3, we review and discuss the assumptions
that are made about the system and the observations. The proposed algorithms
are described and analyzed in section 4, and in Section 5 we illustrate our ap-
proach on an example. We conclude in Section 6, where an implementation of
the solution is also described.

2 Preliminaries

In this section, we introduce the concepts and notations required. We mostly
reuse the notions and notations of [9], adapting them as needed.

Figure 1, left, shows an MSC of three processes exchanging a total of five
messages. The message m1 is sent by the process P2 and received by the process
P3, which is represented by an arrow from P2 to P3 and labeled m1. Each message
exchange is represented by a pair of send and receive events. The local view of
the message exchanges of a process (send and receive events of a process) is a
total order, but the global view is a partial order. A tuple consisting of a local
view for each process of the message exchanges depicted in an MSC uniquely
determines that MSC. Thus, an MSC represents a partial order execution of a
concurrent system which stands for a set of linearizations (total order executions
of the system) determined by considering all possible interleavings of concurrent
message exchanges implied by the partial order. Any of the linearizations of an
MSC uniquely determines the MSC.

To describe a functionality that is composed of several sub-functionalities,
an MSC-graph (a graph with a source and a sink node where edges are labeled
by MSCs) can be used. An MSC corresponding to the concatenation of MSCs
along a path from the source node to the sink node in an MSC-graph is said to
be in the language of the MSC-graph. In the following, Mk means that M is
repeated k times, and M∗ means any number of repetitions of M . Figure 1, right,
shows an MSC-graph where the MSC Mp is followed by an arbitrary number of
iterations of the MSC M , followed by the MSC Ms, which defines the language
Mp.M

∗.Ms. In this paper we assume that an MSC in the language of an MSC-
graph represents a system functionality from the initial state to the final state,
without going through the initial state again during the execution.

Formal semantics associated with MSCs provides a basis for their analysis
such as detecting timing conflicts and race conditions [10], non–local choices [11],
model checking [12], and checking safe realizability [13, 4].

In this paper, we consider the reverse engineering of designs of existing con-
current systems from given sets of observations of their implementations. We
assume that we are given a set Ω of observations, each observation O ∈ Ω being
an arbitrary linearization of an MSC m from a set of MSCs that is not given.



P1 P2 P3

m1m2

m3

m4

m5

msc M

v0 v vf
Mp Ms

M

Fig. 1. An MSC of three processes (left) and an example MSC-graph (right)

We use m(O) to denote the MSC m implied by an observation O. Some of the
sub-functions of the system can be repetitive, in which case they can be called
consecutively a different number of times in different runs of the system. As in [8,
9], we assume that a repetitive sub-function does not start (resp. end) at the
initial (resp. final) state, and that every repetitive sub-function of the system (if
any) is represented in the given set of observations at least twice: once with no
occurrence, and once with two or more consecutive occurrences.

A sub-function that is repeated in an observation will create a repeated
pattern in the MSC corresponding to that observation. However, a simple pattern
repetition is not enough. In order to deduce the existence of a repetitive sub-
function, we need to have an evidence such as different number of iterations of
the pattern within the same context.

Definition 1. [9] An MSC M is the basic repetitive MSC of MSC M ′ if M ′ =
Mk for some k ≥ 2 and there does not exist a basic repetitive MSC of M .

Consider the visual representation of an MSC M and imagine that we draw a
line through M by crossing each process line exactly once, and without crossing
any message arrows. Such a line divides M into two parts Mp (the part above
the cutting line) and Ms (the part below the cutting line). Mp and Ms can be
shown to be MSCs again. Mp and Ms are what we call a prefix of M and a
suffix of M , respectively. If an MSC M ′ is the concatenation of three non empty
MSCs Mp,Mm and Ms (i.e. M ′ = Mp.Mm.Ms), we say that Mm occurs within
the context Mp–Ms, that is, Mm occurs after Mp and is followed by Ms.

Definition 2. [9] Two MSCs M1 and M2 are said to infer M to be repetitive
within the context Mp–Ms if all the following are satisfied:

1. M does not have a basic repetitive MSC,



2. M1 = Mp.M
k.Ms for some k ≥ 2, with Mp and Ms non-empty and M2 =

Mp.Ms,
3. M is not a suffix of Mp and M is not a prefix of Ms.

Definition 3. [9] A common prefix (resp. suffix) of two MSCs M1 and M2,
is an MSC M , such that M is a prefix (resp. suffix) of both M1 and M2. The
maximal common prefix (resp. suffix) of M1 and M2 is a common prefix (resp.
suffix) M of M1 and M2 with the largest number of events.

The set of send and receive events in an MSC can be partially ordered ac-
cording to causality. We define the causal relationship as follows: two events e1

and e2 of an MSC M are causally related, which we note e1 < e2 if and only if

1. e1 is a send event and e2 is the corresponding receive event, or
2. e1 and e2 are events of the same process and e1 happens before e2 on that

process, or
3. there exists an event e3 in M such that e1 < e3 < e2.

For any send event e, we will define the set Previous(e) of elements, one per
process, that do not happen after e and that are maximal on their process with
that property. More formally:

Definition 4. Let M be an MSC with k processes {p1, p2, . . . , pk}, and let e be a
send event of M . Previous(e) is a set of up to k events such that ∀j ∈ {1, . . . , k},
for all event e′ of pj , e

′ ∈ Previous(e) if and only if e 6< e′ and for all events
e′′ 6= e′ of pj , e 6< e′′ ⇒ e′′ < e′.

A linear extension of the events of an MSC is a total ordering of the events
that respects the (partial) causal ordering:

Definition 5. Let M be an MSC with n events {e1, e2, . . . , en}. A linear exten-
sion of the causal order < of the events of M is a tota order <L on the events
of M such that ∀i, j ≤ n, ei < ej ⇒ ei <L ej.

3 Assumptions

As mentioned earlier, previous work [8, 9] have been published on the same
problem, [9] making fewer assumptions than [8] about the system being reverse
engineered. In this paper, we are waiving one of the strongest assumptions made
in [9], namely that each repetitive sub-function is introduced by a particular ob-
servation. We in turn make a couple of less restrictive assumptions for efficiency
reasons.

To recap, the most important assumptions made in [8] were the following:

1. There is one observation without any repetitive sub-functions. This observa-
tion is called the initial observation; it will be the shortest of all the provided
observations and every other observation will be made of that initial obser-
vation plus a number of iterations of a number of repetitive sub-functions.



2. The initial observation, and each repetitive sub-function having nested repet-
itive sub-functions, have a non empty, repetitive sub-function free prefix and
a non empty, repetitive sub-function free suffix.

3. Repetitive sub-functions have no common prefix with the part of the MSC
that starts just after them and no common suffix with the part of the MSC
that leads to them.

4. Repetitive sub-functions starting at the same point do not alternate.
5. Repetitive sub-functions must be iterated the same number of times in each

observation,
6. Repetitive sub-functions need to be introduced in a specific order,
7. The ordering of the sub-functions must be totally unambiguous,
8. Each sub-function must be “introduced” individually with an observation

that contains only “known” sub-functions and this new sub-function.

In [9], the assumptions 5, 6, and 7 are waived, but the strong assumption 8
is kept. In this paper, we waive assumption 8. However, we do introduce the
following two new assumptions:

9. Sub-function have a single initiator. That is, there is always a unique send
event at the source of a repetitive sub-function (and this send event is thus
repeated at the beginning of each iteration of the sub-function).

10. Repetitive sub-functions repeat at least twice.

We will see that assumption 9 speeds up our algorithm. This assumption
seems fairly reasonable, since functions have a single starting point.

Assumption 10 is there to avoid a particular case, where a set of repetitive
sub functions “hide” each other, for example an initial observation P.S, and
two other observation P.A.Bk1 .S and P.Ak2 .B.S for k1 > 1 and k2 > 1. The
single occurrence of A in the second observation prevents B to be recognized as
repetitive while the single occurrence of B in the third observation prevents A

to be recognized as repetitive. Note that if a fourth observation allows A or B to
be recognized then the problem disappears, so this assumption can be weakened
to prevent only the problematic pattern. We have used a larger assumption for
the sake of readability.

3.1 Main Algorithm

The main idea behind our algorithm is the following: at any given time, we
have already built a particular “knowledge” of the system, the initial knowledge
being the initial observation. We gradually enhance this knowledge by uncovering
information about repetitive sub-functions. Given the current knowledge, say
current, and an observation, say O, we attempt to “enhance” our knowledge by
identifying in m(O) portions that are coherent with current (that is, portions
that are compliant with what current describes of the system), while the parts of
m(O) that do not match current are made exclusively of repetitive sub-functions.

We can sketch a first algorithm as follows: we first identify the longest com-
mon prefix of current and m(O). After that common prefix, if O is not entirely



recognized yet then we must be looking at the beginning of a repetitive sub-
function. That sub-function will iterate a certain number of times, after which
m(O) will either “reconnect” with current where it left off to go into the repeti-
tive sub-function, or will enter into a second repetitive sub-function. In any case,
it will eventually “reconnect” with current. The strategy is thus to first look for
a possible “reconnection” point between m(O) and current. When such a point
is found, we check if the portion of m(O) that has been skipped is made of one
or more repetitive sub-functions. If that is not the case, we keep looking for
another reconnection point further down in m(O). If, on the other hand, what
we have are repetitive sub-functions, then we have to see if we can complete
the comparison starting from that reconnection point (and possibly find a num-
ber of additional repetitive sub-functions along the way). The simplest way to
achieve this is to make a recursive call to the same algorithm, starting from that
reconnection point. If the recursive call succeeds in finishing the comparison of
current and m(O), then we are done. If not, then we have to look for another
reconnection point that would be further down in m(O).

The above sketch achieves the expected result, but can be very inefficient
when trying to find the next connection point. Indeed, after identifying the
maximum common prefix of m(O) and current, we know that the next connection
point in m(O) will have to match the next events on each process of current. If
these events are not causally related (that is, these are independent events) then
any combination of matching events on O can potentially be a connection point.
If there are k processes involved and O has p matching events on each process,
we will have to try up to pk possible connections.

In order to avoid this combinatorial explosion, we can use Assumption 9
stating that repetitive sub-functions have a single initiator. The algorithm as
described cannot benefit from such an assumption, since the connection point
is searched at the end of the repetitive sub-function, on which no assumption
is made. It is however possible to reverse the algorithm and go through current
and O from the end to the beginning instead of from the beginning to the
end. When going backward, the very same approach can be followed (find the
longest suffix, then find the previous connection point, make sure that what was
skipped on m(O) is made of basic repetitive sub-functions and recursively call
the same algorithm on the remaining part of current and O), except that with
that strategy we know that the next connection point will be in m(O) just before
the beginning of a repetitive sub-function. Since each repetitive sub function has
a single send event as initiator, it means that the only possible connection points
correspond to the set Previous(e) of a send event e. We thus simply have to try
a number of candidates which are bounded by the number of send events in O.

Algorithm 1 performs the initialization and the loop that will “consume” the
provided observations. The variable current holds the current knowledge of the
system, initialized with the initial observation. The first loop is a phase of pre-
computation on the set of observations: we calculate an ordering of the events
which is compatible with the causal relation, and we pre-compute all possible
Previous(e). Both calculations will be used later in the main algorithm. Then,



the observations are compared with current one after the other, until they are
all properly interpreted. It may be necessary to compare a given observation
to current more than once, if the observation includes nested repetitive sub-
functions, since current might not have inferred the sub-function containing the
nested sub-function the first time around.

Algorithm 1 Initialization and Main Loop

1: current = the MSC of the shortest observation
2: Q = a queue of all other observations
3: KeepGoing=true

{Precomputation on the set of observations}
4: for all observations O ∈ Q do

5: Compute linearExtension(m(O)), a linear extension of the events of the MSC
m(O) induced by O

6: for all send event e in O do

7: Compute Previous(e)
8: end for

9: end for

{Main loop through the observations}
10: while Q 6= ∅ AND KeepGoing==true do

11: KeepGoing = false;
12: for all observations O ∈ Q do

13: if InferRepetitive(current, O) then

14: remove O from Q

15: KeepGoing=true
16: end if

17: end for

18: end while

{If Q 6= ∅, some observations were not handled}
19: if Q 6= ∅ then

20: ERROR: some observations were not processed
21: else

22: SUCCESS: the system has been reversed engineered as current
23: end if

4 Repetitive Sub-Function Inference Algorithm

Algorithm 2 given below attempts to trace O in current and to infer new repeti-
tive sub-functions. The call to FindMaximumSuffix traces the maximum possible
suffix common to current and m(O). The location (starting) of this suffix is re-
turned in cutCurrent and cutO.

Algorithm 3 implements FindNextConnectionPoint. Due to the assumption
of having a single initiator, we simply have to search backward on linearExten-
sion(m(O)) for a send event e so that Previous(e) matches currentCut.



Algorithm 2 BOOLEAN InferRepetitive(IN-OUT current, IN O)

1: FindMaximumSuffix(current,O, cutCurrent, cutO)
2: if both cutCurrent and cutO are at the beginning of their MSC then

3: return true
4: else if one of cutCurrent or cutO is at the beginning of its MSC then

5: return false
6: end if

{A repetitive sub-function might end at cutO}
7: startingCut = cutO
8: while true do

9: FindNextConnectionPoint(cutCurrent, O, startingCut, connectionPoint)
10: if connectionPoint== ∅ then

11: return false
12: end if

13: if IsMadeOfBasicRepetitives (O, connectionPoint , cutO) then

14: if InferRepetitive(current[CurrentCut], O[Previous(connectionPoint)]) then

15: modify current to include the newly discovered repetitive sub-function(s)
16: return true
17: end if

18: end if

{What we have found wasn’t good, either because it wasn’t basic repetitive or
because it did not allow us to finish trace O inside current. We keep looping.}

19: startingCut = Previous(connectionPoint)
20: end while

4.1 Finding Basic Repetitive Sub-Functions

In Algorithm 2, we extract a segment S of O which is not present in current. We
must now see if this segment is made of one or more repetitive sub-functions.
In [8], BasicRepetitiveMSC(), a linear time algorithm is provided. This algorithm
is used to decide whether or not a given MSC is the concatenation of two or
more basic MSCs. This algorithm is based on the fact that if an MSC is basic
repetitive, then the sequence of labels on each of its processes are also repetitive.
Such a sequence of label forms a word w, and finding the shortest word w′ such
that w = (w′)k for some k > 0 is a well studied problem for which we have linear
time algorithms [14].

Under the present assumptions, the segment S of m(O) can be the concate-
nation of more than one basic repetitive MSCs, that is, S could be of the form

Mk1

1 Mk2

2 . . . M
kp

p , for p ≥ 1 and k1 ≥ 2, k2 ≥ 2, . . . kp ≥ 2. Therefore, the algo-
rithm BasicRepetitiveMSC() must be adapted to the multiple basic repetitive
case.

Our approach to address this problem is the following: starting from S, we
try to find a single basic repetitive MSC on the longest possible prefix of this
segment. If we do find such a basic repetitive MSC on a prefix P of S, we
recursively call our algorithm on S \ P to find more basic repetitive MSCs in
S. Here again, we use Assumption 9 stating that repetitive sub-functions have
a single initiator, which allows to speed up the search quite dramatically, since



Algorithm 3 FindNextConnectionPoint(IN cutCurrent, O, startingCut,OUT
connectionPoint)

1: for all send event e ∈ O before startingCut, moving backward on linearExten-
sion(m(O)) do

2: if Previous(e) == currentCut then

3: connectionPoint = e
4: return

5: end if

6: end for

{Connection point not found}
7: connectionPoint== ∅

it allows to look only at the prefixes of S that end at Previous(e) for some send
event e.

Algorithm 4 BOOLEAN IsMadeOfBasicRepetitives (IN O, connectionPoint ,
cutO)

1: if BasicRepetitiveMSC(O[connectionPoint, cutO]) then

2: return true
3: end if

4: for all send event e ∈ O between connectionPoint and cutO, moving backward on
linearExtension(m(O)) do

5: if BasicRepetitiveMSC(O[connectionPoint, Previous(e)]) then

6: if IsMadeOfBasicRepetitives(O, e, cutO) then

7: return true
8: end if

9: end if

10: end for

11: return false

4.2 Complexity of the Solution

In this section, we evaluate the complexity of the proposed solution in the worst
case. We must first evaluate Algorithm 4, IsMadeOfBasicRepetitives, which is
called by Algorithm 2, InferRepetitive.

In the following, we assume that the system being reverse-engineered involves
k independent processes, and that the observations that are provided contain up
to n events. There are up to p observations, and the size of the reconstructed
system is m events. Clearly, m ∈ O(p.n).

Proposition 1. Algorithm IsMadeOfBasicRepetitives can be implemented to
run in O(n3).



Proof. As pointed out in [8], Algorithm BasicRepetitiveMSC can be made to run
in O(n), and this algorithm is called up to n times in the for loop. In addition, one
should note that it is not necessary to recursively call IsMadeOfBasicRepetitives
with the same e − cut argument twice, since it would always return the same
result (and actually return false if it was about to be called a second time, since
the algorithm terminates as soon as one such call returns true). It is thus possible
to record the fact that a particular e−cut was already used and avoid a recursive
call when this is the case. This can be checked in O(n) and will limit the number
of recursive calls to a maximum of n.

We can now evaluate the complexity of Algorithm 2.

Proposition 2. Algorithm InferRepetitive can be implemented to run in
O(n5.mk + k.n2.mk+1).

Proof. Clearly, the algorithm FindNextConnectionPoint can be implemented to
run in O(n). Moreover, the algorithm will exit from the while true loop af-
ter at most n iterations. Proposition 1 tells us that IsMadeOfBasicRepetitives
runs in O(n3), so the only missing information is the number of recursive calls
to InferRepetitive. To do so, one should notice that it is not necessary to call
InferRepetitive twice with the same pair of parameters. The first parameter cor-
responds to Previous(e) for some send event e, so the number of possibilities
in bounded by n. If we consider that any cut in current is a possibility, there
are at most mk choices for the second parameter, and thus there are O(n.mk)
possible pairs of parameters. Finding out if a given pair has already been used
can be done in O(n + k.m), so each complete run of one call of InferRepetitive
(excluding recursive calls) can be completed in O(n4 + k.n.m).

Theorem 1. The method proposed in this paper can be made to run in
O(p2.n5.mk + p2.k.n2.mk+1).

Proof. Immediate from propositions 1 and 2.

5 An Example

Let us illustrate our solution on a simple example. Assume that we are observing
a system with three process p1, p2 and p3. We note s.mx,i,j the sending of message
mx by pi to pj and r.mx,i,j the reception of message mx by pj from pi. We
are provided with the following two observations (omitting on-process ordering
information, which is assumed to be preserved in the provided lists, that is,
events of the same process are listed in the order they occur on that process):

O1 = s.ma,2,1, s.mb,2,3, s.md,2,1, r.ma,2,1, s.mc,1,3, r.md,2,1, r.mb,2,3, r.mc,1,3

and
O2 = s.ma,2,1, s.ma,2,1, s.ma,2,1, r.ma,2,1, r.ma,2,1, s.mc,1,3, r.ma,2,1, r.mc,1,3,

s.mc,1,3, r.mc,1,3, s.md,2,1, s.mb,2,3, s.md,2,1, s.mb,2,3, s.mb,2,3, r.md,2,1, r.mb,2,3,



P1 P2 P3

ma

mb

mc

md

msc MO1

P1 P2 P3

ma

ma

mc

ma

mc

md

mb

md

mb

mb

mc

me

mf

me

mf

md

msc MO2

Fig. 2. MSCs infered by O1 and O2.

r.md,2,1, r.mb,2,3, r.mb,2,3, s.mc,1,3, r.mc,1,3, s.me,3,2, s.mf,3,2, s.me,3,2, s.mf,3,2,

s.md,2,1, r.me,3,2, r.mf,3,2, r.me,3,2, r.mf,3,2, r.md,2,1.

These two observations induce the MSCs MO1
and MO2

respectively, as de-
picted in Figure 2. The shortest observation, and thus the initial one, is O1. The
algorithm InferRepetitive(O1, O2) is thus invoked.

The longest common suffix is the single-message MSC M1 = (md,2,1). The
reconnection point on O1 is thus the reception of mc on p3, the sending of mc on
p1 and the sending of mb on p2, which can be found in O2 as Previous(s.me,3,2).
The call to IsMadeOfBasicRepetitives is then made on the segment me,3,2,mf,3,1,

me,3,2,mf,3,1, which infer the two-message MSC M2 = (me,3,2,mf,3,1) to be basic
repetitive.

A recursive call to InferRepetitive is thus made on the MSCs leading up to the
last occurrence of mc,1,3 on both O1 and O2. This time, the maximum common
suffix is the two-message MSC M3 = (mb,2,3,mc,1,3), and the reconnection point
is simply ma,2,1. It is first found on O2 as Previous(s.mc,1,3), and IsMadeOfBa-
sicRepetitives is then called on the segment mc,1,3,ma,2,1,mc,1,3,md,2,1,mb,2,3,

md,2,1,mb,2,3.

This call will fail identifying basic repetitive, and thus another connection
point on O2 will be searched for. It is found as Previous(s.ma,2,1), and IsMade-



P1 P2 P3

md

msc M1

P1 P2 P3

me

mf

msc M2

P1 P2 P3

mb

mc

msc M3

P1 P2 P3

md

mb

msc M4

P1 P2 P3

ma

mc

msc M5

P1 P2 P3

ma

msc M6

v0 v1 v2 v3 vf
M6 ǫ M3 M1

M5 M4 M2

Fig. 3. Six MSCs obtained when processing MO1
and MO2

, and the final MSC-graph
of the system as reverse engineered.



OfBasicRepetitives is called on the segment ma,2,1,mc,1,3,ma,2,1,mc,1,3,md,2,1,

mb,2,3,md,2,1,mb,2,3, which this time is recognized as the concatenation of the
basic repetitive MSC M5 = (ma,2,1,mc,1,3) followed by the basic repetitive MSC
M4 = (md,2,1,mb,2,3).

A recursive call to InferRepetitive is thus made on what is left of the traces,
namely the first message ma,2,1, which is immediately recognized as the single-
message MSC M6 = {ma,2,1} and the algorithm finishes on a success, with the
system reverse engineered as M6.M

k
5 .Mk

4 .M3.M
k
2 .M1.

Figure 3 shows the six MSCs obtained as well as the final MSC-graph (the
graph as an ǫ transition between v1 and v2, meaning that nothing happens when
moving from v1 to v2). As expected, both O1 and O2 can be obtained from that
graph: O1 comes from v0.(M6).v1.(ǫ).v2.(M3).v3.(M1).vf , and O2 comes from
v0.(M6).v1.(M5).v1.(M5).v1.(ǫ).v2.(M4).v2.(M4).v2.(M3).v3.(M2).v3.(M2).v3.

(M1).vf

6 Conclusion

We have introduced a reverse-engineering method to infer the presence of repet-
itive sub-functions in an application from which only a set of execution traces
are provided. The method is much less restrictive than the previously published
ones and is therefore much more practical. Our algorithm is capable of identi-
fying repetitive patterns and repetitive sub-patterns (without limitations in the
number of nested levels) that are appearing when comparing different executions
of the same application being reverse-engineered, and build an MSC-graph from
these patterns that “summarize” the knowledge of the design of the application.

The method described in this paper has been implemented in C++. The
resulting tool is a 2000 lines program that takes an arbitrary number of exe-
cution traces and builds the corresponding MSCs and infer the MSC-graph in
accordance to Algorithm 1. In our tests, the application was able to analyze
100 execution traces totaling over 40,000 message exchanges and infer the cor-
responding MSC-graph, uncovering 130 repetitive subfunctions in less than 10
seconds on a MS Windows c© based computer with 1 Gigabyte of RAM and a
3.4 GigaHertz Intel pentium processor.

Details, documentation and source-code download are available on
http://www.site.uottawa.ca/FAST.

References

1. ITU Telecommunication Standardization Sector: ITU-T Recommendation Z.120.
Message Sequence Charts (MSC96). (1996)

2. Rudolph, E., Graubmann, P., Gabowski, J.: Tutorial on message sequence charts.
Computer Networks and ISDN Systems–SDL and MSC 28 (1996)

3. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message se-
quence chart specifications. In: 9th European Software Engineering Conferece and
9th ACM SIGSOFT International Symposium on the Foundations of Software En-
gineering (ESEC/FSE’01). (2001)



4. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts.
IEEE Transactions on Software Engineering 29 (2003) 623–633

5. Chikofsky, E., Cross, J.: Reverse engineering and design recovery. IEEE Software
7 (1990) 13–17

6. Lee, D., Sabnani, K.: Reverse engineering of communication protocols. In: IEEE
ICNP’93. (1993) 208–216

7. Braberman, V., Oliveto, F., Blaunstein, S.: Scenario-based validation and verifica-
tion for real-time software: On run conformance and coverage for msc-graphs. In:
2nd International Workshop on Scenarios and State Machines: Models, Algorithms,
and Tools, ICSE 2003. (2003)

8. Ural, H., Yenigun, H.: Towards design recovery from observations. In: FORTE
2004, LNCS 3235. (2004) 133–149

9. Jourdan, G.V., Ural, H., Yenigun, H.: Recovering the lattice of repetitive sub-
functions. In: ISCIS 2005, LNCS 3733. (2005) 956–965

10. Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts.
Software Concepts and Tools 17 (1996) 70–77

11. Ben-Abdallah, H., Leue, S.: Syntactic detection of progress divergence and non–
local choice in message sequence charts. In: 2nd TACAS. (1997) 259–274

12. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: 10th
International Conference on Concurrency Theory, Springer Verlag (1999) 114–129

13. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In:
22nd International Conference on Software Engineering. (2000) 304–313

14. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press (1994)


