
Fault-tolerant sequential sanPaola Flohini �x Andrzej Pel yx Niola Santoro zx
AbstratWe onsider the fault-tolerant version of the sequential san problem. A line ofidential ells has to be visited by a sanning head. The head an only distinguishan end of the line from an internal ell but an distinguish neither one end from theother, nor one internal ell from another. When the head starts at an internal ell,its �rst move is in a diretion hosen by the adversary. When the head omes to aninternal ell from a neighbor, it has two possible moves: forward, whih means \goto the other neighbor", and bak whih means \return to the previous neighbor".At this point the adversary an plae a fault whose e�et is the hange of the motiondiretion (going forward instead of bak and vie-versa). The head is not aware ofthe ourrene of a fault.The exeution ost of a sequential san algorithm for a line of length n in thepresene of at most k faults is the worst-ase number of steps that the head mustperform in order to san the entire line. The worst ase is taken over all adversary'sdeisions. We onsider two senarios: when the length of the line is known to thealgorithm and when it is unknown. Our goal is to onstrut sequential san algo-rithms with minimum exeution ost. We ompletely solve this problem for knownline size. For any parameters k and n we onstrut a sequential san algorithm,analyze its omplexity and prove a mathing lower bound, thus showing that ouralgorithm is optimal. The problem of fault-tolerant sequential san for unknownline size is solved partially. For any parameter k we onstrut a sequential sanalgorithm whih explores a line of length n with ost 2kn + o(kn), for arbitraryn. For k = 1 our algorithm is shown to be optimal. However, we also show analternative algorithm that has ost at most O(kn) (with a onstant larger than 2)for any n and ost kn+ o(kn) (whih is asymptotially optimal) for in�nitely manyn. Hene the asymptoti performanes of the two algorithms, for unbounded k andn, are inomparable.�SITE, University of Ottawa, Ottawa, ON K1N 6N5, Canada. E-mail: flohin�site.uottawa.ayD�epartement d'informatique, Universit�e du Qu�ebe en Outaouais, Gatineau, Qu�ebe J8X 3X7,Canada. E-mail: pel�uqo.a. Partially supported by the Researh Chair in Distributed Computing atthe Universit�e du Qu�ebe en Outaouais.zShool of Computer Siene, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.E-mail: santoro�ss.arleton.axPartially supported by NSERC disovery grant.1

1 IntrodutionReading all, possibly idential entries in a linear array is a fundamental task arising inmany appliations. For example, in the write-all problem [9℄, all zeroes in a table withbinary entries have to be replaed by ones; in the ase when the table initially ontainsonly zeroes, this task is equivalent to visiting all of its (idential) entries. The problemof �nding in an array the �rst (last) position ontaining a non-zero entry was studied in[8℄. In the ase of an array of zeroes with only the �rst and last entries equal to 1, �ndingthese positions again requires reading an entire linear array of idential entries. The list-ranking problem (f., e.g., [11℄), requiring �nding the distane of every element of a linkedlist from its head, also requires visiting all (possibly idential) elements of a list. Whilein the above problems the issue was to optimize the exeution of the task in parallel,the nature of other appliations requires sequential sanning of a linear array of identialobjets. Suh is the ase, for example, when a doubly linked list of idential objets isgiven and both ends of the list have to be found by a sequential algorithm starting fromany position of it. Likewise, sequential sanning is required when a sanning head hasto read all, possibly idential, entries in ells of a tape. In network exploration, a mobileagent (robot) has to explore a graph by visiting all of its nodes starting from any node. Ifthe graph is a path, exploration is equivalent to sequential sanning of a linear array. Inthe ase of anonymous graphs all entries of the array are idential. EÆient explorationof paths by a mobile agent was studied, e.g., in [4℄.Let us onsider the task of network exploration by a robot in more detail, and onentrateon the ase of the path. A robot starts in an unknown node of the path and may or may notknow its length. The robot's task is to visit all nodes of the path. Nodes are anonymous,and hene the robot an only distinguish an endpoint from an internal node: all internalnodes look idential and both endpoints look idential. If the starting node is internal, therobot starts from it in an arbitrary diretion (sine the robot does not know the distanesto both ends of the path, both diretions look the same, and thus the hoie of the initialdiretion is made by the adversary). Then, at eah internal node, the robot an eithermove forward (ontinue in the same diretion), or bak. Due to possible faults in theontrols of the robot, the deision to go forward or bak may be sometimes subjet toerror: if a fault ours, the robot supposed to go forward goes bak and vie-versa. Sineall internal nodes look idential, the robot often does not realize that a fault ourred.This fault-prone appliation of the sequential san problem is one of the motivations ofour paper.We formulate our senarios and the problem itself in an abstrat way to make it suitablefor a broader range of appliations. Consider a line of ells whih have to be visitedby a mobile entity alled a sanning head. All ells are idential exept the two endsof the line whih are alled the left and the right walls and are denoted by L and R,respetively. All other ells are alled internal. The head an only distinguish a wallfrom an internal ell but an neither distinguish one wall from the other, nor one internalell from another. (The names left and right and symbols L and R are used only for2

onveniene of desription.) If the head is at a wall, its only possible move is towards theother wall. When the head starts at an internal ell, its �rst move is in a diretion hosenby the adversary. This reets the assumption that the head is not aware of its positionon the line and has no \sense of diretion". When the head omes to an internal ell froma neighbor, it has two possible moves: forward, whih means \go to the other neighbor",and bak whih means \return to the previous neighbor". At this point (before the atualmove) the adversary an plae a fault whose e�et is the hange of the motion diretion:if the original move was forward, a fault auses the head to return to the neighbor fromwhih it ame, and if the original move was bak, a fault results in the move of the headtowards the other neighbor. The head is not aware of the ourrene of a fault, unless itexpets to get to an internal ell and hits a wall, or vie-versa. When the head is at awall, a fault has no e�et.The exeution ost of a fault-tolerant sequential san (FTSS) algorithm for a line oflength n in the presene of at most k faults is the worst-ase number of steps that thehead must perform in order to san the entire line. The worst ase is taken over allfault on�gurations, ontrolled by the adversary and, in the ase when the starting ellis internal, over all possible positions of the starting ell and the two possible startingdiretions. There are two main senarios: when the length of the line is known to thealgorithm and when it is unknown. In eah of them we onsider the start at a wall andthe start at an internal ell. We are interested in minimizing the exeution ost of a FTSSalgorithm in eah ase. More preisely, both versions of our problem are formulated asfollows.� Fault-tolerant sequential san with known line size:Given positive integers k and n, �nd a fault-tolerant sequential san algorithm withminimum exeution ost, for a line of length n, in the presene of at most k faults,when the head starts at a wall (resp. at an internal ell).� Fault-tolerant sequential san with unknown line size:Given a positive integer k, �nd a fault-tolerant sequential san algorithm with min-imum exeution ost, for a line of arbitrary length, in the presene of at most kfaults, when the head starts at a wall (resp. at an internal ell).Both for the known and for the unknown length of the line we assume that the upperbound k on the number of faults is known to the algorithm and that the loation of faultsis worst ase. This is a standard approah used in fault-tolerane (f., e.g., the survey[13℄ for fault-tolerant models onerning network ommuniation, or the seminal paper[14℄ for multiproessor fault diagnosis).
3

1.1 Our resultsWe ompletely solve the problem of fault-tolerant sequential san for known line size, forany positive parameters k and n. Our main ontribution for this version of the problem isthe proof of orretness of a natural fault-tolerant sequential san algorithm whih turnsout to be optimal. We then prove a mathing lower bound that establishes the optimalityof the algorithm. For even n the optimal ost is (k+2)n�1 when the start is at an internalell and (k+1)n when the start is at a wall. For odd n it is, respetively, (k+2)n�k� 1and (k + 1)n� k.The problem of fault-tolerant sequential san for unknown line size is solved partially.For any number k of faults we onstrut a fault-tolerant sequential san algorithm whihperforms the san of a line of length n, for arbitrary n, with ost 2(k+1)n� 2k� 1 whenthe start is at an internal ell and with ost 2(k+1)n�2k when the start is at a wall. Weshow that this ost annot be improved for k = 1 by establishing mathing lower boundsin this ase, for in�nitely many n. It is natural to ask if these lower bounds generalize toan arbitrary number of faults. In other words, is our algorithm (asymptotially) optimalfor arbitrary k and n? We show that this is not the ase. For large k and n, the ost of ouralgorithm is asymptotially 2kn. More preisely, it is 2kn+o(kn), when both k and n areunbounded. However, we also show an alternative algorithm that has ost at most O(kn)(with a multipliative onstant larger than 2) for any n, and ost kn + o(kn) (whih isasymptotially optimal) for in�nitely many n. Hene the asymptoti performanes of thetwo algorithms, for unbounded k and n, are inomparable. It remains open if there existsa fault-tolerant sequential san algorithm for unknown line size whih has ost kn+o(kn)for all k and n.To the best of our knowledge the present paper is the �rst to onsider algorithmi aspetsof fault-tolerant exploration by a mobile entity in whih faults onern moves of the entity,rather than the environment.1.2 Related workThe previously mentioned problems: write-all [9℄, �nding in an array the �rst (last) posi-tion ontaining a non-zero entry [8℄, and list-ranking [11℄, are examples of tasks involvingsanning a linear array or list of possibly idential objets. Unlike in our ase, in thesepapers the emphasis was on eÆient parallel exeution of the respetive tasks.Sequential san is losely related to the problem of network exploration by a mobileagent (robot). In the latter problem the agent has to visit all nodes and traverse alledges of an unknown graph. This problem has been studied both for direted [1, 2℄ andundireted [7, 12℄ graphs. In partiular, in [4℄ the authors investigated the problem ofnetwork exploration using an imperfet map: the agent is provided with an unlabeledisomorphi opy of the undireted graph underlying the network but does not have anysense of diretion. In the ase of the line this setting is equivalent to sequential san with4

known line size (in the fault-free senario), beause having an unlabeled map of the line isequivalent to knowing its length. The quality measure studied in [4℄ was the overhead of anexploration algorithm, de�ned as the worst ase ratio of the time (number of steps) spentby an algorithm having the imperfet map to the optimal time of exploration assumingfull knowledge of the graph. It turned out that, even for the line in the fault-free ase,�nding an exploration algorithmminimizing the overhead is far from trivial. It was provedin [4℄ that the best possible overhead for the line is p3, and an optimal algorithm wasonstruted.Our present problem an be viewed as an aspet of fault-tolerant network exploration.One of the well-studied issues in this domain onerns agent seurity. Proteting mobileagents from maliious hosts was investigated, e.g., in [15, 16, 17℄. In [3, 5, 6℄ the problemof loating a blak hole in a network was onsidered. A blak hole is a highly harmfulstationary proess residing in a node of a network and destroying all mobile agents visitingthe node, without leaving any trae. Another problem related to fault-tolerant networkexploration was investigated in [10℄. A robot, situated in a root of a tree and unawareof the loation of faulty edges, has to explore the onneted fault-free omponent of theroot, by visiting all its nodes. For a given rooted tree, the overhead of an explorationalgorithm was de�ned as the worst-ase ratio (taken over all fault on�gurations) of itsost to the ost of an optimal algorithm whih knows where faults are situated. The goalin [10℄ was to �nd exploration algorithms with minimum overhead.In all the above problems faults onerned the environment, more preisely omponents ofthe underlying graph. This should be ontrasted with our present approah where faultsonern the moves of the exploring agent.2 TerminologyIn the entire paper k denotes an upper bound on the number of faults. It is �xed andknown to FTSS algorithms. The length of the line (i.e., the number of its links) is denotedby n and ould be known or unknown, depending on the senario. The line to be sannedwill be often viewed as a segment [a; b℄ with the starting point at 0 and a and b theleft and right walls (denoted L and R), respetively. The mobile entity (sanning head)performing the san is alled the head for short. We use the prediates inside and at-wallto mean that the head is at an internal ell, or at a wall, respetively. We say that theline has been explored if all of its ells have been visited by the head. In the formulationof our algorithms we use a subroutine go-straight whih is a sequene of forward stepsrepeated until some ondition is met. There are three suh onditions: hit means thatthe wall has been hit, hit(x) means that the wall has been hit and exatly x forwardsteps were performed, and nohit(x) means that the head has performed x forward stepswithout hitting a wall. After the ondition is met, the diretion of the move of the headis reversed. The sequene of steps during the go-straight subroutine is alled a round.5

It should be noted that the head's movement in one diretion in a single round happensonly when there are no faults in this round. Suh a round is alled orret. With eahfault during a round the atual diretion of the move of the head hanges. A maximalsequene of steps in one diretion during a round is alled a streth. The length of astreth depends both on the algorithm and on the fault on�guration. Hene a round anbe omposed of many strethes.3 Line of known size3.1 Upper boundsIn this setion we present FTSS algorithms for a line of arbitrary known size n and atmost k faults. For even n the ost is (k+2)n� 1 when the start is at an internal ell and(k + 1)n when the start is at a wall. For odd n it is, respetively, (k + 2)n � k � 1 and(k+1)n� k. We later establish lower bounds showing that these algorithms are optimal.3.1.1 The even sizeThe algorithm is omposed of k+2 rounds if the head starts inside the line, and of k+1rounds if it starts at a wall. During a round the head moves in the same diretion untileither it hits a wall, or it performs n � 1 steps (n if starting at a wall) without reahingany wall. At this point it reverses diretion. Obviously the seond ondition means thatat least one fault has ourred.Algorithm KnownEvenif inside then ount := k + 2 else ount := k + 1;repeat ount timesif inside thengo-straight until (nohit(n� 1) OR hit)else /* at-wall */go-straight until (nohit(n) OR hit)endifreverse diretionendConsider an arbitrary exeution of the algorithm. In this exeution, let fi � 0 be thenumber of faults ourring in round i; let Z = fi : fi = 0g be the set of orret rounds;let F = fi : fi > 0g be the set of rounds that ontain at least one fault; let E � F be theset of rounds that ontain an even positive number of faults; �nally let z = jZj, f = jF j,6

e = jEj, and o = jF n Ej. Let dir(i) denote the diretion (from R to L or from L to R)at the start of round i.By onstrution, the exeution of the algorithm has trivially the following property.Lemma 3.1 Consider round i, 1 � i � ount.1. If round i is orret, the head hits a wall in this round.2. If round i ontains an even number of faults then the diretions at the beginning ofrounds i and i + 1 are di�erent; i.e., dir(i+ 1) 6= dir(i).3. If round i ontains an odd number of faults then the diretions at the beginning ofrounds i and i + 1 are the same; i.e., dir(i+ 1) = dir(i).Lemma 3.2 If in an exeution there are two orret rounds suh that all the roundsbetween them ontain an odd number of faults, then the line is explored.Proof: Let i and j, i < j, be orret rounds suh that all the rounds between themontain an odd number of faults. By lemma 3.1(1), the head hits a wall, say R, in roundi and, by onstrution it starts round i+ 1 by moving towards the other wall L. Sine inall the rounds i+1; i+2; : : : ; j�1 an odd number of faults ours, then by lemma 3.1(3),dir(i+ 1) = dir(i + 2) = : : : = dir(j � 1) = dir(j); hene, in round j the head will movetowards L and, sine j is orret, will reah L. �We now show that the ondition of the above lemma always holds if the head starts insidethe line.Lemma 3.3 Let the head start inside the line. In any exeution there are always twoorret rounds suh that all the rounds between them ontain an odd number of faults.Proof: Let the head start inside the line; then the number of rounds is k + 2. We needto prove that there exist i; j 2 Z suh that for all l, with i < l < j, we have l =2 E. It issuÆient to prove that the number of orret rounds exeeds by at least two the numberof rounds with an even number of faults; i.e., z � e + 2. First notie that a round inE must ontain at least two faults, a round in F n E must ontain at least one; henek � o + 2e. Moreover, sine there are k + 2 rounds, we have z + e + o = k + 2; i.e.,z = k � o� e+ 2 � 2e� e+ 2 = e+ 2. �In the ase when the head starts at a wall, there is an additional property.Lemma 3.4 Let the head start at a wall. If in an exeution all the rounds before the �rstorret one ontain an odd number of faults, then the line is explored.7

Proof: Let the head start from a wall, say R, let j be the �rst orret round, and let allrounds i < j ontain an odd number of faults. By onstrution the head starts round 1by moving towards the other wall L. Sine in all the rounds 1; 2; : : : ; j�1 an odd numberof faults ours, then by lemma 3.1(3), dir(i) = dir(i � 1) = L; hene, in round j thehead will move towards L and, sine j is orret, will reah L. �We now show that if the head starts at a wall, at least one of the onditions expressed byLemmas 3.4 and 3.2 holds.Lemma 3.5 Let the head start at a wall. In any exeution one of the following onditionsholds:1. All the rounds, if any, before the �rst orret one ontain an odd number of faults.2. There are two orret rounds suh that all the rounds between them ontain an oddnumber of faults.Proof: Let the head start at a wall, say R; in this ase the number of rounds is k+1. Wewill prove that if ondition (1) does not hold, then ondition (2) does. Let i > 1 be the�rst orret round and let p � 1 preeding rounds ontain an even number of faults. Afterone step in round i, the head is exatly in the situation of an head starting AlgorithmKnowneven from the urrent ell with at most k� i faults. The result then follows fromLemma 3.3. �As a onsequene of Lemmas 3.2 - 3.5, we get:Theorem 3.1 Algorithm KnownEven allows the head to orretly explore any line ofeven and known size, with at most k faults, regardless of the starting point.Theorem 3.2 During the exeution of Algorithm KnownEven, the head performs atmost (k + 2)n� 1 steps if it starts inside the line, and at most (k + 1)n steps if it startsat a wall.Proof: Let x be the number of rounds starting at a wall and let y be the number ofrounds starting inside the line. Clearly x + y = ount. Every time a round starts withthe head at a wall, the number of steps of that round is at most n; when a round startswith the head inside the line, the number of steps is at most n� 1. The total number ofsteps is at most S(x) = xn + y(n� 1) = xn + (ount� x)(n� 1).If the head is initially inside the line, then y � 1 and thus x < ount; moreover, aordingto the algorithm, ount = k + 2. In this ase S(x) is maximized when x = k + 1; thus,the number of steps when starting inside the line is at most (k + 2)n� 1.8

If the head is initially at a wall, S(x) is maximized when x = ount. Aording to thealgorithm, when starting at a wall, ount = k + 1. Thus, the number of steps whenstarting at a wall is at most (k + 1)n. �3.1.2 The odd sizeWhen the size of the line is known and is odd, the algorithm an exploit this fat bydisovering termination onditions without having to perform a �xed number of rounds.Intuitively, in this ase the odd parity of n allows to detet the absene/presene of failuresduring a round, thus allowing the algorithm to terminate sooner.Whenever a round starts with the head at a wall, the head moves in the same diretionuntil either it hits a wall, or it performs n steps without reahing any wall. This seondondition is partiularly important (as we will see later); the head has to remember itsourrene by setting a speial ag. On the other hand, if the head �nishes this round byhitting a wall in exatly n steps, then the algorithm terminates; this is due to the fat thata walk of odd length from wall to wall annot hit the same wall, and thus must result inthe exploration of the entire line. If the algorithm does not terminate, the head reversesits diretion before proeeding to the next round.Whenever a round starts with the head inside the line, the head moves in the samediretion until either it hits a wall, or it performs n� 1 steps without reahing any wall.If the head �nishes this round by hitting the wall in an even number of steps, then thehead has to hek whether the speial ag mentioned above is set or not. As we will showlater, if the ag is set, the algorithm an terminate. If the algorithm does not terminate,the head reverses its diretion before proeeding to the next round.Algorithm KnownOddhalt:= ag:= 0;repeat until halt=1if at-wall thengo-straight until (hit OR nohit(n))if nohit(n) then ag:=1;if hit(n) then halt:= 1;else /* inside */go-straight until (hit OR nohit(n� 1))if ((hit(x) with x even) AND ag=1) then halt:= 1;endifreverse diretionend repeat 9

C2C1 DC
BA ��

� �-
-

- -

Figure 1: Examples of di�erent types of rounds with various numbers of faults.CorretnessConsider an arbitrary exeution of the algorithm. This exeution is omposed of a se-quene of rounds.Depending where the head starts and ends a round, we have four possible types of rounds.In the following we enumerate all the possible situations.A: Inside/Wall. A round is of type A when the head starts the round inside the lineand ends it at a wall within at most n� 1 steps. There are two subtypes of suh around:A1 : In this ase, the prediate hit(x) holds with x even.A2 : In this ase, the prediate hit(x) holds with x odd.B: Inside/Inside. A round is of type B when the head starts and ends the round insidethe line. It is the only round type in whih the prediate nohit(n� 1) holds. In thisround, there has been at least one fault. The round is omposed of exatly n � 1steps.C: Wall/Wall. A round is of type C when the head starts and ends the round at a wall.There are two subtypes of suh a round:C1 : In this ase, the prediate hit(n) holds; this round is omposed of exatly nsteps and, as we will show, does not ontain any fault.C2 : In this ase, the prediate hit(n0) holds with n0 < n; this round ontains atleast one fault. In the worst ase there are n� 1 steps.10

D: Wall/Inside. A round is of type D when the head starts the round at a wall and endsinside the line. This is the only round type in whih the prediate nohit(n) holds,and there has been at least one fault. The round is omposed of exatly n steps.In Figure 1 are shown examples of: rounds of type A with two, one, and no faults; roundsof type B with one and two faults; rounds of type C with no faults and one fault; a roundof type D with one fault.Lemma 3.6 After a round of type C1, the line has been explored.Proof: Sine n is odd, a round of type C1 must be orret. In fat, a walk from wall towall omposed of an odd number of steps annot hit the same wall. �Lemma 3.7 After a round of type D, the head is at an odd distane from the wall whereit started that round.Proof: By de�nition, a round of type D starts from a wall, say L, and terminates after nsteps with the head inside the line. Let this round ontainm faults; thus, the movement ofthis round is omposed of a sequene of m+1 strethes s0; s1; : : : ; sm, withPmi=0 jsij = n.The distane d of the head from L an be alulated as follows: d = Pmi=0(�1)ijsij =Pbm=2i=0 js2ij �Pbm�12 i=0 js2i+1j. Let S1 = Pbm=2i=0 js2ijand S2 = Pbm�12 i=0 js2i+1j. Sine n =S1 + S2 is odd, we know that either S1 or S2 is odd; but then also d = S1 � S2 must beodd. �Lemma 3.8 After a round of type B, if the head started at an odd distane from a wall,it will also end at an odd distane from the same wall.Proof: Let x be the initial distane of the head from wall L. Let this round ontain mfaults; thus, the movement of this round is omposed of a sequene of m + 1 strethess0; s1; : : : ; sm, with Pmi=0 jsij = n � 1. After this movement, the head is at distaned = x +Pmi=0(�1)ijsij from L, if it starts the round moving towards R, and at distaned = x �Pmi=0(�1)ijsij, otherwise. As in the previous lemmas, let S1 = Pbm=2i=0 js2ij andS2 = Pbm�12 i=0 js2i+1j (thus, d = x + S1 � S2 if the head starts the round towards R, andd = x + S2 � S1 otherwise). Sine n � 1 is even, S1 + S2 is also even. But then bothS1 � S2 and S2 � S1 are even. Sine x is odd by hypothesis, the distane x+ S2 � S1 (orx+ S1 � S2) to L at the end of the round must also be odd. �Lemma 3.9 Consider a round of type A. Let x be the distane of the head from wall Lat the beginning of the round, and let y be the number of steps of the round.11

a) If x is odd and y is even, then the head hits R.b) If both x and y are odd, then the head hits L.Moreover, in the latter ase:b1) If the head starts by moving away from wall L, then round A ontains at least onefault;b2) If the head starts by moving away from wall R and wall L has been already visited,then between the previous hit of the wall and the urrent there have been at least as manyfaults as the number of rounds.Proof: Consider a round of type A. Let this round ontain m faults; thus, it is omposedof a sequene of m + 1 strethes s0; s1; : : : ; sm, with Pmi=0 jsij = y. Let S1 =Pbm=2i=0 js2ijand S2 =Pbm�12 i=0 js2i+1j.Case a). Let x be odd and y be even. By ontradition, let the head hit wall L. SineS1+S2 is even, also S1� S2 and S2� S1 are even. The distane of the head from L afterthis round is either x + S1 � S2 (if streth s0 is towards R) or x + S2 � S1 (if streth s0is towards L); that is, in both ases, it is odd and hene di�erent from 0; thus, it is notwall L that is hit by the head.Case b). Let both x and y be odd. By ontradition, let the head end this round at wallR. At the beginning of the round the head is at distane n�x from R, thus n�x = S1�S2if the head is moving towards R, and n � x = S2 � S1 otherwise. Sine y = S1 + S2 isodd, we know that S1�S2 and S2�S1 are also odd. However n� x is even, whih yieldsa ontradition.Subase b1). If the head started the round moving away from L, there has been at leastone fault during this round sine it is terminating in L again.Subase b2). In this ase, between the previous and the urrent hit of wall L there hasbeen one round of type D starting from L, possibly followed by several rounds of typeB, and then by the round of type A that we are onsidering. We want to show that atleast one of the above rounds that preede A ontains more than one fault. Suppose,by ontradition, that eah of them ontains a single fault (reall that rounds of type Band D must ontain at least one fault). Sine after eah of these rounds the diretion isinverted, all these rounds, as well as round A, start with the head moving away from wallL. This is impossible beause by hypothesis the head starts round A by moving awayfrom R. This ontradition implies that at least one round must have more than onefault, in order to allow a hange of diretion. This implies that between the previous hitof the wall and the urrent one there have been at least as many faults as the number ofrounds. �Lemma 3.10 Let the head exeute a (possibly empty) sequene of rounds of type B,preeded by a round of type D. If the next round is of type A1, then at the end of thatround the line has been explored. 12

initial stateterminal state�� ���Æ �zB : n� 1
6?

inside�� ���� ��
�� ��wall�� ��-C2 : n� 1

A1 : n� 1
A2 : n� 2D : n

A : n� 1?
-

B : n� 1 inside�� ��- z-
C1 : n z-

Figure 2: Possible transitions between rounds.Proof: Let the head start a round of type D at wall L. By Lemma 3.7, after that round,the distane d of the head from L is odd. Let now the head exeute a possibly emptysequene of rounds of type B. After this sequene of rounds (by Lemma 3.8 if the sequeneis not empty and trivially if it is empty) the head is still at an odd distane from L. Letthe next round be a round of type A1. The proof now follows from Lemma 3.9 ase a). �Theorem 3.3 Algorithm KnownOdd allows the head to orretly explore any line ofodd and known size after at most k+2 rounds, if the head starts inside the line, and afterat most k + 1 rounds, if it starts at a wall.Proof: First suppose that the head starts inside the line. After the initial round, de-pending on its type, the head either hits a wall (type A, possibly ontaining faults) or isstill inside the line after n� 1 steps (type B, ontaining at least one fault). If still insidethe line, the head an ontinue to remain inside after n� 1 steps for several rounds (typeB, ontaining at least one fault). Let p be the number of rounds before the head hits awall for the �rst time; then at least p � 1 of these rounds are faulty. Sine the numberof faults is at most k, after at most k rounds, the head will eventually hit a wall. If thehead initially starts at a wall, the desription of its behavior starts here.One at a wall (say L), two events an our: either the head hits a wall again or itperforms n steps and ends up inside the line.13

Suppose that the head hits the wall again. If this happens after n steps, this is a roundof type C1 and, by Lemma 3.6, the line has been explored; notie that in the algorithm,the variable halt is set to 1 and the algorithm terminates. Otherwise, this is a round oftype C2, ontaining at least one fault.If the round is �nished with the head ending up inside the line after n steps, this is around of type D and at least one fault has ourred; in the algorithm, when this roundours, the variable ag is set to 1. Two possible situations an our next: either thehead ontinues to stay inside the line after performing n � 1 further steps, or it hits awall. In the �rst ase this is a round of type B that ontains at least one fault. The headmay ontinue to experiene several rounds of this type. In the seond ase, the head hitsa wall. This is a round of type A. If this happens after an even number of steps (i.e.,round of type A1), then by Lemma 3.10, the line has been explored; notie that in thealgorithm, in this ase the variable halt is set to 1 (reall that the ag has been set to 1in the previous type D round) and the algorithm terminates. Otherwise (if this happensafter an odd number of steps), this is a round of type A2 and the head is bak at thestarting wall.The overall situation is summarized in Figure 2.There are three types of orret rounds that ould our: C1, A1 and A2. If a orretround of type C1 ours, the algorithm orretly terminates (the algorithm orretly setsthe variable halt to 1). If a orret round r of type A1 ours, this round must have beenpreeded by a round of type D, and hene by Lemma 3.7 the distane of the head fromL at the beginning of round r is odd, whih implies that round r terminates at wall Rafter an even number of steps (ensuring that the algorithm orretly sets the variable haltto 1). We all a orret round of type A1 or C1 a orret terminating round. On theother hand, a orret round of type A2 ould send the head bak to wall L. In suh anevent, however, we are guaranteed that in the s rounds between the last two hittings ofthe wall, there have been at least s faults (Lemma 3.9). We all a orret round of typeA2 a orret non-terminating round.To onlude the proof, we need to show that a orret terminating round will our withinat most k + 1 rounds, if the head started at a wall, and within at most k + 2 rounds ifthe head started from inside the line.Consider the two ases. If the head started at a wall, every round that terminates insidethe line ontains at least one fault, and every orret non terminating round implies thatat least one earlier round between the urrent and the previous hit ontains at leasttwo faults (Lemma 3.9). This implies that within k + 1 rounds at least one is a orretterminating round. Hene, the algorithm terminates after at most k + 1 rounds. If thehead started inside the line, there are p initial rounds until the head �rst hits a wall(possibly p = 0, if the head started at a wall), of whih at least p � 1 ontain a fault (ifp > 1). At this point there remain at most k � (p� 1) other faults. For the same reasonas above, in the next k � (p� 1) + 1 rounds at least one is a orret terminating round.Hene, the algorithm terminates after at most p+ k � (p� 1) + 1 = k + 2 rounds. �14

ComplexityTheorem 3.4 During the exeution of Algorithm KnownOdd, the head performs in theworst ase (k+2)n�k�1 steps if it starts inside the line, and (k+1)n�k steps otherwise.Proof: Any exeution of the algorithm orresponds to a path in the graph of Figure 2.On eah edge the type and the worst ase number of steps of the orresponding roundis indiated. Sine we are interested in the worst ase, we will only onsider exeutionswhere the maximum number of steps is inurred in eah round.Let us all heap a round omposed of n � 2 steps, medium a round omposed of n � 1steps, and expensive a round omposed of n steps.Let 1; 2; : : : ; m be the rounds during an arbitrary exeution of the algorithm. Let E =fe1; : : : esg denote the set of expensive rounds, and C denote the set of heap rounds. Lety be the number of medium rounds, and z the number of heap rounds. We �rst showthat, if s > 1, then for all i, 1 � i � s�1, there exists 2 C, suh that ours between eiand ei+1. The only rounds omposed of n steps are terminal rounds of type C1, or roundsof type D. Clearly e1; : : : ; es�1 must be rounds of type D, thus terminating inside theline. After eah round ei (1 � i � s� 1), before the next expensive round ei+1, a roundof type A2 must neessarily our (see Fig. 2). In other words, between two expensiverounds there must be a heap one, whih implies that s� 1 � z .Let us onsider �rst the ase when the head started inside the line. The total number ofsteps T is at most sn+y(n�1)+z(n�2) = (s+y+z)(n�1)+s�z. Sine s�z � 1, we haveT � (s+y+z)(n�1)+s�z � (s+y+z)(n�1)+1. If the head started inside the line wehave k+2 rounds (Theorem 3.3) and then: T � (k+2)(n�1)+1 = (k+2)n�k�1. If thehead started at the wall we have k+1 rounds and then: T � (k+1)(n�1)+1 = (k+1)n�k�3.2 Lower boundsIn this setion we establish lower bounds on the ost of fault-tolerant sequential san,showing that the algorithms presented in the previous setion are optimal.Theorem 3.5 For any FTSS algorithm for a line of known size n with at most k faults,there exists a starting point inside the line and an adversary that fores the head to performat least (k + 2)n� 1 steps, if n is even, and (k + 2)n� k � 1 steps, if n is odd.Proof: Fix a FTSS algorithm A on a line of size n. Let position 0 orrespond to the leftwall. Consider a sequene � = (s1; s2; : : : ; sk) oding the fault-free exeution of A until a15

wall is hit for the �rst time, starting from dn�12 e (w.l.o.g, let the wall hit be L, a similarargument holds when the wall hit is R). The meaning of the sequene � is the following:Go s1 steps in one diretion;go s2 steps in the other diretion;go s3 steps in the �rst diretion;go s4 steps in the other diretion;...Let y be the rightmost point of �. Thus dn�12 e � y < n� 1.Now onsider a di�erent senario for the same algorithm: more preisely, we onsider thesame exeution of algorithm A (i.e., the same sequene �) with a di�erent starting pointdn�12 e + n� y � 1. In this senario, the line starts n� y � 1 positions before the end of� and ends one position after its rightmost point (obviously a wall is not hit during theexeution of �). At least additional n� y � 1 steps are required for hitting the left wall,and at least y+1 steps are required for hitting the right wall. Thus, the number of stepsrequired to hit a wall for the �rst time in this senario is h � y +minfy + 1; n� y � 1g.Sine y � dn�12 e, we have that minfy + 1; n� y � 1g = n� y � 1, and, thus: h � n� 1.The head has now reahed the (left) wall for the �rst time. Sine the line is not yetfully explored, the head has to perform a walk of at least n steps eventually reahing theopposite wall in a fault-free exeution of the algorithm. Consider suh a walk. Let theadversary plae a fault when the head is, for the last time, at distane n2 from the left wall,if n is even, and at distane n�12 , if n is odd. In this way the left wall is hit again afterat least n steps, if n is even, and n� 1 steps, if n is odd. Repeating the same argumentk times we an onlude that the head is bak at the left wall after performing, sine thebeginning of the exeution, at least n � 1 + kn steps, if n is even, and n � 1 + k(n � 1)steps, if n is odd. However, the line is not yet fully explored. Hene, the head must stillperform at least n steps to reah the right wall, for a total of (k + 2)n � 1 steps, if n iseven, and (k + 2)n� k � 1 steps, if n is odd. �Theorem 3.6 Let the head start at a wall. For any FTSS algorithm for a line of knownsize n with at most k > 0 faults, there exists an adversary that fores the head to performat least (k + 1)n steps, if n is even, and (k + 1)n� k steps, if n is odd.Proof: Fix a FTSS algorithm A on a line of size n. Let the head start at the left wall.In any fault-free exeution the head has to perform a walk of at least n steps eventuallyreahing the opposite wall. Consider suh a walk. Using an argument similar to the oneof Theorem 3.5, we have that the head must still perform at least n steps to reah theright wall, for a total of (k + 1)n steps, if n is even, and (k + 1)n� k steps, if n is odd.�16

4 Line of unknown size4.1 An upper boundIn this setion we present a FTSS algorithm working for unknown line size. If there areat most k faults, the head performs no more than 2(k + 1)n � 2k � 1 steps, if it startsinside the line, and no more than n(2k + 1) � 2k steps, if it starts at a wall. Hene theasymptoti ost of the algorithm is 2kn + o(kn), for unbounded k and n. The algorithmis omposed of k+2 or k+1 rounds depending on whether the head starts inside the lineor at a wall. During eah round the subroutine go-straight is exeuted until a wall is hit.Algorithm Unknownif inside then ount := k + 2 else ount := k + 1;repeat ount timesgo-straight until hitreverse diretionendTheorem 4.1 Algorithm Unknown allows the head to orretly explore any line, withat most k faults, without knowing its size.Proof: By onstrution, eah round ends as soon as the head hits a wall. If the headstarted at a wall, the line is orretly explored the �rst time there is a orret round.Sine there are k + 1 rounds and at most k of them are faulty, the line will be orretlyexplored. Consider now the ase when the head starts inside the line. Let the head hitR in the �rst round. If in the next round the head hits the other wall, the entire line isexplored; else, at least one fault must have ourred sine, otherwise, aording to thealgorithm, the head would have hit L. Indutively, if the head has not hit L in the �rst jrounds, 2 � j � k+1, then at least j � 1 faults have ourred. Sine the total number offaults is k and the number of rounds is k+2, it follows that the line will be fully explored.�Theorem 4.2 During the exeution of Algorithm Unknown, the head performs no morethan 2(k+1)n�2k�1 steps, if it started inside the line, and no more than n(2k+1)�2ksteps, if it started at a wall.Proof: Consider �rst the ase when the head starts inside the line. The algorithm isomposed of k + 2 rounds. Let fi denote the number of faults that our during round i,with 1 � i � k + 2. Clearly Pk+2i=1 fi = k and fi � 0.The �rst round starts with the head inside the line and ontains f1 faults; it is thus17

omposed of f1+1 strethes, the last of whih hits the wall. None of the �rst f1 stretheshits a wall. Thus, eah of them is omposed of at most n�2 steps. The last streth startsinside the line and ends at a wall; hene, it is omposed of at most n� 1 steps. In otherwords, the head performs at most (n� 2)f1 + n� 1 steps in this round.Any subsequent round i is also omposed of fi+1 strethes; the �rst and the last stretheshave one extremity at a wall and the other inside the line; hene, they are omposed ofat most n � 1 steps. None of the other strethes hits a wall and thus eah of them isomposed of at most n � 2 steps. As a onsequene, during round i, the head performsat most 2(n� 1) + (fi � 1)(n� 2) steps. The total number of steps is thus at mostS = S(f1; f2; : : : ; fk+2) = (n� 2)f1 + n� 1 +Pki=2(2(n� 1) + (fi � 1)(n� 2))wherePki=1 fi = k and fi � 0. We have: (n�2)f1+n�1+Pk+2i=2 (2(n�1)+(fi�1)(n�2)) =n� 1 +Pk+2i=2 (2(n� 1))�Pk+2i=2 (n� 2) + (n� 2)Pk+2i=1 (fi) = (2(k+ 1) + 1)(n� 1)� (k+1)(n� 2) + k(n� 2) = 2(k + 1)(n� 1) + 1 = 2(k + 1)n� 2k � 1Consider now the ase when the head starts at a wall. In this ase, following the samereasoning, the total number of steps is at mostS = S(f1; f2; : : : ; fk+1) =Pk+1i=1 (2(n� 1) + (fi � 1)(n� 2))wherePk�1i=1 fi = k and fi � 0. We have: Pk+1i=1 (2(n� 1)+ (fi� 1)(n� 2)) =Pk+1i=1 (2(n�1)� (n� 2)) + (n� 2)Pk+1i=1 (fi) = (k + 1)n+ (n� 2)k = n(2k + 1)� 2k �4.2 The lower bound for one faultIn this setion we prove that the upper bound from the previous setion annot be im-proved for k = 1. We �rst onsider the head starting inside the line.Fix any FTSS algorithm A and onsider the part of its fault-free exeution until a wall ishit for the �rst time. This part an be oded in one of two possible ways.� As an in�nite sequene of integers (s1; t1; s2; t2; : : : ;) with the following meaning:Go s1 steps in one diretion;Go t1 steps in the other diretion;Go s2 steps in the �rst diretion;Go t2 steps in the other diretion;...� As a �nite sequene of integers (s1; t1; s2; t2; : : : ; sk) or (s1; t1; s2; t2; : : : sk; tk) withthe following meaning: 18

Go s1 steps in one diretion;Go t1 steps in the other diretion;Go s2 steps in the �rst diretion;Go t2 steps in the other diretion;...Go sk steps in the �rst diretion (resp. tk steps in the other diretion);Go until hitting the wall in the other (resp. �rst) diretion.Call a FTSS algorithm that an be oded in the �rst (resp. seond) way, a type 1 (resp.type 2) algorithm. Parts of the exeution that orrespond to integers si or ti are alledswings. The last swing of an algorithm of type 2 is alled the in�nite swing.Consider the exeution of a FTSS algorithm (of type 1 or type 2) in the in�nite line inwhih the starting point is 0 and the �rst diretion is positive. Hene the swing s1 endsin point b1 = s1. Let a1 = 0. Let ai and bi, for i > 1, be the left and right endpoints ofswing si. Let ak+1 be the left endpoint of the in�nite swing of a type 2 algorithm, if thediretion of this in�nite swing is positive.Theorem 4.3 For any FTSS algorithm for a line of unknown size with at most one faultthere exist arbitrarily large integers n suh that for some starting point inside the line oflength n there exists an adversary that fores the head to perform at least 4n� 3 steps.Proof: Fix a FTSS algorithm A. Take an arbitrary threshold n0. We have to showan n > n0 suh that A performs at least 4n � 3 steps for some adversary, on the lineof length n. First suppose that A is of type 1 and let (s1; t1; s2; t2; : : :) be the in�nitesequene oding its �rst part. Let ai and bi, for i � 1, be the left and right endpoints ofswing si. The set of integers fai; bi : i > 1g annot be ontained in a �nite interval, forotherwise the algorithm would be inorret. Hene either the sequene (a1; a2; : : :) doesnot ontain the smallest number or the sequene (b1; b2; : : :) does not ontain the largestnumber. Consider three ases.Case 1. The sequene (a1; a2; : : :) does not ontain the smallest number and the sequene(b1; b2; : : :) does not ontain the largest number.We de�ne the following in�nite sequenes (a01; a02; : : :) and (b01; b02; : : :) by indution. Leta01 = a1 = 0. Let j be the smallest index suh that aj < a01. De�ne b01 to be the largestinteger among b1; : : : ; bj�1. Suppose that a01; : : : ; a0k�1 and b01; : : : ; b0k�1 are already de�nedand let r and s be the smallest indies suh that a0k�1 = ar and b0k�1 = bs. Suppose thats � r. Let t be the smallest index suh that bt > bs. De�ne a0k to be the smallest integeramong as+1; as+2; : : : ; at. Let z be the smallest index among s + 1; s + 2; : : : ; t suh thata0k = az. Let m be the smallest index suh that am < a0k. De�ne b0k to be the largestinteger among bz; bz+1; : : : ; bm�1. Let x be the smallest index among z; z + 1; : : : ; m� 1,suh that b0k = bx. We have x � z, hene the indutive onstrution is ompleted (f. Fig.3). 19

a1 = a01 0 b01 = bsaja2 = a02 bt b02am

Figure 3: The onstrution of the sequenes (a0i), (b0i) in the proof of Theorem 4.3, (ase1).By onstrution, the sequenes (a01; a02; : : :) and (b01; b02; : : :) have the following properties.� the sequene (a01; a02; : : :) is stritly dereasing;� the sequene (b01; b02; : : :) is stritly inreasing;� in the fault-free exeution of the algorithm in the line segment I = [a0v � 1; b0v + 1℄,the head does not hit a wall between reahing point a0v and point b0v for the �rsttime.Let v > 2 be suh that b0v � a0v > n0. Consider the line segment I = [a0v � 1; b0v + 1℄. Letn = b0v � a0v + 2 be its length. Before reahing point a0v for the �rst time, the head doesnot hit a wall and performs at least 3 steps. After reahing point a0v it reahes point b0vwithout hitting a wall and subsequently hits the wall for the �rst time. By onstrution,this must be the left wall. Hene by the time of �rst hitting a wall the head performs atleast 3 + (n� 2) + (n� 1) = 2n steps (and the line is not yet fully explored). Hene thehead must still perform a walk to a distane n from the left wall without hitting a wallduring this walk. Now the adversary plaes the fault in the �rst point of this walk whenthe head is at distane n=2 (resp. (n� 1)=2) from the left wall, if n is even (resp. odd).Hene, at least n� 1 steps after hitting the left wall for the �rst time, the head hits theleft wall again. Sine the interval I is still not fully explored, n more steps are needed,for a total of at least 2n + (n� 1) + n = 4n� 1 > 4n� 3 steps, in this ase.Case 2. The sequene (a1; a2; : : :) ontains the smallest number and the sequene (b1; b2; : : :)does not ontain the largest number.Subase 2.1. There exist arbitrarily large integers m suh that for all j larger than someindex i(m) we have aj > m. 20

Take suh an integer m >max(n0; a2) and let i(m) be the smallest index suh that for allj > i(m) we have aj > m. Let a be the smallest number among a1; : : : ai(m) and let b bethe largest number among b1; : : : bi(m)�1. Consider the line segment I = [a � 1; b + 1℄ orI = [a�2; b+1℄, whihever is of even length. Let n be equal to this length. Hene n is aneven integer larger than n0. The rest of the argument is arried out for I = [a� 1; b+ 1℄.The other ase is similar. Denote x = m� a+ 1 and y = b+ 1�m. Hene n = x + y.The swing si(m) ontains the point m. The adversary plaes the fault during swing si(m)in this point. Sine the sequene (b1; b2; : : :) does not ontain the largest number and inview of the plaement of the fault, the �rst time the head hits a wall, it will be the leftwall. Sine the head started at 0 and before the enounter of the fault it has hangeddiretion at points a and b, the number of steps until hitting the wall is at least 2n� 3.Take < a so small that x + z � 2(n� 1), where z = m � . At the moment of hittingthe left wall in the line segment I in the way desribed above, the situation from thepoint of view of the head is idential as if there were no fault but the segment wereJ = [; 2m � a + 1℄ and the wall hit were the right one (at point 2m � a + 1). In thisseond senario a part of the segment J has not been visited yet, and the adversary isleft with a fault. Hene in this senario the head must still hit the opposite wall andhene make a walk at distane at least n without hitting a wall in the meantime. Nowthe adversary plaes the fault when the head �rst gets at distane n=2 from the rightwall during this walk (reall that n is even). This results in hitting the right wall againafter n steps. The same is true in the �rst senario where the head will hit the rightwall (and in this senario the segment I is fully explored). However now the situationis again idential in both senarios and in the seond senario the segment J is not yetfully explored. Hene another walk at distane at least n is needed for the algorithm tobe orret in this ase. Sine the head is in the same situation in both senarios, it mustwalk again at distane n from the wall in the �rst senario as well (thus performing atleast n more steps). This implies that (in the �rst senario) it must perform a total of atleast (2n� 3) + 2n = 4n� 3 steps.Subase 2.2. There exists an integer m0 suh that for all m � m0 we have ai � m forin�nitely many indies i.Take m >max(m0; n0). Let be the smallest number in the sequene (a1; a2; : : :). Let ibe suh that:1. ai � m;2. the sum of lengths of swings sj and tj for j < i exeeds 2(m� + 2);3. bj > m for some j < i.Let b be the largest integer among bj for j < i. Let k > i be suh that ak � m andbj > b for some j < k. Let d be the largest integer among b1; b2; : : : bk�1. Consider theline segment I = [� 1; d+ 1℄ and let n be its length. Sine d > m, we have n > n0. Thesum of lengths of swings sj and tj, for i � j < k, is at least 2(d�m). The sum of lengthsof swings sj and tj, for j < i, exeeds 2(m� +2). Hene the number of steps performed21

till the end of swing tk�1 is at least 2n and this is before the �rst hit of a wall. Hene thenumber of steps until hitting a wall for the �rst time is also at least 2n.Now an argument analogous to that in Case 1 shows that the head must perform at least(n�1)+n steps after hitting a wall for the �rst time, for a total of at least 4n�1 > 4n�3steps, in this ase.Case 3. The sequene (b1; b2; : : :) ontains the smallest number and the sequene (a1; a2; : : :)does not ontain the largest number.The argument is similar as in Case 2, hene we omit it.This onludes the proof for type 1 algorithms. Now suppose that algorithm A is of type2. We present the proof in the ase when the in�nite swing is in the positive diretion.The other ase is similar. Fix a positive integer n0. Let (s1; t1; s2; t2; : : : ; sk; tk) be thesequene oding the �rst part of algorithm A. Let ai and bi, for i � 1, be the left andright endpoint of swing si. Let a be the smallest among integers a1; a2; : : : ; ak; ak+1 andlet b0 be the largest among integers n0; b1; b2; : : : ; bk. If b0 � a is even, let b = b0, otherwiselet b = b0 + 1. Consider the line segment I = [a� 1; b+ 1℄. Let n be equal to this length.Hene n is an even integer larger than n0. The adversary plaes the �rst fault during thein�nite swing in point b. The �rst time the head hits the wall, it will be the left wall,after at least 2n� 3 steps. It remains to show that 2n more steps are required. The proofis similar as in Subase 2.1 for type 1 algorithms, hene we omit it. �We now turn attention to the ase when the head starts at a wall. Suppose, without lossof generality, that this is the left wall. Fix any FTSS algorithm A and onsider the partof its exeution until a wall is hit for the �rst time. This part an be again oded in oneof the two ways desribed previously. We keep the same notation and terminology andde�ne the two types of algorithms similarly as before. In partiular, the left wall at whihthe head starts is the point 0. Now the in�nite swing of a type 2 algorithm must be inthe positive diretion. For the ase of start at a wall we have the following lower boundwhih again mathes the performane of Algorithm Unknown for k = 1.Theorem 4.4 For any FTSS algorithm for a line of unknown size with at most one faultthere exist arbitrarily large integers n suh that if the head starts at a wall of a line oflength n then there exists an adversary that fores the head to perform at least 3n � 2steps.Proof: Fix a FTSS algorithm A. Take an arbitrary threshold n0. We have to showan n > n0 suh that A performs at least 3n � 2 steps for some adversary, on the lineof length n. First suppose that A is of type 1 and let (s1; t1; s2; t2; : : :) be the in�nitesequene oding its �rst part. Let ai and bi, for i � 1, be the left and right endpointsof swing si. The sequene of integers fbi : i > 1g must be unbounded, for otherwise thealgorithm would be inorret. Consider two ases.22

Case 1. There exist arbitrarily large integers m suh that for all j larger than some indexi(m) we have aj > m.Take suh an integer m > n0 and let i(m) be the smallest index suh that for all j > i(m)we have aj > m. Let b be the largest number among b1; : : : bi(m)�1. Consider the linesegment I = [0; b + 1℄. Let n = b + 1 be its length. The swing si(m) ontains the pointm. The adversary plaes the fault during swing si(m) in this point. Sine the sequene(b1; b2; : : :) does not ontain the largest number and in view of the plaement of the fault,the �rst time the head hits a wall, it will be the left wall. The number of steps untilhitting the wall is at least 2n � 2. n more steps are neessary to explore the entire line,for a total of 3n� 2 steps.Case 2. There exists an integer m0 suh that for allm � m0 we have ai � m for in�nitelymany indies i.Take m >max(m0; n0). Let i be suh that:1. ai � m;2. the sum of lengths of swings sj and tj for j < i exeeds 3m+ 2;3. bj > m for some j < i.Let b be the largest integer among bj, for j < i. Let k > i be suh that ak � m andbj > b, for some j < k. Let d be the largest integer among b1; b2; : : : bk�1. Consider theline segment I = [0; d+ 1℄ and let n = d+ 1 be its length. Sine d > m, we have n > n0.The sum of lengths of swings sj and tj, for i � j < k, is at least 2(d � m). The sumof lengths of swings sj and tj, for j < i, exeeds 3m + 2. Hene the number of stepsperformed till the end of swing tk�1 is at least 2n +m and this is before the �rst hit ofa wall. The head is now at distane at least n�m from the right wall and this wall hasnot been hit yet. Hene the total number of steps needed to explore the entire line is atleast 3n is this ase.This onludes the proof for type 1 algorithms. Now suppose that algorithm A is of type2. Fix a positive integer n0. Let (s1; t1; s2; t2; : : : ; sk; tk) be the sequene oding the �rstpart of algorithmA. Let ai and bi, for i � 1, be the left and right endpoint of swing si. Letb be the largest among integers n0; b1; b2; : : : ; bk. Consider the line segment I = [0; b+ 1℄.Let n = b+ 1 be its length. The adversary plaes the �rst fault during the in�nite swingin point b. The �rst time the head hits a wall, it will be the left wall, after at least 2n� 2steps. n more steps are neessary to explore the entire line, for a total of 3n� 2 steps.�4.3 An alternative algorithmTheorems 4.3 and 4.4 show that Algorithm Unknown annot be improved for k = 1fault and all (unknown) sizes n of the line. It is natural to ask if the lower bounds fromSetion 4.2 generalize to an arbitrary number of faults. In other words, is Algorithm23

Unknown (asymptotially) optimal for arbitrary k and n? We now show that this isnot the ase. For large k and n, the ost of Algorithm Unknown is asymptotially 2kn.More preisely, it is 2kn + o(kn), when both k and n are unbounded. The upper boundon this omplexity was shown in Theorem 4.2, and the lower bound is easily shown by anadversary that puts a fault one step before the wall in eah exeution of the repeat loop.In what follows we present an algorithm working for arbitrary k and arbitrary unknownn, whih for in�nitely many n has ost kn+ o(kn). This is approximately half of the ostof Algorithm Unknown and it is asymptotially optimal, in view of our lower boundsfrom Theorems 3.5 and 3.6, whih hold even for known n.The idea of the algorithm is the following. First we hoose an in�nite sequene of num-bers (ni : i = 1; 2; : : :), for whih the algorithm will work eÆiently. Many suh sequenesare possible: it is enough if their terms are odd and grow suÆiently fast. To �x atten-tion and simplify analysis we de�ne them as follows: n1 = 3 and ni+1 = 2(3k+2)ni + 1.The algorithm �rst \guesses" that the length of the line is n1 and exeutes proeduresprobe(n1). If the guess was orret it detets this fat and stops. Otherwise it exeutesproedure terminate(n1). The aim of this proedure is to stop the algorithm after the�rst guess whih exeeds the atual length of the line. If the algorithm did not stopafter terminate(n1), it guesses that the length of the line is n2 and exeutes proedureprobe(n2) and possibly proedure terminate(n2). This ontinues until the �rst guesslarger or equal than the atual length of the line. Then the algorithm stops. For anylength for whih a guess was orret, i.e., for any length ni, the algorithm detets theorretness of the guess and stops after exeuting proedure probe(ni), before allingterminate(ni). At this point the line is explored, if it is indeed of size ni. We will provethat the number of steps for these lengths of the line is kni + o(kni). We will also provethat the algorithm is orret for all other lengths, although then it is not as eÆient.Nevertheless, for all other lengths n its ost is still O(kn).The preise desription of the two proedures is the following.

24

proedure probe(n)was� at� wall := 0; halt := 0if inside then ount := k + 3else (ount := k + 2, was� at� wall := 1)repeat ount timesif inside thengo-straight until (nohit(n� 1) OR hit)else /* at-wall */was� at� wall := 1go-straight until (nohit(n) OR hit)if was� at� wall = 1 and at-wall thenx := the number of steps in last roundif (last round started inside and x even) then halt := 1if (last round started at wall and x odd) then halt := 1reverse diretionendproedure terminate(n)repeat 3k + 2 timesgo-straight until (nohit(n) OR hit)reverse diretionif there were at least k + 1 rounds starting and ending at a wallthen halt := 1endNow our algorithm an be suintly formulated as follows.Algorithm guess-and-probei := 0; halt := 0while halt = 0 doi := i + 1probe(ni)if halt = 0 then terminate(ni)endBefore proeeding to the analysis of our algorithm we explain the meaning of the variablesused in our proedures. was � at � wall is a ag that is set to 1 at the �rst time whenthe head is at a wall and it is never hanged subsequently. halt an be set to 1 in both25

proedures and its role is to stop the algorithm as soon as it is ertain that the entire linehas been explored. It is set to 1 in proedure probe when the head was previously at awall, then it hits the wall again and the last round either started inside and had an evennumber of steps or started at a wall and had an odd number of steps. halt an be also setto 1 in proedure terminate when there were at least k + 1 rounds starting and endingat a wall.We �rst show that the algorithm never stops prematurely, regardless of the length of theline.Lemma 4.1 For any length of the line, when Algorithm guess-and-probe stops thenthe entire line is explored.Proof: The algorithm stops after the �rst all of proedure probe(ni) or proedureterminate(ni) in whih the variable halt is set to 1. Consider two ases.Case 1. halt is �rst set to 1 in proedure probe(ni).This happens when the head was previously at a wall then it hits the wall again and thelast round either started inside and had an even number of steps or started at a wall andhad an odd number of steps. We �rst show that at this point the entire line is explored.Consider the exeution of the proedure sine the previous hit of a wall. Without loss ofgenerality assume that it was wall L. Now the head is again at a wall.First assume that the last round started inside and had an even number of steps. Thesequene of rounds between the start from wall L and the present hit was the following:a sequene of rounds ending inside the line followed by the last round hitting a wall. Theumulative number of steps in the sequene of rounds ending inside the line is odd: the�rst round has ni steps, the following ones have ni � 1 steps, and ni is odd. Hene thedistane of the head from wall L after eah of these rounds is odd as well. Sine the lastround has an even number of steps, the distane of the head from L after this round isalso odd, hene it annot be 0. It follows that now the head annot be at wall L. Heneit is at wall R and the exploration is ompleted.Next assume that the last round started at a wall and had an odd number of steps. Atthe end of this round the head must be at an odd distane from the wall where it started.Sine it is now at a wall, this annot be the wall at whih it started. Hene it must bethe other wall and the line is explored.Case 2. halt is �rst set to 1 in proedure terminate(ni).This means that there were at least k+1 rounds starting and ending at a wall. At most kof them ould ontain a fault, hene at least one of them is orret. During suh a round,the head must go from one wall to the other and hene must explore the entire line. �We now analyze the algorithm in the ase when the length of the line is ni, i.e., when oneof the guesses is orret. 26

Lemma 4.2 If the length of the line is ni, for some i > 0, then Algorithm guess-and-probe stops after exeuting proedure probe(ni) and the line is explored.Proof: Lemma 4.1 implies that when Algorithm guess-and-probe stops, the line isompletely explored. It remains to prove that this will happen after exeuting proedureprobe(ni). De�ne a phase to be a sequene of rounds between two onseutive hits of awall. Hene a phase is omposed of a sequene of rounds ending inside the line and a lastround that hits a wall.Claim. In every phase of r rounds in whih halt is not set to 1 there are at least r faults.First notie that if r = 1 then there is one round in the phase whih starts and endsat a wall. If this round has less than r faults, i.e., if it is orret then it has exatly nisteps and halt is set to 1, beause ni is odd. Hene the laim holds for r = 1. Assumethat r > 1. In order to prove the laim observe that every round that terminates insidethe line must ontain at least one fault. Hene if the laim is false then eah of the �rstr�1 rounds of the phase must ontain exatly 1 fault and the last round must be orret.Suppose (without loss of generality) that the phase starts at wall L. Then the diretionat the beginning of eah round must be from L to R. However (as observed in the proof ofLemma 4.1) at the beginning of the last round of the phase the head is at an odd distanefrom L, hene at an even distane from R. Therefore the number of steps in the lastphase is even and hene halt is set to 1, ontrary to the assumption. This ontraditionproves the laim.Now onsider two ases.Case 1. The head starts at a wall.If halt is not set to 1 after the �rst k rounds then the adversary must have used all thefaults, in view of the proof of the laim. Hene the (k + 1)th round must be orret andhene the head must hit a wall. Now the (k+ 2)th round must be also orret and henethe head will hit the other wall after exatly ni steps, ausing the variable halt to be setto 1 and the algorithm to stop.Case 2. The head starts inside the line.Suppose that there are t rounds before hitting a wall for the �rst time. Eah of the �rstt�1 of them terminates inside the line and hene must ontain at least one fault. Supposethat halt is not set to 1 after the �rst k + 1 rounds. Then the adversary must have usedall the faults, in view of the laim. Similarly as in Case 1, the (k + 2)th round must beorret and hene the head must hit a wall. Now the (k+3)th round must be also orretand hene the head will hit the other wall after exatly ni steps, ausing the variable haltto be set to 1 and the algorithm to stop.It follows that if the line has length ni then Algorithm guess-and-probe always stopsafter exeuting proedure probe(ni) and that the line is then explored. �27

Our next lemma establishes the omplexity of Algorithm guess-and-probe for lines ofany length ni.Lemma 4.3 If the length of the line is ni, for some i > 0, then Algorithm guess-and-probe uses kni + o(kni) steps.Proof: If the length of the line is ni, the algorithm exeutes proedure probe(nj) forj � i and proedure terminate(nj) for j < i . Proedure probe(nj) has at mostk + 3 rounds of length at most nj, hene it uses at most (k + 3)nj steps. Proedureterminate(nj) has 3k+ 2 rounds of length at most nj, hene it uses at most (3k+ 2)njsteps. Sine ni = 2(3k+2)ni�1 + 1, all alls for j < i use a total of O(log(kni)) steps. Itfollows that the entire algorithm uses at most (k + 3)ni + O(log(kni)) = kni + o(kni)steps. �It remains to show that Algorithm guess-and-probe is always orret, although possiblyless eÆient than for lengths ni. In partiular we have to show that the algorithm alwaysstops.Lemma 4.4 Algorithm guess-and-probe orretly explores a line of any length n anduses O(kn) steps.Proof: Fix any length n of the line. Let m be the smallest ni suh that m � n and letj = i�1. We �rst show that the algorithm stops (at the latest) after exeuting proedureterminate(m). Sine m � n, every round of proedure terminate(m) that ends insidethe line must ontain at least one fault. Hene there are at most 2k+1 rounds in proedureterminate(m) that do not start and end at a wall. It follows that there are at leastk+1 rounds that start and end at a wall, and onsequently Algorithm guess-and-probestops after exeuting proedure terminate(m), unless it stopped before.We now estimate the number of steps used until the end of proedure terminate(m).All alls of proedures probe(nt) and terminate(nt), for t < j, take O(log(kn)) steps.All rounds in proedures probe(nj) and terminate(nj) are of length at most nj < nand there are O(k) of them, hene proedures probe(nj) and terminate(nj) use O(kn)steps. It remains to onsider proedures probe(m) and terminate(m). Eah orretround in these proedures uses at most n steps and eah fault an inrease a round byat most n steps. Sine there are O(k) rounds in both these proedures, it follows thatthe total number od steps in both of them is O(kn). Hene the entire ost of Algorithmguess-and-probe is O(kn). �We have proved the following result.Theorem 4.5 Algorithm guess-and-probe orretly explores a line of any length n,with at most k faults. For every n it uses O(kn) steps and for in�nitely many n it useskn+ o(kn) steps, whih is asymptotially optimal.28

5 ConlusionWe onsidered fault-tolerant aspets of the fundamental problem of sequential san, wherea line of idential objets has to be explored in spite of adversarial faults a�eting movesof the exploring mobile entity. We established optimal ost of fault-tolerant sequentialsan for a line of known size and partially solved the problem for unknown size. It remainsopen if there exists a sequential san algorithm for a line of unknown size n and at mostk faults, whih has ost kn + o(kn), for all k and n. Our onjeture is no, i.e., we thinkthat the leading fator 2 in Theorem 4.2 annot be removed.Viewed from the point of view of appliations to network exploration, our study opensthe area of fault-tolerant exploration by a mobile entity in whih faults onern movesof the entity, rather than the environment. In partiular, it would be interesting toinvestigate optimal fault-tolerant graph exploration algorithms for labeled graphs. Eithernodes or ports of the underlying graph an be labeled and the mobile entity (agent) anpereive these labels. This apability would add a lot of power to exploration algorithms,as the agent ould memorize its\trae" and ompare it to the urrently read label, thuspotentially beoming aware of a fault earlier than in an anonymous senario. Even for theline, the ability to pereive and memorize labels would probably yield signi�ant hangesin performane, ompared to our present model.Aknowledgments. Thanks are due to the anonymous referees whose detailed remarksenabled us to remove some errors and improve the readability of the paper.Referenes[1℄ S. Albers and M. R. Henzinger, Exploring unknown environments, SIAM Journal onComputing 29 (2000), 1164-1188.[2℄ M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan, The power of apebble: Exploring and mapping direted graphs, Pro. 30th Ann. Symp. on Theoryof Computing (STOC 1998), 269-278.[3℄ J. Czyzowiz, D. Kowalski, E. Markou, A. Pel, Searhing for a blak hole in treenetworks, Pro. 8th International Conferene on Priniples of Distributed Systems(OPODIS 2004), 35-45.[4℄ A. Dessmark and A. Pel, Optimal graph exploration without good maps, TheoretialComputer Siene 326 (2004), 343-362.[5℄ S. Dobrev, P. Flohini, G. Prenipe, N. Santoro, Mobile agents searhing for a blakhole in an anonymous ring, Pro. of 15th International Symposium on DistributedComputing, (DISC 2001), 166-179. 29

[6℄ S. Dobrev, P. Flohini, G. Prenipe, N. Santoro, Searhing for a blak hole inarbitrary networks: Optimal Mobile Agents Protools, Pro. 21st ACM Symposiumon Priniples of Distributed Computing (PODC 2002), 153-161.[7℄ C.A. Dunan, S.G. Kobourov and V.S.A. Kumar, Optimal onstrained graph explo-ration, Pro. 12th Ann. ACM-SIAM Symp. on Disrete Algorithms (SODA 2001),807-814.[8℄ F.E. Fih, P. Ragde, A. Wigderson, Relations between onurrent-write models ofparallel omputation, SIAM Journal on Computing 17 (1988), 606 - 627.[9℄ P.C. Kanellakis, and A.A. Shvartsman, EÆient parallel algorithms an be maderobust, Distributed Computing, 5 (1992) 201 - 217.[10℄ E. Markou, A. Pel, EÆient exploration of faulty trees, Pro. 15th AustralasianWorkshop on Combinatorial Algorithms (AWOCA'2004), 52-63. Also: Theory ofComputing Systems, to appear.[11℄ G.L. Miller, and J.H. Reif, Parallel tree ontration and its appliation, Pro. 26thsymp. on Foundations of Computer Siene (FOCS 1985), 478-489.[12℄ P. Panaite and A. Pel, Exploring unknown undireted graphs, Journal of Algorithms33 (1999), 281-295.[13℄ A. Pel, Fault-tolerant broadasting and gossiping in ommuniation networks, Net-works 28 (1996), 143-156.[14℄ F. Preparata, G. Metze and R. Chien, On the onnetion assignment problem ofdiagnosable systems, IEEE Transations on Eletron. Computers 16 (1967), 848-854.[15℄ T. Sander, C.F. Tshudin, Proteting mobile agents against maliious hosts, Pro.Conf. on Mobile Agent Seurity (1998), LNCS 1419, 44-60.[16℄ K. Shelderup, J. Ines, Mobile agent seurity { issues and diretions, Pro. 6th Int.Conf. on Intelligene and Servies in Networks, LNCS 1597 (1999), 155-167.[17℄ J. Vitek, G. Castagna, Mobile omputations and hostile hosts, in: Mobile Objets,D. Tsihritzis, Ed., University of Geneva, 1999, 241-261.

30

