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Abstract
Shape formation (or pattern formation) is a basic distributed problem for systems of computational mobile entities. Intensively
studied for systems of autonomous mobile robots, it has recently been investigated in the realm of programmable matter,
where entities are assumed to be small and with severely limited capabilities. Namely, it has been studied in the geometric
Amoebot model, where the anonymous entities, called particles, operate on a hexagonal tessellation of the plane and have
limited computational power (they have constant memory), strictly local interaction and communication capabilities (only
with particles in neighboring nodes of the grid), and limited motorial capabilities (from a grid node to an empty neighboring
node); their activation is controlled by an adversarial scheduler. Recent investigations have shown how, starting from a well-
structured configuration in which the particles form a (not necessarily complete) triangle, the particles can form a large class
of shapes. This result has been established under several assumptions: agreement on the clockwise direction (i.e., chirality),
a sequential activation schedule, and randomization (i.e., particles can flip coins to elect a leader). In this paper we obtain
several results that, among other things, provide a characterization of which shapes can be formed deterministically starting
from any simply connected initial configuration of n particles. The characterization is constructive: we provide a universal
shape formation algorithm that, for each feasible pair of shapes (S0, SF ), allows the particles to form the final shape SF
(given in input) starting from the initial shape S0, unknown to the particles. The final configuration will be an appropriate
scaled-up copy of SF depending on n. If randomization is allowed, then any input shape can be formed from any initial (simply
connected) shape by our algorithm, provided that there are enough particles. Our algorithm works without chirality, proving
that chirality is computationally irrelevant for shape formation. Furthermore, it works under a strong adversarial scheduler,
not necessarily sequential. We also consider the complexity of shape formation both in terms of the number of rounds and
the total number of moves performed by the particles executing a universal shape formation algorithm. We prove that our
solution has a complexity of O(n2) rounds and moves: this number of moves is also asymptotically worst-case optimal.
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1 Introduction

1.1 Background

The term programmable matter, introduced by Toffoli and
Margolus over a quarter century ago [26], is used to denote
matter that has the ability to change its physical properties
(e.g., shape, color, density, etc.) in a programmable fash-
ion, based upon user input or autonomous sensing. Often
programmable matter is envisioned as a very large num-
ber of very small locally interacting computational particles,
programmed to collectively perform a complex task. Such
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particles could have applications in a variety of important
situations: they could be employed to create smart materials,
used for autonomous monitoring and repair, be instrumental
in minimal invasive surgery, etc.

As recent advances in microfabrication and cellular engi-
neering render the production of such particles increas-
ingly possible, there has been a convergence of theoretical
research interests on programmable matter from some areas
of computer science, especially robotics, sensor networks,
molecular self-assembly, and distributed computing. Sev-
eral theoretical models of programmable matter have been
proposed, ranging from DNA self-assembly systems (e.g.,
[8,18,21,22,24]) to shape-changing synthetic molecules and
cells (e.g., [28]), frommetamorphic robots (e.g., [4,19,27]) to
nature-inspired synthetic insects and micro-organisms (e.g.,
[12,14,17]), each model assigning special capabilities and
constraints to the entities and focusing on specific applica-
tions.

Of particular interest, from the distributed computing
viewpoint, is the geometric Amoebotmodel of programmable
matter [3,6,7,9–13]. In this model, introduced in [12] and
so called because inspired by the behavior of amoeba, pro-
grammable matter is viewed as a swarm of decentralized
autonomous self-organizing entities, operating on a hexago-
nal tessellation of the plane. These entities, called particles,
are constrained by having simple computational capabili-
ties (they are finite-state machines), strictly local interaction
and communication capabilities (only with particles located
in neighboring nodes of the hexagonal grid), and limited
motorial capabilities (from a grid node to an empty neigh-
boring node); furthermore, their activation is controlled by an
adversarial (but fair) synchronous scheduler. A feature of the
Amoebot model is that particles can be in two modes: con-
tracted and expanded. When contracted, a particle occupies
only one node, while when expanded the particle occupies
two neighboring nodes; it is indeed this ability of a particle
to expand and contract that allows it to move on the grid.
The Amoebot model has been investigated to understand the
computational power of such simple entities; the focus has
been on applications such as coating [6,11], gathering [3],
and shape formation [9,10,12]. The latter is also the topic of
our investigation.

The shape formation problem is prototypical for systems
of self-organizing entities. This problem, called pattern for-
mation in swarm robotics, requires the entities to move in
the spatial universe they inhabit in such a way that, within
finite time, their positions form the geometric shape given
in input (modulo translation, rotation, scaling, and reflec-
tion), and no further changes occur. Indeed, this problem has
been intensively studied especially in active systems such
as autonomous mobile robots (e.g., [1,5,15,16,25,29]) and
modular robotic systems (e.g., [2,20,23]).

In the Amoebots model, shape formation has been investi-
gated in [9,10,12], taking into account that, due to the ability
of particles to expand, it might be possible to form shapes
whose size is larger than the number of particles.

The pioneering study of [9] on shape formation in the
geometric Amoebot model showed how particles can build
simple shapes, such as a hexagon or a triangle. Subsequent
investigations have recently shown how, starting from awell-
structured configuration in which the particles form a (not
necessarily complete) triangle, they can form a larger class
of shapes [10]. This result has been established under several
assumptions: availability of chirality (i.e., a globally consis-
tent circular orientation of the plane shared by all particles),
a sequential activation schedule (i.e., at each time unit the
scheduler selects only one particle which will interact with
its neighbors and possibly move), and, more important, ran-
domization (i.e., particles can flip coins to elect a leader).

These results and assumptions immediately and naturally
open fundamental research questions, including: Are other
shapes formable? What can be done deterministically? Is
chirality necessary? as well as some less crucial but never-
theless interesting questions, such as: What happens if the
scheduler is not sequential? What if the initial configuration
is not well structured?

In this paper, motivated and stimulated by these questions,
we continue the investigation on shape formation in the geo-
metric Amoebot model and provide some definitive answers.

1.2 Main contributions

We establish several results that, among other things, provide
a constructive characterization of which shapes SF can be
formed deterministically starting from an unknown simply
connected initial configuration S0 of n particles.

As in [10], we assume that the size of the description of
SF is constant with respect to the size of the system, so that it
can be encoded by each particle as part of its internal mem-
ory. Such a description is available to all the particles at the
beginning of the execution, and we call it their “input”. The
particles will form a final configuration that is an appropri-
ate scaling, translation, rotation, and perhaps reflection of
the input shape SF . Since all particles of S0 must be used to
construct SF , the scale λ of the final configuration depends
on n: we stress that λ is unknown to particles, and they must
determine it autonomously.

Given two shapes S0 and SF , we say that the pair (S0, SF )

is feasible if there exists a deterministic algorithm that, in
every execution and regardless of the activation schedule,
allows the particles to form SF starting from S0 and no longer
move.

On the contrary, a pair (S0, SF ) of shapes is unfeasible
when the symmetry of the initial configuration S0 prevents
the formation of the final shape SF . In Sect. 2, we formalize
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the notion of unbreakable symmetry of shapes embedded in
triangular grids, and in Theorem 1we show that starting from
an unbreakable k-symmetric configuration only unbreakable
k-symmetric shapes can be formed.

Interestingly, for all the feasible pairs, we provide a uni-
versal shape formation algorithm in Sect. 3. This algorithm
does not need any information on S0, except that it is simply
connected.

These results concern the deterministic formation of
shapes. As amatter of fact, our algorithm uses a deterministic
leader election algorithm as a subroutine (Sects. 3.1–3.4). If
the initial shape S0 is unbreakably k-symmetric, such an algo-
rithm may elect as many as k neighboring leader particles,
where k ∈ {1, 2, 3}. It is trivial to see that, with a constant
number of coin tosses, we can elect a unique leader among
these k with arbitrarily high probability. Thus, our results
immediately imply the existence of a randomized universal
shape formation algorithm for any pair of shapes (S0, SF )

where S0 is simply connected. This extends the result of
[10], which assumes the initial configuration to be a (pos-
sibly incomplete) triangle.

Additionally, our notion of shape generalizes the one used
in [10], where a shape is only a collection of triangles, while
we include also 1-dimensional segments as its constituting
elements. In Sect. 4, we are going to show how the concept
of shape can be further generalized to essentially include
anything that is Turing-computable.

Our algorithm works under a stronger adversarial sched-
uler that activates an arbitrary number of particles at each
stage (i.e., not necessarily just one, like the sequential sched-
uler), and with a slightly less demanding communication
system.

Moreover, in our algorithm no chirality is assumed:
indeed, unlike in [10], different particles may have different
handedness. On the contrary, in the examples of unfeasibility
given in Theorem 1, all particles have the same handedness.
Together, these two facts allows us to conclude that chirality
is computationally irrelevant for shape formation.

Finally, we analyze the complexity of shape formation in
terms of the total number of moves (i.e., contractions and
expansions) performed by n particles executing a universal
shape formation algorithm, as well as in terms of the total
number of rounds (i.e., spans of time in which each particle
is activated at least once, also called epochs) taken by the
particles. We first prove that any universal shape formation
algorithm requiresΩ(n2)moves in some cases (Theorem 2).
We then show that the total number ofmoves of our algorithm
is O(n2) in all cases (Theorem 9): that is, our solution is
asymptotically worst-case optimal. The time complexity of
our algorithm is also O(n2) rounds, and optimizing it is left
as an open problem (we are able to reduce it to O(n log n),
and we have a lower bound of Ω(n): see Sect. 4).

Obviously, wemust assume the size of S0 (i.e., the number
of particles that constitute it) to be sufficiently large with
respect to the input description of the final shape SF . More
precisely, denoting the size of SF as m, we assume n to be
lower-bounded by a cubic function of m (Theorem 8). A
similar restriction is also found in [10].

To the best of our knowledge, all the techniques employed
by our universal shape formation algorithm are new.

2 Model and preliminaries

Particles A particle is a conceptual model for a computa-
tional entity that lives in an abstract graph G. A particle may
occupy either one vertex ofG or two adjacent vertices: in the
first case, the particle is said to be contracted; otherwise, it
is expanded.

Movement A particle may move through G by performing
successive expansion and contraction operations.1 Say v and
u are two adjacent vertices of G, and a contracted particle
p occupies v. Then, p can expand toward u, thus occupying
both v and u. When such an expansion occurs, u is said to
be the head of p, and v is its tail. From this position, p can
contract again into its head vertex u. As a general rule, when
a particle expands toward an adjacent vertex, this vertex is
by definition the particle’s head. An expanded particle can-
not expand again unless it contracts first, and a contraction
always brings a particle to occupy its head vertex. When a
particle is contracted, the vertex it occupies is also called the
particle’s head; a contracted particle has no tail vertex.

If a graph contains several particles, noneof its vertices can
ever be occupied by more than one particle at the same time.
Accordingly, a contracted particle cannot expand toward a
vertex that is already occupied by another particle. If two or
more particles attempt to expand toward the same (unoccu-
pied) vertex at the same time, only one of them succeeds,
chosen arbitrarily by an adversarial scheduler (see below).

Scheduler In our model, time is “discrete”, i.e., it is an infi-
nite ordered sequence of instants, called stages, starting with
stage 0, and proceeding with stage 1, stage 2, etc. Say that
in the graph G there is a set P of particles, which we call a
system. At each stage, some particles of P are active, and the
others are inactive. We may think of the activation of a par-
ticle as an act of an adversarial scheduler, which arbitrarily
and unpredictably decides which particles are active at each
stage. The only restriction on the scheduler is a bland fairness
constraint, requiring that each particle be active for infinitely

1 The model in [10] allows a special type of coordinated move called
“handover”. Since we will not need our particles to perform this type
of move, we omit it from our model.
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many stages in total. That is, the scheduler can never keep a
particle inactive forever.
Sensing and reacting When a particle is activated for a
certain stage, it “looks” at the vertices of G adjacent to its
head, discovering if they are currently unoccupied, or if they
are head or tail vertices of some particle. If the particle is
expanded, it also detects which of these vertices is its own
tail; all other particles are indistinguishable (i.e., they are
anonymous). Each active particle may then decide to either
expand (if it is contracted), contract (if it is expanded), or stay
still for that stage. All these operations are performed by all
active particles simultaneously, and take exactly one stage.
So, when the next stage starts, a new set of active particles
is selected, which observe their surroundings and move, and
so on.

MemoryEach particle has an internal state that it canmodify
every time it is activated. The internal state of any particle
must be picked from a finite set Q; i.e., all particles have
“finite memory”.

Communication Two particles can also communicate by
sending each other messages taken from a finite set M , pro-
vided that their heads are adjacent vertices ofG. Specifically,
when a particle p is activated and sees the head of particle
p′, it may send a message m to it along the oriented edge
(u, v) connecting their heads. Then, the next time p′ is acti-
vated, it will receive and read the message m. That is, unless
some particle (perhaps again p) sends another message m′
on the same oriented edge (u, v) before p′ is activated, in
which casem is “overwritten” bym′, unbeknownst to p′ and
the particle that sent m′. In other words, upon activation, a
particle will always receive the most recent message sent to
it from each of the vertices adjacent to its head, while older
unread messages are lost. If p′ expands while p is sending
a message to it (i.e., in the same stage), the message is lost
and is not received by any particle.When amessage has been
read by a particle, it is immediately destroyed.2

Triangular network In this paper, as in [10], we assume the
graph G to be the dual graph of a regular hexagonal tiling
of the Euclidean plane. So, in the following, G will be an
infinite regular triangular grid. We also denote by GD a fixed
“canonical” drawing of the abstract graph G in which each
face is embedded in the Cartesian plane as an equilateral
triangle of unit side length with one edge parallel to the x
axis.

Port labeling Note that each vertex of G has degree 6. With
each particle p and each vertex v is associated a port labeling
�(p, v), which is a numbering of the edges incident to v, from

2 The model in [10] has a more demanding communication system,
which assumes each particle to have some local shared memory that all
neighboring particles can read and modify.

0 to 5, in clockwise or counterclockwise order with respect
to the drawing GD . For a fixed particle p, port labels are
assumed to be invariant under the automorphisms ofG given
by translations of its drawing GD . As a consequence, if the
port labeling �(p, v) assigns the label i to the edge (v, u),
then the port labeling �(p, u) assigns the label (i + 3) mod 6
to the edge (u, v). However, different particles may have
different port labels for the same vertex v, depending on
what edge (incident to v) is assigned the label 0, and whether
the labels proceed in clockwise or counterclockwise order
around v. If they proceed in clockwise order, the particle
is said to be right-handed; otherwise, it is left-handed. So,
the handedness of a particle does not change as the particle
moves, but different particlesmay have different handedness.

Stage structure Summarizing, an active particle p performs
the following actions during a single stage: it reads its cur-
rent internal state q, it looks at the contents c0, . . . , c5 of the
vertices adjacent to its head (each ci has four possible values
describing the vertex corresponding to port i according to
p’s labeling: it may denote an unoccupied vertex, p’s own
tail, the head of another particle, or the tail of another parti-
cle), it reads the pending messagesm0, . . . ,m5 coming from
the vertices adjacent to its head (again, indices correspond to
port labels, and some mi ’s may be the empty string ε, denot-
ing the absence of a message), it changes its internal state
to q ′, it sends messages m′

0, . . . ,m
′
5 to the vertices adjacent

to its head, which possibly replace older unread messages
(if m′

i = ε, no message is sent through port i), and it per-
forms an operation o (there are eight possibilities for o: stay
still, contract, or expand toward the vertex corresponding to
some port label). These variables are related by the equation
A(q, c0, . . . , c5,m0, . . . ,m5) = (q ′,m′

0, . . . ,m
′
5, o), where

A is a function.
Recall that the set Q of possible internal states is finite,

as well as the set M of possible messages. Hence A is a
finite function, and we will identify it with the deterministic
algorithm that computes it.

We assume that, when stage 0 starts, all particles are con-
tracted, they all have the same predefined internal state q0,
and there are no messages pending between particles.

Shapes In this paper we study shapes and how they can be
formed by systems of particles. A shape is a non-empty con-
nected set consisting of the union of finitely many edges and
faces of the drawing GD .3 We stress that a shape is not a
subgraph of the abstract graph G, but it is a subset of R2,
i.e., a geometric set. A shape S is simply connected if the set
R
2\S is connected (intuitively, S has no “holes”). The size

of a shape is the number of vertices of GD that lie in it.
We say that two shapes S and S′ are equivalent if S′ is

obtained from S by a similarity transformation, i.e., a com-

3 In Sect. 4, we will also discuss a much more general notion of shape.
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Fig. 1 Two systems of particles forming equivalent shapes. The shape
on top is minimal; the one below has scale 3. Contracted particles are
represented as black dots; expanded particles are black segments (a large
dot represents a particle’s head). Shapes are indicated by gray blobs

position of a translation, a rotation, an isotropic scaling by a
positive factor, and an optional reflection. Clearly, our notion
of equivalence is indeed an equivalence relation between
shapes.

A shape is minimal if no shape that is equivalent to it
has a smaller size. Obviously, any shape S is equivalent to a
minimal shape S′. The size of S′ is said to be the base size of
S. Let σ be a similarity transformation such that S = σ(S′).
We say that the (positive) scale factor of σ is the scale of S
(see Fig. 1).

Lemma 1 The scale of a shape is a positive integer.

Proof Let S and S′ be equivalent shapes,with S′ minimal, and
let σ be a similarity transformation with S = σ(S′). Observe
that there is a unique covering of S by maximal polygons
and line segments with mutually disjoint relative interiors.
Each of these segments and each edge of these polygons is
the union of finitely many edges of GD , and therefore it has
integral length. It is easy to see that the scale factor of σ must
be the greatest common divisor of all such lengths, which is
a positive integer. ��
Shape formation We say that a system of particles in G
forms a shape S if the vertices of G that are occupied by
particles correspond exactly to the vertices of the drawing
GD that lie in S.

Suppose that a system forms a shape S0 at stage 0, and let
all particles execute the same algorithm A every time they
are activated. Assume that there exists a shape SF such that,
however the port labels of each particle are arranged, and
whatever the choices of the scheduler are, there is a stage
where the system forms a shape equivalent to SF (not neces-
sarily SF ), and such that no particle ever contracts or expands

after that stage. Then, we say that A is an (S0, SF )-shape for-
mation algorithm, and (S0, SF ) is a feasible pair of shapes.
(Among the choices of the scheduler, we also include the
decision of which particle succeeds in expanding when two
or more of them intend to occupy the same vertex at the same
stage.)

In the rest of this paper, we will characterize the feasible
pairs of shapes (S0, SF ), provided that S0 is simply con-
nected and its size is not too small. That is, for every such
pair of shapes, we will either prove that no shape formation
algorithm exists, or we will give an explicit shape formation
algorithm. Moreover, all algorithms have the same structure,
which does not depend on the particular choice of the shapes
S0 and SF . We could even reduce all of them to a single
universal shape formation algorithm, which takes the “final
shape” SF (or a representation thereof) as a parameter, and
has no information on the “initial shape” S0, except that it
is simply connected. As in [10], we assume that the size of
the parameter SF is constant with respect to the size of the
system, so that SF can be encoded by each particle as part of
its internal memory. More formally, we have infinitely many
universal shape formation algorithms Am(SF ), one for each
possible size m of the parameter SF .

Next, we will state our characterization of the feasible
pairs of shapes, along with a proof that there is no shape
formation algorithm for the unfeasible pairs. In Sect. 3, we
will give our universal shape formation algorithm for the
feasible pairs.

Unformable shapes There are cases in which an (S0, SF )-
shape formation algorithm does not exist. The first, trivial
one, is when the size of S0 is not large enough compared to
the base size of SF . The second is more subtle, and has to do
with the fact that certain symmetries in S0 cannot be broken.

A shape is said to be unbreakably k-symmetric, for some
integer k > 1, if it has a center of k-fold rotational symmetry
that does not coincidewith anyvertex ofGD . Observe that the
order of the group of rotational symmetries of a shape must
be a divisor of 6. However, the shapes with a 6-fold rotational
symmetry have center of rotation in a vertex of GD . Hence,
there exist unbreakably k-symmetric shapes only for k = 2
and k = 3.

The property of being unbreakably k-symmetric is invari-
ant under equivalence, provided that the scale remains the
same.

Lemma 2 A shape S is unbreakably k-symmetric if and only
if all shapes that are equivalent to S and have the same scale
as S are unbreakably k-symmetric.

Proof Observe that any point of S with maximum x coordi-
nate must be a vertex of GD . Let v be one of such vertices.
Since S is connected and contains at least one edge or one
face ofGD , there must exist an edge uv ofGD that lies on the
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boundary of S. Consider a similarity transformation σ that
maps S into an equivalent shape S′ with the same scale (hence
σ is an isometry). Since v is an extremal point of S, it must
be mapped by σ into an extremal point of S′, which must be
a vertex v′ of GD , as well. Analogously, σ(uv) must be a
segment located on the boundary of S′. The length of σ(uv)

is the length of an edge of GD , and its endpoint v′ = σ(v) is
a vertex of GD . It follows that σ(uv) is an edge of GD . This
implies that a point p is a vertex of GD if and only if σ(p)
is a vertex of GD .

Clearly, S is rotationally symmetric if and only if S′ is.
Suppose that S has a k-fold rotational symmetry with center
c, and therefore S′ has a k-fold rotational symmetry with
center c′ = σ(c). By the above reasoning, c′ is a vertex of
GD if and only if c is, which is to say that S′ is unbreakably
k-symmetric if and only if S is. ��

Nonetheless, if the scale changes, the property of being
unbreakably k-symmetric may or may not be preserved. The
next lemma, which extends the previous one, gives a charac-
terization of when this happens.

Lemma 3 Ashape S is unbreakably k-symmetric if andonly if
any minimal shape that is equivalent to S is also unbreakably
k-symmetric, and the scale of S is not a multiple of k.

Proof By Lemma 1, the scale of S is a positive integer, say λ.
Let S′ be a minimal shape equivalent to S. Of course, equiv-
alent shapes have the same group of rotational symmetries,
and therefore S′ has a k-fold rotational symmetry if and only
if S does. We will first prove that, if S′ is not unbreakably
k-symmetric, then neither is S. So, suppose that S′ has a k-
fold rotational symmetry with center in a vertex v ofGD . Let
σ be the homothetic transformation with center v and ratio
λ. Then, S′′ = σ(S′) is a shape with center v and scale λ,
which is therefore not unbreakably k-symmetric. Since S is
equivalent to S′′ (as they are both equivalent to S′) and has the
same scale, it follows by Lemma 2 that S is not unbreakably
k-symmetric, either.

Assume now that S′ is unbreakably k-symmetric. As
already observed, we have two possible cases: k = 2 and
k = 3. If k = 2 (respectively, k = 3), the center of sym-
metry c of S′ must be the midpoint of an edge uv of GD

(respectively, the center of a face uvw of GD). Consider the
homothetic transformation σ with center u and ratio λ. It
is clear that σ maps S′ into an equivalent shape S′′ whose
scale is λ and whose center of symmetry is σ(c). As Fig. 2
suggests, σ(c) is a vertex of GD if and only if λ is even
(respectively, if and only if λ is a multiple of 3). It follows
that S′′ is unbreakably k-symmetric if and only if λ is not a
multiple of k. Since S and S′′ are equivalent (because both
are equivalent to S′), Lemma 2 implies that S is unbreakably
k-symmetric if and only if its scale is not a multiple of k. ��

The term “unbreakably” is justified by the following the-
orem.

Theorem 1 If there exists an (S0, SF )-shape formation algo-
rithm, and S0 is unbreakably k-symmetric, then any minimal
shape that is equivalent to SF is also unbreakably k-
symmetric.

Proof Assume that there is a k-fold rotation ρ that leaves S0
unchanged, and assume that its center is not a vertex of GD .
Then, the orbit of any vertex ofGD under ρ has period k. The
system is naturally partitioned into symmetry classes of size
k: for any particle p occupying a vertex v ofGD at stage 0, the
symmetry class of p is defined as the set of k distinct particles
that occupy the vertices v, ρ(v), ρ(ρ(v)), . . . , ρk−1(v).

Assume that the port labels of the k particles in a same
symmetry class are arranged symmetrically with respect to
the center ofρ. Suppose that the system executes an (S0, SF )-
shape formation algorithm and, at each stage, the scheduler
picks a single symmetry class and activates all itsmembers. It
is easy to prove by induction that, at every stage, all active par-
ticles have equal views, receive equal messages from equally
labeled ports, send equal messages to symmetric ports, and
perform symmetric contraction and expansion operations.
Note that, since only one symmetry class is active at a time,
and the center of ρ is not a vertex of GD , no two particles
ever try to expand toward the same vertex, and so no conflicts
have to be resolved. Therefore, as the configuration evolves,
it preserves its center of symmetry, and the system always
forms an unbreakably k-symmetric shape. Since eventually
the system must form a shape S′

F equivalent to SF , it follows
that S′

F is unbreakably k-symmetric. By Lemma 3, any min-
imal shape that is equivalent to S′

F (or, which is the same, to
SF ) is unbreakably k-symmetric, as well. ��

In Sect. 3, we are going to prove that the condition of The-
orem 1 characterizes the feasible pairs of shapes, provided
that S0 is simply connected, and the size of S0 is large enough
with respect to the base size of SF .

Measuring movements and rounds We will also be con-
cerned to measure the total number ofmoves performed by a
system of size n executing a universal shape formation algo-
rithm. This number is defined as themaximum, taken over all
the feasible pairs (S0, SF ) where the size of S0 is exactly n,
all possible port labels, and all possible schedules, of the total
number of contraction and expansion operations that all the
particles collectively perform through the entire execution of
the algorithm.

Next we will show a lower bound on the total number of
moves of a universal shape formation algorithm.

Theorem 2 A system of n particles executing any universal
shape formation algorithm performs Ω(n2) moves in total.
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= 1λ = 2λ = 3λ = 4λ

Fig. 2 If a shape is equivalent to an edge of GD , its center is a vertex of GD if and only if its scale λ is even. If a shape is equivalent to a face of
GD , its center is a vertex of GD if and only if its scale λ is a multiple of 3

Proof Let d > 0 be an integer, and suppose that a system
of n = 3d(d + 1) + 1 particles forms a regular hexagon
Hd of side length d at stage 0. Let the final shape SF be a
single edge of GD . We will show that any (Hd , SF )-shape
formation algorithm A requires Ω(n2) moves in total.

Since SF is an edge of GD , a system executing A from
Hd will eventually form a line segment S′

F of length at least
n − 1 (recall that the particles do not have to be contracted
to form a shape), say at stage s. Without loss of generality,
we may assume that the center of Hd lies at the origin of the
Cartesian plane, S′

F is parallel to the x axis, and at stage s the
majority of particle’s heads have non-negative x coordinate.

Observe that, at stage 0, each particle’s head has x coor-
dinate at most d. So, if the x coordinate of a particle’s head
at stage s is k/2, for some non-negative integer k, then the
particle must have performed at least �k/2� − d expansion
operations between stage 0 and stage s. Also, if the particle
does not occupy an endpoint of S′

F , there must be another
particle whose head has x coordinate at least k/2+ 1, which
has performed at least �k/2 + 1� − d expansion operations,
etc.

It follows that a lower bound on the total number of moves
that the system performs before forming S′

F is

�n/2�∑

i=0

(i − d) =
⌈ n
2

⌉ (⌈ n
2

⌉ + 1
)

2
+

− d
(⌈n

2

⌉
+ 1

)
≥ n

2

(n
4

− d
)

= Ω(n2),

because d = Θ(
√
n).

To complete the proof, we should also show that (Hd , SF )

is a feasible pair: indeed, the above lower bound would
be irrelevant if there were no actual algorithm to form SF

from Hd . However, we omit the tedious details of such an
algorithm because we are going to prove a much stronger
statement in Sect. 3, where we characterize the feasible
pairs in terms of their unbreakable k-symmetry. Note that
the center of Hd lies in a vertex of GD , and hence Hd is
not unbreakably k-symmetric. Therefore, according to The-
orem 9, (Hd , SF ) is a feasible pair. ��

In Sect. 3, we will prove that our universal shape forma-
tion algorithm requires O(n2)moves in total, and is therefore
asymptoticallyworst-case optimalwith respect to this param-
eter.

Similarly, we want to measure how many rounds it takes
the system to form the final shape (a round is a span of time in
which each particle is activated at least once). We will show
that our universal shape formation algorithm takes O(n2)
rounds.

3 Universal shape formation algorithm

Algorithm structure The universal shape formation algo-
rithm takes a “final shape” SF as a parameter: this is encoded
in the initial states of all particles. Without loss of generality,
we will assume SF to be minimal. The algorithm consists of
seven phases:

1. A lattice consumption phase, in which the initial shape
S0 is “eroded” until 1, 2, or 3 pairwise adjacent particles
are identified as “candidate leaders”. No particle moves
in this phase: only messages are exchanged. This phase
ends in O(n) rounds.

2. A spanning forest construction phase, in which a span-
ning forest of S0 is constructed, where each candidate
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leader is the root of a tree. No particle moves, and the
phase ends in O(n) rounds.

3. A handedness agreement phase, in which all particles
assume the same handedness as the candidate leaders
(some candidate leaders may be eliminated in the pro-
cess). In this phase, at most O(n) moves are made.
However, at the end, the system forms S0 again. This
phase ends in O(n) rounds.

4. A leader election phase, in which the candidate leaders
attempt to break symmetries and elect a unique leader. If
they fail to do so, and k > 1 leaders are left at the end of
this phase, it means that S0 is unbreakably k-symmetric,
and therefore the “final shape” SF must also be unbreak-
ably k-symmetric (cf. Theorem 1). No particle moves,
and the phase ends in O(n2) rounds.

5. A straightening phase, inwhich each leader coordinates a
group of particles in the formation of a straight line. The
k resulting lines have the same length. At most O(n2)
moves are made, and the phase ends in O(n2) rounds.

6. A role assignment phase, in which the particles deter-
mine the scale of the shape S′

F (equivalent to SF ) that
they are actually going to form. Each particle is assigned
an identifier that will determine its behavior during the
formation process. No particlemoves, and the phase ends
in O(n2) rounds.

7. A shape composition phase, in which each straight line
of particles, guided by a leader, is reconfigured to form
an equal portion of S′

F . At most O(n2) moves are made,
and the phase ends in O(n2) rounds.

No a-priori knowledge of S0 is needed to execute this algo-
rithm (S0 just has to be simply connected), while SF must of
course be known to the particles and have constant size, so
that its description can reside in their memory. Note that the
knowledge of SF is needed only in the last two phases of the
algorithm.

Synchronization As long as there is a unique (candidate)
leader p in the system, there are no synchronization prob-
lems: p coordinates all other particles, and autonomously
decides when each phase ends and the next phase starts.

However, if there are k > 1 (candidate) leaders, there are
possible issues arising from the intrinsic asynchronicity of
our particle model. Typically, a (candidate) leader will be
in charge of coordinating only a portion of the system, and
we want to avoid the undesirable situation in which different
leaders are executing different phases of the algorithm.

To implement a basic synchronization protocol, we will
ensure three things:

– All the (candidate) leaders must always be pairwise
adjacent, except perhaps in the last two phases of the
algorithm (i.e., the role assignment phase and the shape

composition phase) and for a few stages during the hand-
edness agreement phase and the straightening phase.

– Every time a (candidate) leader is activated, it sends all
other (candidate) leaders a message containing an identi-
fier of the phase that it is currently executing (themessage
may also contain other data, depending on the phase of
the algorithm).

– Whenever a (candidate) leader transitions from a phase
into the next, it waits for all other (candidate) leaders to
be in the same phase (except when it transitions to the
last phase).

This basic protocol is executed “in parallel” with the main
algorithm, and it always works in the same way in every
phase. In the following, we will no longer mention it explic-
itly, but wewill focus on the distinctive aspects of each phase.

3.1 Lattice consumption phase

Algorithm The goal of this phase is to identify 1, 2, or 3 can-
didate leaders. This is done without making any movements,
but only exchanging messages. Each particle’s internal state
has a flag (i.e., a bit) called Eligible. All particles start
the execution in the same state, with the Eligible flag set.
As the execution proceeds, Eligible particles will gradually
eliminate themselves by clearing their Eligible flag. This is
achieved through a process similar to erosion, which starts
from the boundary of the initial shape and proceeds toward
its interior.

Suppose that all the particles in the system are contracted
(which is true at stage 0). Then,we define four types of corner
particles, which will start the erosion process:

– a 0-corner particle is an Eligible particle with no Eligible
neighbors;

– a 1-corner particle is an Eligible particle with exactly
one Eligible neighbor;

– a 2-corner particle is an Eligible particlewith exactly two
Eligible neighbors p1 and p2, such that p1 is adjacent to
p2;

– a 3-corner particle is an Eligible particle with exactly
three Eligible neighbors p1, p2, p3, with p2 adjacent to
both p1 and p3. p2 is called the middle neighbor.

We say that a particle p is locked if it is a 3-corner particle
and its middle neighbor p′ is also a 3-corner particle. If p is
locked, it follows that p′ is locked as well, with p its middle
neighbor. In this case, we say that p and p′ are companions
(see Fig. 3).

Each particle has also another flag, called Candidate (ini-
tially not set), which will be set if the particle becomes a
candidate leader. Whenever a particle is activated, it sends
messages to all its neighbors, communicating the state of its
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Fig. 3 The particles in white or gray are corner particles; the two in
gray are locked companion particles. Dashed lines indicate adjacencies
between particles

Eligible and Candidate flags. When a particle receives such
a message, it memorizes the information it contains (perhaps
overwriting outdated information). Therefore, each particle
keeps an updated copy of the Eligible and Candidate flags
of each of its neighbors. Once a particle knows the states of
all its neighbors (i.e., when it has received messages from all
of them), it also knows if it is a k-corner particle. If it is, it
broadcasts the number k to all its neighbors every time it is
activated. In turn, the neighbors memorize this number and
keep it updated.

There is a third flag, called Stable (initially not set), which
is cleared whenever a particle receives a message from a
neighbor communicating that its internal state has changed.
Otherwise, the flag is set, meaning that the states of all neigh-
bors have been stable for at least one stage.

The following rules are also applied by active particles,
alongside with the previous ones:

– If a particle p does not know whether some if its
neighbors were corner particles the last time they were
activated (because it has not received enough information
from them, yet), it waits.

– Otherwise, p knows which of its neighbors were corner
particles the last time they were activated, and in partic-
ular which of them are Eligible. This also implies that p
knows if it is a corner particle and if it is locked (for a
proof, see Theorem 3). If p is not a corner particle or if
it is locked, it waits.

– Otherwise, p is a non-locked corner particle. If its Eligi-
ble flag is not set, or if its Candidate flag is set, or if its
Stable flag is not set, it waits.

– Otherwise, p changes its flags as follows.

– If p is a 0-corner particle, it sets its own Candidate
flag.

– Let p be a 1-corner particle. If its unique Eligible
neighbor was a 1-corner particle the last time it was
activated, p sets its own Candidate flag; otherwise, p
clears its own Eligible flag.

– Let p be a 2-corner particle. If both its Eligible neigh-
bors were 2-corner particles the last time they were
activated, p sets its own Candidate flag; otherwise, p
clears its own Eligible flag.

– If p is a 3-corner particle, it clears its own Eligible
flag.

Correctness

Lemma 4 If a system of contracted Eligible particles forms
a simply connected shape, then there is a corner particle that
is not locked.

Proof Let S be a simply connected shape formed by a system
P of contracted Eligible particles. For each pair of compan-
ion locked particles of P , let us remove one. At the end of
this process, we obtain a reduced system P ′ with no locked
particles that again forms a simply connected shape S′. Note
that all corner particles of P ′ are non-locked corner particles
of P; hence, it suffices to prove the existence of a corner
particle in P ′.

By definition of shape, S′ can be decomposed into maxi-
mal 2-dimensional polygons interconnectedby1-dimensional
polygonal chains, perhaps with ramifications (if two poly-
gons are connected by one vertex, we treat this vertex as a
polygonal chainwith no edges). Since S′ is simply connected,
the abstract graph obtained by collapsing eachmaximal poly-
gon of S′ into a single vertex forms a tree, which has at least
one leaf. The leaf may represent the endpoint of a polygonal
chain of S′, which is the location of a 1-corner particle of P ′.
Otherwise, the leaf represents a polygon S′′ ⊆ S′, perhaps
connected to the rest of S′ by a polygonal chain with an end-
point in a vertex v of S′′. Since S′′ is a polygon, it has at least
three convex vertices, at most one of which is v. Each other
convex vertices of S′′ is therefore the location of a 2-corner
particle or a 3-corner particle of P ′. ��
Lemma 5 If a system of contracted Eligible particles forms
a simply connected shape, and any set of non-locked corner
particles is removed at once, the new system forms again a
simply connected shape.4

Proof Instead of removing all the particles in the given set
C at once, we remove them one by one in any order, and use
induction to prove our lemma. Let P be a system of con-
tracted Eligible particles forming a simply connected shape,
and let C ′ be a set of corner particles of P such that, if a
particle of C ′ is locked, then its companion is not in C ′. This
condition is obviously satisfied by the given set C , because
it does not contain locked corner particles at all.

4 For convenience, with a little abuse of terminology, we treat single
vertices of GD and the empty set as shapes, even if technically they are
not, according to the definitions of Sect. 2.
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Let p ∈ C ′, and let P ′ = P\{p}. We have to prove that
P ′ forms a simply connected shape, that C ′\{p} is a set of
corner particles of P ′, and that C ′\{p} does not contain any
pair of companion locked particles of P ′. Note that the fact
that P ′ forms a simply connected shape is evident, since p is
a corner particle of P . Therefore, any path in the subgraph of
the gridG induced by P that goes through pmaybe re-routed
through the neighbors of p in P .

Now, if C ′ = {p}, there is nothing else to prove. So, let
p′ �= p be another particle of C ′. Suppose first that p′ is
adjacent to p. Hence, removing p reduces the number of
Eligible neighbors of p′ by one. The only case in which p′
could cease to be a corner particle would be if p were its
middle neighbor, implying that p and p′ would be locked
companions. But this is not possible, because by assumption
C ′ does not contain a pair of locked companion particles.
Therefore, p′ is necessarily a corner particle of P ′. Note that
p′ cannot be a 3-corner particle of P ′, because one of its
Eligible neighbors (namely, p) has been removed. Hence p′
cannot be locked in P ′.

Suppose now that p′ is not adjacent to p. Then, obviously,
p′ is a corner particle of P ′, since removing p does not change
its neighborhood.We only have to prove that, if p′ is a locked
3-corner particle in P ′, then C ′\{p} does not contain the
companion of p′. Assume the opposite: let p′ be a locked
particle in P ′, let p′′ be its companion, and let p′ and p′′
be in C ′\{p}, and hence in C ′. By assumption, p′′ cannot
be locked in P , or else C ′ would contain a pair of locked
companion particles. So, pmust be adjacent to p′′. Removing
p reduces the number of Eligible neighbors of p′′, implying
that p′′ must have four Eligible neighbors in P (since p′′ is a
3-corner particle in P ′). It follows that p′′ cannot be a corner
particle of P , and therefore it cannot be in C ′, contradicting
our assumption. ��
Theorem 3 Let P be a system of n contracted Eligible par-
ticles forming a simply connected shape S0 at stage 0. If
all particles of P execute the lattice consumption phase of
the algorithm, there is a stage s, reached in O(n) rounds,
where there are 1, 2, or 3 pairwise adjacent Candidate par-
ticles, and all other particles are non-Eligible. Moreover, at
all stages from 0 to s, the system forms S0, and the sub-system
of Eligible particles forms a simply connected shape.

Proof Recall that, in the lattice consumption phase, a particle
never changes its Eligible or Candidate flags unless it is an
Eligible, non-Candidate, Stable, non-locked corner particle
that has enough information about its neighbors.

Whenever a particle p is activated and reads the pending
messages, everything it knows about the internal flags of its
neighbors is correct and up to date. Indeed, these flags can
be changed only by the neighbors themselves when they are
activated, and whenever this happens they send the updated
values to p. Therefore, p always reads the most recent values

of the flags of its neighbors, no matter how and when the
scheduler activates them. So, p is able to correctly determine
if it is a corner particle by just looking at the Eligible flags
of its neighbors and how they are arranged.

On the other hand, when p receives a message from a
neighbor p′ claiming that p′ is or is not a k-corner particle,
this information may be outdated, because a neighbor of p′
may have eliminated itself, and p′ may have been inactive
ever since. However, p is still able to determine if it is locked
or not. Indeed, suppose that p has correctly determined that
it is a 3-corner particle, implying that it currently has three
consecutive Eligible neighbors p1, p2, and p3. Suppose that
its middle neighbor p2 has claimed to be a 3-corner particle
in its lastmessage. This statementwas correct the last time p2
was active, implying that p2 had three consecutive Eligible
neighbors. Because particles can become non-Eligible but
never become Eligible again, the three Eligible particles that
p2 saw must be p1, p, and p2, since they are currently Eli-
gible. It follows that p2 is still a 3-corner particle and hence
p is locked. The converse is also true, for the same reason.

Wededuce that a particlewill eliminate itself only if it truly
is a non-locked corner particle. Also note that no particle
is allowed to move during the lattice consumption phase.
So, the system will always form the same shape S0, and, by
Lemma 5, the sub-system of Eligible particles will always be
simply connected.

Next we prove that, if a particle ever sets its Candidate
flag, then there is a stage where there are 1, 2, or 3 pairwise
adjacent Candidates, and all other particles are non-Eligible.
Say that at some point a particle p becomes a Candidate,
which means that it was able to determine that it is a k-corner
particle, with 0 ≤ k ≤ 2.

If k = 0, then p is the only Eligible particle left, because
the sub-system of Eligible particles must be connected. If
k = 1, then p has a unique Eligible neighbor p′, which was
a 1-corner particle the last time it was activated. This means
that the only Eligible neighbor of p′ was p, and hence p and
p′ are the only Eligible particles in the system. Eventually, p′
will become Stable and will either eliminate itself or become
a Candidate. If k = 2, then p has two adjacent Eligible
neighbors p′ and p′′, which were 2-corner particles the last
time they were activated. So, the only Eligible particles in
the system are p, p′, and p′′, which are pairwise adjacent.
Both p′ and p′′ will eventually become Stable, and they will
either eliminate themselves or become Candidates.

We now have to prove that Eligible particles steadily elim-
inate themselves until only Candidates are left. Assume the
opposite, and suppose that the execution of the algorithm
reaches a point where Eligible particles stop becoming non-
Eligible. By the above reasoning, we may assume that the
system contains no Candidate particles at this point. As the
sub-system of Eligible particles is simply connected at any
time, by Lemma 4 there are non-Candidate non-locked cor-
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ner particles. Since no particle ever changes its internal flags
again, all of them will eventually become Stable. So, there
will be anEligible, non-Candidate, Stable, non-locked corner
particle that will either become non-Eligible or a Candidate,
which contradicts our assumptions.

It remains to prove that at least one particle will become
a Candidate. Assume the opposite. At each stage, some non-
locked corner particles possibly eliminate themselves, and
this process goes on until there are no Eligible particles left.
Let s be the stage when the last Eligible particles eliminate
themselves (simultaneously). As all of them have to be non-
locked corner particles at stage s, it is easy to see that only
three configurations are possible:

– At stage s there is only one Eligible particle. Since this
is a 0-corner particle, according to the algorithm it will
become a Candidate.

– At stage s there are only two adjacent 1-corner particles
p and p′. Recall that a particle has to be Stable in order
to eliminate itself. Since p is Stable at stage s, it means
that there is a stage s′ < s during which p has already
sent a message to p′ saying that it was a 1-corner particle
(otherwise, some neighbor of p would have eliminated
itself in the meantime, implying that p would not be Sta-
ble). Since p′ is active at stage s, it must receive or have
already received the message sent at time s′ by p. So,
p′ knows that p is a 1-corner, and hence it becomes a
Candidate (and vice versa).

– At stage s there are only three pairwise adjacent 2-corner
particles. Reasoning as in the previous case, we see that,
since all three particles are Stable at stage s, they know
that they are all 2-corner particles, and therefore they
become Candidates.

In all cases, at least one particle becomes a Candidate, con-
tradicting our assumption.

Finally, the upper bound of O(n) rounds easily follows
from the fact that, in a constant number of rounds, at least
one corner particle becomes non-Eligible or a Candidate.
This happens at most n − 1 times, until only Candidates are
left. ��

3.2 Spanning forest construction phase

Algorithm The spanning forest construction phase starts
when 1, 2, or 3 pairwise adjacent candidate leaders have been
identified, and no other particle is Eligible. In this phase, each
candidate leader becomes the root of a tree embedded in G.
Eventually, the set of these trees will be a spanning forest of
the subgraph of G induced by the system P .

Each particle has a flag called Tree, initially not set, whose
purpose is to indicate that the particle has been included in a
tree.Moreover, each particle also has a variable calledParent,

which contains the local port number corresponding to its
parent, provided that the particle is part of a tree (the initial
value of this variable is − 1).

As in the previous phase, all particles send information to
their neighbors containing part of their internal states. This
information is recorded by the receiving particles: so, each
particle has an Is-in-Tree flag and an Is-my-Child flag cor-
responding to each neighbor. All these flags are initially not
set.

Finally, there is a Tree-Done flag (initially not set) corre-
sponding to each neighbor, which is used in the last part of
the phase.

The following rules apply to all particles during the span-
ning forest construction phase:

– If a particle’s Candidate flag is set and its Tree flag is not
set, it sets its own Tree flag and leaves its own Parent flag
to −1 (implying that it is the root of a tree).

– If a particle’s Tree flag is set, it sends a Parent message to
the port corresponding to its own Parent variable (assum-
ing it is not − 1), and it sends a Treemessage to all other
neighbors.

– If a particle receives a Tree message from a neighbor, it
sets the Is-in-Tree flag relative to its port. Similarly, if it
receives a Parent message from a neighbor, it sets both
the Is-in-Tree and the Is-my-Child flag relative to its port.

– If a particle’s Candidate flag is not set, its Tree flag is
not set, and the Is-in-Tree flags relative to some of its
neighbors are set, then it sets its own Tree flag. Let k
be the smallest port number corresponding to a neighbor
whose relative Is-in-Tree flag is set. Then, the particle
sets its own Parent flag to k (implying that that neighbor
is now its parent).

– If a particle p’s Tree flag is set, the Is-in-Tree flags corre-
sponding to all its neighbors are set, and the Tree-Done
flags relative to all it children are set (recall that its chil-
dren are the neighbors whose relative Is-my-Child flag is
set), then:

– If p has a parent (i.e., its Parent variable is not − 1),
it sends a Tree-Done message to its parent.

– If p has no parent (i.e., it is a candidate leader), it
sends a Tree-Done message to its Candidate neigh-
bors.

– If a particle receives a Tree-Done message from one of
its children, it sets the corresponding Tree-Done flag.

Correctness

Theorem 4 Let P be the system resulting from Theorem 3.
If all particles of P execute the spanning forest construction
phase of the algorithm, then there is a stage, reached after
O(n) rounds, where every particle has the Tree flag set, each
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non-Candidate particle has a unique parent, and each par-
ticle has received a Tree-Done message from all its children.
No particle moves in this phase.

Proof It is easy to prove by induction that, at every stage,
the Tree particles form a forest with a tree rooted in each
Candidate particle, and that the Parent variables of all Tree
particles are consistent. Indeed, when any (positive) number
of neighbors of a non-Tree particle p become Tree parti-
cles and start sending Tree messages to p, p chooses one of
them as its parent as soon as it is activated, and sets its flags
accordingly. It then communicates this change to its neigh-
bors, which update their Is-in-Tree and the Is-my-Child flags
consistently.

Since P forms a connected shape (because it results from
Theorem 3), eventually all particles become part of some
tree, and a spanning forest is constructed. So, eventually,
some leaves of the forest observe that all their neighbors are
Tree particles (because all their relative Is-in-Tree flags are
set) and none of them is their child (because none of their
relative Is-my-Child flags is set). These leaves send Tree-
Done messages to their parents.

Asmore leaves send Tree-Donemessages to their parents,
some internal particles start observing that all their children
are sending Tree-Done messages, and all other neighbors
are Tree particles. These internal particles therefore send
Tree-Done messages to their parents, as well. Eventually, the
Candidate particles will receive Tree-Done messages from
all their children. At this stage, every particle has the Tree
flag set, each non-Candidate particle has a unique parent, and
each particle has received a Tree-Done message from all its
children.

To show that the phase ends in O(n) rounds, it suffices to
note that in a constant number of rounds either a new particle
sets its Tree flag or forwards the Tree-Done message to its
parent (or its Candidate neighbors if it has no parent). ��

3.3 Handedness agreement phase

When a candidate leader has received Treemessages from all
its neighbors and Tree-Done messages from all its children,
it transitions to the handedness agreement phase. Recall that
each particle may label ports in clockwise or counterclock-
wise order: this is called the particle’s handedness. By the
end of this phase, all particles will agree on a common hand-
edness. The agreement process starts at the candidate leaders
and proceeds through the spanning forest constructed in the
previous phase, from parents to children.

Agreement among candidate leaders In the first stages of
this phase, the candidate leaders agree on a common handed-
ness. This may result in the “elimination” of some of them. If
there is a unique candidate leader, this part of the algorithm is

trivial. So, let us assume that there are two or three candidate
leaders.

Suppose that there are two candidate leaders p and p′.
Then, they have exactly two neighboring vertices u and v in
common. By now, the candidate leaders know if u and v are
occupied or not. There are three cases.

– Exactly one between u and v is occupied.Without loss of
generality, u is occupied by a particle pu , and v is unoccu-
pied. Then, both p and p′ send a You-Choosemessage to
pu . When pu has received You-Choose messages from
both, it arbitrarily picks one between p and p′, say p.
Then pu sends a Chosenmessage to p and a Not-Chosen
message to p′. As a consequence, p′ ceases to be a can-
didate leader (by clearing its own Candidate and Eligible
flags), and p becomes the parent of p′ (i.e., the Parent
variable of p′ and the Is-my-Child variables of p are
appropriately updated).

– u is occupied by a particle pu and v is occupied by a
particle pv . Let the edge {p, p′} be labeled i by p, and
observe that i −�(p, u) ≡ −i +�(p, v) ≡ ±1 (mod 6).
Without loss of generality, i − �(p, u) ≡ 1 (mod 6).
Then, p sends a You-Choose message to pu and a You-
do-not-Choose message to pv . p′ does the same. If one
between pu or pv receives both You-Choose messages, it
arbitrarily eliminates one between p and p′, as explained
above. Otherwise, both pu and pv receive a You-Choose
message and a You-do-not-Choose message. This means
that p and p′ have the same handedness. So, pu and pv

send Same-Handedness messages to both p and p′, who
wait until they receive both messages.

– Bothu and v are unoccupied.As above, if the edge {p, p′}
is labeled i by p, then i − �(p, u) ≡ −i + �(p, v) ≡
±1 (mod 6). Without loss of generality, assume that i −
�(p, u) ≡ 1 (mod 6). Then, p attempts to expand toward
u. Meanwhile, p′ does the same.

– If p fails to expand toward u, it means that p′ has
done it (p realizes that this has happened because it
cannot see its own tail the next time it is activated).
In this case, p sends an I-am-Eliminated message to
p′.

– Suppose now that p manages to expand toward u (it
realizes that it has expanded because it sees its own
tail the next time it is activated). Then, p looks back at
p′, which is found at port (i +1) mod 6 (see Fig. 4).
If p sees a tail or an unoccupied vertex, it understands
that p′ has expanded toward v. In this case, p and
p′ have the same handedness, and p memorizes this
information. If p sees the head of p′, it sends a You-
are-Eliminated message to p′.

After this, if p is still expanded, it contracts into u, it
expands toward its original vertex, and contracts again.
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Fig. 4 The case of the agreement protocol between candidate lead-
ers in which u and v are unoccupied. If p expands toward the vertex
corresponding to the label (i − 1) mod 6, it finds p′ at the vertex cor-
responding to the label (i + 1) mod 6

p′ does the same. Eventually, at least one between p
and p′ has realized that their handedness is the same, or
has received aYou-are-Eliminated or an I-am-Eliminated
message. This information is shared by p and p′ again
when they are both in their initial positions and con-
tracted. If one of them has to be eliminated, it does so by
clearing its Candidate and Eligible flags, and becomes a
child of the other candidate leader, as explained above.

Suppose now that there are three candidate leaders p,
p′, and p′′. So, p knows that there are candidate leaders
corresponding to its local ports i and i ′, with i ′ ≡ i + 1
(mod 6). Then, p, sends an I-Choose-You message through
port i and an I-do-not-Choose-You message through port i ′.
Meanwhile, p′ and p′′ do the same. Eventually, each candi-
date leader receives two messages.

– If one of them, say p, receives two I-Choose-You mes-
sages, it sends You-are-Eliminated messages to both p′
and p′′. Then, p′ and p′′ cease to be candidate leaders
and become children of p.

– Otherwise, each candidate leaders receives one I-Choose-
You and one I-do-not-Choose-You message. This means
that all candidate leaders have the same handedness. Each
of them sends an I-am-not-Chosenmessage to the others.
When they receive each other’s messages, they realize
that their handedness is the same.

Basic handedness communicationAs a basic operation, we
want to let a parent “impose” its own handedness onto a child.
Of course, this cannot be done by direct communication, and
we will therefore need a special handedness communication
technique, which we describe next.

Assume that a contracted particle p intends to communi-
cate its handedness to one of its children, a contracted particle
p′. For now, we will make the simplifying assumption that
all other particles are contracted and idle. We will show later
how to handle the general case in which several particles are
operating in parallel.

Say that the edge {p, p′} is labeled i by p and i ′ by p′.
There are exactly two vertices u and v ofGD that are adjacent

to both p and p′. Suppose first that at least one between u
and v is not occupied by any particle. If both are unoccupied,
p will arbitrarily choose one of them. Without loss of gen-
erality, let us assume that u is unoccupied, and p has chosen
it. Let j = (�(p, u) − i) mod 6, and observe that j = ±1,
since u is adjacent to p′.

– p memorizes i and j , and expands toward u.
– Then, p computes the port corresponding to p′ as (i − j)

mod 6, and sends p′ aHandedness-Amessage containing
j .

– Say p′ receives the Handedness-A message from port i ′′,
and let j ′ = (Parent − i ′′) mod 6 (recall from Sect. 3.2
that Parent = i ′, because p is the parent of p′). Now,
p and p′ have the same handedness if and only if j =
j ′. So, p′ memorizes this information and replies with a
Handedness-OK to port i ′′.

– When p receives the Handedness-OK message, it con-
tracts into u.

– Then, p expands toward its original location and con-
tracts again.

Suppose now that u and v are both occupied by particles
pu and pv , respectively: this case is illustrated in Fig. 5. We
say that pu and pv are auxiliary particles.

– p sends a Lock message to both pu and pv (the purpose
of this message will be explained later).

– pu and pv reply by sending Locked messages back to p.
– When p has received Lockedmessages from both pu and

pv , it sends a Get-Ready message to p′.
– When p′ receives theGet-Readymessage, it sets an inter-
nal Ready flag and sends an I-am-Readymessage back to
p (the purpose of the Ready flag will be explained later).

– When p receives the I-am-Ready message from p′, it
sends the number (�(p, u) − i) mod 6 to pu and the
number (�(p, v) − i) mod 6 to pv .

– Say that pu receives the number j from p. Then, pu sends
aHandedness-Bmessage containing the number j to the
(at most two) common neighbors of p and pu . Note that
p′ is one of these neighbors (see Fig. 5). pv does the same
thing.

– Whenever a particle receives a Handedness-B message
from a neighbor, it responds with a Handedness-B-
Acknowledged to the same neighbor.

– Say that p′ receives a Handedness-B message containing
the number j = (�(p, u) − i) mod 6 from pu , and say
that �(p′, u) = i ′′.As before, p′ computes j ′ = (Parent−
i ′′) mod 6, and determines if it has the same handedness
as p by comparing j and j ′. If p′ receives a number from
pv , it does the same thing.

– When p′ has received numbers from both pu and pv , it
sends a Handedness-OK message to p.
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Fig. 5 The case of the handedness communication protocol in which u
and v are occupied. Arrows indicate messages. The particles p and p′
have the same handedness if and only if j ≡ i ′ − i ′′ (mod 6)

– When p receives the Handedness-OK message from p′,
it sends Unlock messages to both pu and pv .

– When pu and pv receive an Unlock message from p
and aHandedness-B-Acknowledgedmessage from every
neighbor to which they sent Handedness-B messages,
they send an Unlocked message back to p.

– p waits until it receives Unlocked messages from both
pu and pv .

Main handedness agreement algorithm The main part of
the handedness agreement algorithm starts when all the can-
didate leaders have the same handedness. Next we describe
the main algorithm for a generic particle p.

If p is a candidate leader or if it receives a Begin-
Handedness-Communication message from its parent, p
starts communicating its handedness to its children. p picks
one child and executes the handedness communication tech-
nique with it. Then it does so with the next child, etc.

When a child p′ realizes that its handedness is not the
handedness of p, it sets a special internal flag that reminds
it to apply the function f (i) = 5 − i to all its port labels. If
the flag is not set, f is the identity function. The composition
�̃ = f ◦�, where � is the labeling of p′, is called the corrected
labeling of p′, and will be used by p′ instead of �. In other
terms, p′ “pretends” to have the handedness of p, and it
behaves accordingly for the rest of the execution of the shape
formation algorithm.

When p has communicated its handedness to all its chil-
dren, it sends a Begin-Handedness-Communication message
to its first child. Then pwaits until the child has sent it aDone-
Handedness-Communication message back. Subsequently,
p sends a Begin-Handedness-Communication message to its
second child, etc.

When the last child of p has sent a Done-Handedness-
Communicationmessage to it (or if p is a leaf of the spanning
forest of P), p sends a Done-Handedness-Communication
message back to its father (provided that p is not a candidate
leader).
Resolving conflicts Note that several pairs of particles may
be executing the handedness communication technique at
the same time: precisely, as many as the trees in the spanning

forest, i.e., as many as the candidate leaders. These particles
may interfere with each other when they try to expand toward
the same vertex or when they send messages to the same
particle. In the following, we explain how these conflicts are
resolved.

To begin with, each particle p memorizes which of its
surrounding vertices are initially occupied by other particles.
Then, when p executes the handedness communication tech-
nique, it looks at its neighboring vertices u and v. If any of
them is supposed to be occupied but is currently unoccupied
or it is a tail vertex, p waits.

Similarly, if p fails to expand toward a supposedly empty
vertex u because another particle has expanded toward it at
the same time, pwaits until u is unoccupied again (recall that
p realizes that its expansion attempt has failed if it cannot
see its own tail).

After an auxiliary particle pu has sent aLockedmessage to
p, it ignores all Lock messages from any other particle until
it has sent an Unlocked message back to p. This prevents
pu from becoming an auxiliary particle in two independent
handedness communication operations simultaneously.

Similarly, when pu is an auxiliary particle of p and p′, it
sendsHandedness-Bmessages to its common neighborswith
p. So, another particle p′′ �= p′, which is not involved in the
operation,might receive thismessage and behave incorrectly.
Three situations are possible:

– If p′′ has already been the recipient of a (completed)
handedness communication operation, it simply ignores
this message.

– If p′′ has never been the recipient of a handedness com-
munication operation, its Ready flag is still not set. So, p′′
just responds to pu with a Handedness-B-Acknowledged
message without doing anything. On the other hand, pu
will not become unlocked until it has received this mes-
sage. Therefore, when p′′ will indeed be involved in a
handedness communication operation, there will not be
a pending Handedness-B message directed to p′′.

– Suppose that p′′ is currently involved in a handedness
communication operation. We claim that pu cannot be
an auxiliary particle of this operation. This is because
pu has already been locked by p, who is involved in an
operation with p′, and therefore it cannot be an auxil-
iary particle in any other operation. Therefore, when p′′
receives a Handedness-B message from pu , it ignores
it because it knows that pu is not its auxiliary particle
(p′′ only responds with a Handedness-B-Acknowledged
message).

Correctness

Theorem 5 Let P be the system resulting from Theorem 4,
forming a shape S0. If all particles of P execute the handed-
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ness agreement phase of the algorithm, then there is a stage,
reached after O(n) rounds, where all candidate leaders have
received a Done-Handedness-Communication message from
all their children. At this stage, P forms S0 again, all can-
didate leaders have the same handedness, and each other
particle knows whether it has the same handedness as the
candidate leaders. In this phase, at most O(n) moves are
performed in total.

Proof The agreement protocol among candidate leaders
works in a straightforward way in every case. Indeed, only
the candidate leaders are ever allowed to move, and the other
particles never send any message unless prompted by the
candidate leaders themselves.

Eventually, all candidate leaders have the same handed-
ness, and the main part of the handedness agreement phase
starts. We have already proved that there can be no conflicts,
in that particles involved in different handedness communi-
cation operations do not interfere with one another. We only
have to prove that there can be no deadlocks, and hence the
execution never gets stuck. There are essentially three ways
inwhich a deadlockmay occur, whichwill be examined next.

The first potential deadlock situation is the one in which
a particle p intends to expand toward a vertex u that was
originally unoccupied, but now is occupied by some other
particle q. According to the protocol, p has to wait for u to be
unoccupied again. However, while p is temporarily inactive,
q may finish its operation and leave u, and another particle
q ′ may occupy u. If new particles keep occupying u before
p does, then p will never complete its operation. Observe
that, if a particle q manages to occupy u, then it is able to
finish its handedness communication operation. Indeed, q
will have to contract into u and then go back to its original
location. In turn, the original location of q will necessarily be
unoccupied, because the protocol prevents any particle from
expanding into that vertex. Since no two particles perform
a handedness communication operation together more than
once, after a finite number of stages pwill not have to contend
u with any other particle, and will therefore be free to occupy
it.

The second potential deadlock situation is similar: pwaits
for some other particle p′ to contract or come back to its orig-
inal location. If p′ keeps expanding to different locations to
interact with other particles, p will wait forever. Again, this
situation is resolved by observing that, once p′ has expanded,
it necessarily terminates its handedness communication oper-
ation. Also, p′ can only be involved in finitely many such
operations.

The final potential deadlock situation is the following. A
particle p1 begins a handedness communication operation
and locks an auxiliary particle q1. However, the other particle
that it intends to lock, q2, is already locked by some other
particle p2. In turn, p2 intends to lock another particle q3

that is already locked, etc. If the kth particle in this chain, pk ,
has locked qk but also wants to lock q1, there is a deadlock.
Observe that in a single tree of the spanning forest of P there
can be at most one handedness communication operation in
progress. Since there are at most three such trees (because
there are at most three candidate leaders), k ≤ 3.

– If k = 1, obviously there can be no deadlock.
– If k = 2, the sequence (p1, q1, p2, q2) is a cycle in GD

(with a little abuse of notation, we use particles’ names
to indicate the vertices they occupy). p1 intends to com-
municate its handedness to its child, which is a neighbor
of p1, q1, and q2: therefore, it must be p2. However, p2
cannot be a child of p1, because it lies in a different tree
of the spanning forest.

– If k = 3, the sequence (p1, q1, p2, q2, p3, q3) is a cycle
in GD . The only possibility is for these six particles to
form a regular hexagon in GD . Since the child of p1
must be a neighbor of p1, q1, and q2, it must occupy the
center of the hexagon. Similarly, the same particle must
be the child of p2 and p3, which is impossible, because
a particle cannot have more than one parent.

In any case, there can be no deadlock.
Since no deadlocks can occur, eventually each non-

Candidate particle is involved in a handedness communica-
tion operation with its parent, it learns if it has the same
handedness as its parent, and it sends Done-Handedness-
Communication messages to it. The initial agreement proto-
col among candidate leaders consists of a constant number of
moves. Each handedness communication operation also con-
sists of a constant number of moves, and exactly one such
operation is performed for each non-Candidate particle of
P . In total, at most O(n) moves are performed in this phase.
Moreover, whenever a particle moves, it then goes back to its
original location before the phase is finished. It follows that
P forms S0 again when the phase ends.

Similarly, since in a constant number of rounds a new
particle either learns if it has the same handedness as its
parent or forwards a Done-Handedness-Communication to
its parent, the phase terminates in O(n) rounds. ��

3.4 Leader election phase

When a candidate leader receives a Done-Handedness-
Communication message from its last child, it knows that
its entire tree has agreed on the same handedness. So, it tran-
sitions to the leader election phase. The goal of this phase is
to elect a single leader among the candidates, if possible.

By Theorem 5, at the end of the handedness agreement
phase the system forms the initial shape S0 again. In order
to elect a leader, the candidates “scan” their respective trees
of the spanning forest, searching for asymmetric features of
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S0 that would allow them to decide which candidate should
become the leader. This task is made possible by the fact that
all particles agree on the same handedness. If no asymmetric
features are found and no leader can be elected, then S0 must
be unbreakably k-symmetric, and the system will proceed to
the next phase with k leaders.

Technically, becoming a leader means setting an internal
Leader flag (which is initially not set) and clearing the Can-
didate flag.

Neighborhood encoding We preliminarily define a finite-
length code C(p) that a particle p can use to describe its
neighborhood to other particles. The code is a string of six
characters from the alphabet {L,P,C,N}. The i th character
describes the content of the vertex v such that �̃(p, v) = i ,
where �̃ is the corrected labeling of p (refer to Sect. 3.3 for
the definition of corrected labeling). The character is chosen
as follows:

– L if v is occupied by a candidate leader;
– P if v is occupied by the parent of p;
– C if v is occupied by a child of p;
– N otherwise.

This information is readily available to p: indeed, at this point
of the execution of the algorithm, p is well aware of which
of its neighboring vertices are occupied, where its parent is,
where its children are, etc.

Note that, by Theorem 5, using �̃ in all particles’ compu-
tations (as opposed to �) is equivalent to assuming that all
particles have the same handedness (i.e., the handedness of
the candidate leaders).

Basic election technique In the main leader election algo-
rithm, the candidate leaders will repeatedly use the following
“tentative election procedure”.

Suppose that there are k = 2 candidate leaders in P ,
namely p1 and p2. Let p1 know the neighborhood codeC(q1)
of some particle q1 in its tree. Similarly, p2 knows the neigh-
borhood code C(q2) of some particle q2 in its tree. Then, p1
sends C(q1) to p2, and p2 sends C(q2) to p1. When they
know both codes, they compare them. If C(q1) = C(q2), the
symmetry-breaking attempt fails, and the procedure ends.
Otherwise, we can assume without loss of generality that
C(q1), as a string, is lexicographically smaller than C(q2).
So, p1 becomes a Leader particle and the parent of p2, while
p2 clears its Candidate and Eligible flags, and becomes a
child of p1. Of course, if C(q2) turns out to be lexicograph-
ically smaller, then p2 becomes the Leader.

Suppose now that there are k = 3 candidate leaders p1, p2,
and p3. Let each candidate pi know the neighborhood code
C(qi ) of some particle qi in its tree. As in the previous case,
each candidate leader sends its code to the other two. When
a candidate leader knows all three codes, it compares them.

Without loss of generality, assume that C(q1) ≤ C(q2) ≤
C(q3) (lexicographically). There are three cases:

– If C(q1) < C(q2), then p1 becomes the unique Leader
particle. p2 and p3 cease to be candidate leaders and
become children of p1.

– If C(q1) = C(q2) and C(q2) < C(q3), then p3 becomes
the unique Leader particle. p1 and p2 cease to be candi-
date leaders and become children of p3.

– Otherwise, the three codes are equal, and the symmetry-
breaking attempt fails.

Main leader election algorithm If there is only one candi-
date leader in P , it becomes a Leader particle, and the leader
election phase ends there. So, let us assume that P contains
k = 2 or k = 3 pairwise adjacent candidate leaders.

Each candidate leader pi starts by sending its own neigh-
borhood code C(pi ) to the other candidate leaders, and the
basic election procedure explained above is executed. If a
Leader particle is elected, the phase ends.

If the election attempt fails, pi asks its first child p′
i to fetch

the neighborhood codes of the first particle in its subtree (i.e.,
p′
i itself). When pi obtains this code, it uses it for another

election attempt procedure. If the attempt fails, pi asks p′
i

for the code of another particle in its subtree, etc.
When p′

i has exhausted its entire subtree, it sends a
Subtree-Exhausted message to pi , which proceeds to query-
ing its second child, and so on.

In turn, p′
i and all other internal particles of the trees act

similarly. When such a particle is instructed by its parent to
fetch the neighborhood codes of the particles in its subtree,
its starts with its own code, then queries its fist child, and the
process continues recursively at all levels of the tree. When
there are nomore particles to query in the subtree, the particle
sends a Subtree-Exhausted message to its parent.

If the candidate leader pi receives a Subtree-Exhausted
message from its last child, and no leader has been elected,
then pi becomes a Leader particle (as we will see in Theo-
rem 6, this means that S0 is unbreakably k-symmetric).

Canonical order of children For this algorithm to work
properly, we have to define a canonical order in which a
particle p queries its children for their codes.

If p is a candidate leader, its base neighbor is defined as
the unique candidate leader located in a vertex v such that
the port label (�(p, v) + 1) mod 6 does not correspond to
a vertex occupied by another candidate leader. If p is not a
candidate leader, then its base neighbor is defined to be its
parent.

The canonical order of the children of p is the order in
which they are found as p scans its neighbors in clockwise
order starting from its base neighbor. The “clockwise order”
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is defined according to the handedness of the candidate lead-
ers, which p is supposed to know, due to Theorem 5.

Synchronization There is one last addition to make to the
above protocol, which pertains to synchronization. Recall
that, when a candidate leader p1 obtains a code C(q1) from
one of the particles in its tree, it sends it to the other candi-
date leaders. Then, p1 waits until it has obtained codes from
all other candidate leaders. Suppose that another candidate
leader p2 obtains the codeC(q2) of a particle in its tree some
stages after p1. So, p2 sends C(q2) to p1 and receives C(q1)
from it. Now p2 has all the codes it needs, and it executes
the election procedure, failing to elect a leader. Therefore, p2
obtains a new code C(q ′

2) from another particle, and sends it
to the other candidate leaders, including p1. However, as p2
was operating, the scheduler may have kept p1 inactive: as a
result, the message containing C(q2) was overwritten by the
one containing C(q ′

2) before p1 was able to read it. When p1
is activated again, it compares C(q1) with C(q ′

2) (instead of
C(q2)), and it behaves incorrectly.

To avoid this desynchronization problem,we put a counter
modulo 2 (i.e., a single bit) in the internal memory of each
candidate leader. Whenever a candidate leader obtains a new
codeC(q) from a particle in its tree, it increments the counter
modulo 2 and it attaches its value to C(q) before sending it
to the other candidates.

Now, if a candidate leader p1 receives a code with an
unexpected counter bit from another candidate p2, it implic-
itly knows that the previous election attempt has failed. In
that case, p1 obtains a new code from another particle in its
tree, and proceeds with the protocol as usual.

On the other hand, if a leader is elected, there are no par-
ticular problems: as soon as a candidate leader p realizes
that an election procedure has succeeded, it transitions to the
next phase, and communicates this information to the other
candidate leaders, as explained at the beginning of Sect. 3.
While doing so, p also adds information on who the Leader
particle is, so that the other candidate leaders can change
their internal variables consistently, even if they have failed
to receive the last code from p.

Correctness

Theorem 6 Let P be the system resulting from Theorem 5,
forming a shape S0. If all particles of P execute the leader
election phase of the algorithm, then there is a stage s,
reached after O(n2) rounds, where one of the two follow-
ing conditions holds:

– There is a unique Leader particle in P, which is the root
of a well-defined spanning tree of P.

– There are k = 2 or k = 3 mutually adjacent Leader
particles in P, and S0 is unbreakably k-symmetric. Each
Leader particle is the root of a well-defined tree: these k

trees collectively forma spanning forest of P whose plane
embedding has a k-fold rotational symmetry around the
center of S0.

At stage s, all non-Leader particles are non-Eligible. No par-
ticle moves in this phase.

Proof Assume there are k = 2 or k = 3 candidate leaders at
the beginning of this phase, because otherwise the theorem
is trivial. Let c be the center of the subsystem formed by the
Candidate particles, and let ρ be the k-fold rotation around
c.

It is easy to prove by induction that the candidate leaders
perform several tentative election procedures, each time with
the neighborhood code of a new particle in their respective
tree, until a Leader is elected or no more particles are left
in the tree of some candidate leader. Moreover, the fact that
all particles agree on the clockwise direction, the way the
canonical order of children is defined, and the information
contained in the neighborhood codes imply that the candidate
leaders will always compare the codes of particles that are
symmetric under ρ, until asymmetric particles are found.

So, a Leader particle will definitely be elected if there are
two particles in the trees of two different candidate leaders
whose neighborhoods are not symmetric under ρ. This nec-
essarily happens if the trees of the spanning forest are not
symmetric under ρ (and it happens before a candidate leader
runs out of particles in its tree). If the trees are symmetric, then
in particular they have the same size, and S0 is unbreakably
k-symmetric. In this case, particles that are symmetric under
ρ may still produce different codes (because, in general, their
codes are “rotationally equivalent”, but not necessarily iden-
tical), which results in the election of a Leader. Otherwise,
all election attempts will fail, the candidate leaders will run
out of particles at the same time, and they will all become
Leaders.

Since the phase terminates after O(n) election attempts,
each of which lasts O(n) rounds, the whole phase takes
O(n2) rounds. ��

3.5 Straightening phase

At the beginning of this phase, there are k = 1, k = 2, or
k = 3 Leaders, each of which is the root of a tree of particles.
These k trees are rotated copies of each other, and the Leaders
are pairwise adjacent.

The goal of each Leader is to coordinate the “straighten-
ing” of its tree. That is, in the final stage of this phase, the
system must form k straight line segments, each of which
has a Leader located at an endpoint. Moreover, if k > 1,
each Leader must also lie on the extension of another of the
k segments.
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Choosing the directrices Each Leader pi will choose a ray
in the plane (i.e., a half-line) as its directrix γi . By the end of
the straightening phase, all particles will be located on these
k directrices.

If k = 1, the unique Leader p1 arbitrarily chooses a neigh-
boring vertex v, and picks the ray from p through v as its
directrix γ1.

If k = 2, there are two adjacent Leaders p1 and p2. p1
chooses its neighbor v that is opposite to p2, and the ray from
p1 through v is its directrix γ1. On the other hand, p2 chooses
the symmetric ray as its directrix γ2.

If k = 3, there are three pairwise adjacent Leaders p1, p2,
and p3. EachLeader pi picks its “left” neighboringLeader p j

(according to its handedness), and lets vi be its neighboring
vertex that is opposite to p j . Then, pi defines its directrix γi
to be the ray from pi through vi . Since the Leaders have the
same handedness (see Theorem 5), their three directrices are
pairwise disjoint and form angles of 120◦ with each other.

Basic pulling procedure For this sub-protocol, we assume
to have a linearly ordered chain of particles Q ⊆ P , the first
of which is called the Pioneer particle. Each particle of Q
except the Pioneer has a unique Predecessor in Q, located in
an adjacent vertex of GD . Similarly, each particle except the
last one has a unique Follower in Q, located in an adjacent
particle. All particles of Q are initially contracted.

Say the Pioneer particle q intends tomove into a neighbor-
ing unoccupied vertex v, which is called its destination. The
pulling procedure will make q move into v, and will subse-
quently make each Follower move into the vertex previously
occupied by it Predecessor. At the end of the procedure, the
particles of Q will still form a chain with the same Follower–
Predecessor relationships, and all particleswill be contracted.

To begin with, q sends a Follow-Me message to its Fol-
lower q ′, and then it expands toward v and contracts again
in v. q ′ will read the message from q and will send a similar
Follow-Me message to its Follower q ′′. Then, as soon as q ′
sees that the original location of q is empty, it expands toward
it and contracts again.

The procedure continues in this fashion until the last
particle of Q has moved and contracted into its Predeces-
sor’s original location. At this point, the last particle sends
a Movement-Done message to its Predecessor, which reads
it and forwards it to its Predecessor, and so on. When the
Pioneer receives a Movement-Done message, the procedure
ends.

Main straightening algorithm The idea of this phase is
that each Leader pi will identify a directrix γi (as explained
above), and a Pioneer qi will walk along γi , pulling particles
onto it from the tree Ti of pi (executing the pulling procedure
described above). While the Pioneer is doing that, the Leader
remains in place, except perhaps for a few stages, when it is
part of a chain of particles that is being pulled by the Pioneer.

Eventually, all the particles of Ti will form a line segment on
the directrix, and the Leader will be at an endpoint of such a
segment, opposite to the Pioneer.

Ifqi encounters another particle r onγi , belonging to some
tree Tj , it “transfers” its role to r , and “claims” the subtree
T ′
j of Tj hanging from r , detaching r from its parent. The

next time the new Pioneer r has to pull a chain of particles, it
will pull it from T ′

j . For this reason, r is called an entry point
of the directrix. This algorithm is summarized in Fig. 6.

Every time a Pioneer advances along its directrix, it noti-
fies its Leader, who will synchronize with the other Leaders.
This is to ensure that the straightening of every tree proceeds
at the same pace.

Technically, a Pioneer is identified by an internal Pio-
neer flag, and an entry point is identified by an Entry-Point
flag. Both flags are initially not set. As the phase starts, each
Leader sets its own Pioneer and Entry-Point flags. Then, the
following operations are repeated until the end of the phase.

– The algorithm works in steps: when a Leader decides
to start a new step, it sends a Pull message to the next
particle on its directrix. This message is forwarded by the
particles along the directrix, until it reaches the Pioneer
(of course, if the Leader and the Pioneer are the same
particle, no message is actually sent).

– When the Pioneer q receives the Pull message, it looks at
the next vertex v along the directrix (i.e., in the direction
opposite to the Leader). Suppose first that v is occupied
by a (contracted) particle r .

– q sends a You-are-a-Pioneer message to r and clears
its own Pioneer flag.

– r reads the message and becomes a Pioneer. If r has
children, it also sets its own Entry-Point flag, becom-
ing an entry point.

– r informs its parent r ′ that it is no longer its child,
and erases its own Parent variable.

– r ′ modifies its internal variables accordingly and
sends a message back to r .

– When the new Pioneer r receives this message, it
proceeds with the algorithm.

– Suppose now that v (i.e., the next vertex along the direc-
trix) is unoccupied.

– The Pioneer q starts executing the pulling procedure
with destination v.

– When q reaches v, it makes sure that its Entry-Point
flag is not set.

– When the Follow-Me message that is forwarded
along the directrix reaches the first entry point e
(possibly, e is the Pioneer itself), e forwards the mes-
sage to its first child according to the canonical order
defined in Sect. 3.4. Similarly, whenever a particle in
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3γ

2γ

1γ
(a) Each Pioneer is obstructed by a particle on its directrix.

3γ

2γ

1γ
(b) The obstructing particles detach from their Parents and
become the new Pioneers.

3γ

2γ

1γ
(c) Each new Pioneer pulls a chain of particles from the closest
entry point.

Fig. 6 Three stages of the straightening phase. The particles in gray are the Leaders; the ones in white are the Pioneers. The edges of the spanning
forest are drawn in dark gray, and the arrows indicate where the particles are directed in the pulling procedure

the subtree T hanging from e receives a Follow-Me
message from its parent, it forwards it to its first child
according to the canonical order.

– When e moves, it also clears its Entry-Point flag and
sends a You-are-an-Entry-Point message to its Fol-
lower e′ (i.e., its first child).

– If e′ has children, it sets its own Entry-Point flag
upon receiving this message. Otherwise, e′ does not
become an entry point, and claims the next particle on
the directrix as its Follower (if such a particle exists).

– If e is a Leader, it clears its Leader flag, while e′ sets
its own and becomes the new Leader.

123



G. A. Di Luna et al.

– When a particle t of T sends a Follow-Me message
to its first child t ′, it also attaches its neighborhood
code C(t) to the message, as defined in Sect. 3.4. t ′
memorizes the code.

– When t ′ moves to take the place of t , it updates its
internal variables according to C(t). Of course, if t ′
was a leaf of T , it does not include its previous loca-
tion in the list of its children.

– When a leaf of T moves to take the place of its Pre-
decessor, it sends a Movement-Done message to its
parent, which is forwarded to the Pioneer. When the
Pioneer receives the message, it proceeds with the
algorithm.

– The Pioneer sends a More-Entry-Points? message along
its directrix, which is forwarded by the particles lying on
it, until it reaches the Leader.

– As the particles (including the Pioneer) forward the
More-Entry-Points? message, they add information to it,
i.e., they set a flag in the message if they are entry points
of the directrix.

– When the Leader reads theMore-Entry-Points?message,
it knows if the phase is over (i.e., there are no more entry
points on its directrix), or if it has to start another step
(i.e., the Pioneer has to pull more particles).

– If the phase is not over, the Leader p synchronizes with
the other Leaders (of course, if k = 1, this step is
skipped). If any of the other Leaders is not found in
its usual position (because it is still executing a pulling
procedure and is being replaced by a new Leader), p
waits for the new Leader to appear. The actual synchro-
nization is done by exchanging Next-Straightening-Step
messages, together with the value of a counter modulo
2, as described in the “Synchronization” paragraph of
Sect. 3.4. When p receives such messages from all other
Leaders, its starts the next step.

Correctness

Theorem 7 Let P be the system resulting from Theorem 6,
with k Leader particles. If all particles of P execute the
straightening phase of the algorithm, then there is a stage,
reached after O(n2) rounds, where all particles are con-
tracted, the k Leaders are pairwise adjacent, and the system
forms k equally long straight line segments, each of which
has a Leader located at an endpoint.Moreover, if k > 1, each
such segment has a second Leader lying on its extension. In
this phase, at most O(n2) moves are performed in total.

Proof Suppose that k > 1.Byassumption, as the phase starts,
the spanning forest of P is symmetric under a k-fold rotation
of the plane. Also, each tree of the forest is attached to a
directrix by an entry point (initially, only the Leaders are

entry points). We can easily prove by induction that these
properties are preserved after each step of the algorithm.

This is because the k Leaders wait for each other at the
end of every step, until they are all ready to start the next
step. Moreover, if a Pioneer encounters a vertex occupied by
a particle r on its directrix, then so do all other Pioneers,
and vice versa. Additionally, the subtree hanging from r is
symmetric to the ones that are hanging from the particles that
are encountered by the other k − 1 Pioneers during the same
step.

Note that, when r becomes an entry point, the tree towhich
it belongs splits in two, because r is detached from its parent,
and the whole subtree hanging from r is attached to the direc-
trix, as r becomes a new entry point. However, this keeps the
structure connected.

On the other hand, when a pulling procedure is executed,
all the particles in the chain that belong to a tree choose their
Follower according to the canonical order of their children.
Hence, as k pulling procedures are executed by the k Pio-
neers and their chains during a step, symmetric particles on
different chains move in symmetric ways, and the overall
symmetry of the system is preserved. Again, this keeps the
structure connected.

Because of this symmetry, no conflicts between different
Pioneers can ever arise. For instance, it is impossible for a leaf
f of a tree to be pulled along the chain led by a Pioneer while
another Pioneer is sending a You-are-a-Pioneer message to
f . Also, the k pulling procedures that are executed in the
same step involve disjoint chains: indeed, the k directrices
are disjoint, and the subtrees hanging from different entry
points are disjoint.

Also observe that, even as the chains move, no messages
are ever lost. This is because, at any time, at most k indepen-
dent pulling procedures are being executed. In each pulling
procedure, every time a message is sent, the addressee is
a still and contracted particle that necessarily receives and
reads the message as soon as it is activated. Additionally, if
a Leader is not in place because it is being substituted by
its Follower, the other Leaders do not send synchronization
messages its way, but wait until the new Leader is in position.

Hence, each step correctly terminates and results in the
advancement of every Pioneer and the addition of a new par-
ticle to every directrix. If the Leaders order the beginning of
a new step, it is because the More-Entry-Points? messages
have revealed the presence of more entry points on the direc-
trices. The straightening phase only endswhen nomore entry
points are found: since the structure is connected, this means
that all particles are indeed aligned on the directrices, form-
ing k line segments. By the symmetry of the system, these
line segments must have the same length.

To prove that at most O(n2) moves are made in total,
observe that each pulling procedure causes a new particle to
join the portion of a directrix located between a Leader and a
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Pioneer. The particles located in this portion never leave the
directrix, but only move along it. So, at most n pulling proce-
dures are performed. Also, each pulling procedure involves
at most n particles, and causes each of them to perform a sin-
gle expansion and a single contraction. Since no other moves
are made by the system, the O(n2) bound follows.

Similarly, since a pulling procedure is completed after
O(n) rounds, the whole straightening phase takes O(n2)
rounds. ��

3.6 Role assignment phase

At the end of the straightening phase, the system forms k
equally long line segments, arranged as described in Theo-
rem 7, each of which contains a Leader particle. If k > 1, it
means that the shape S0 that the particles originally formed
was unbreakably k-symmetric, as Theorems 3–7 summarize.
Due to Theorem 1, if this is the case, we have to assume
that the “final shape” SF that the system has to form is also
unbreakably k-symmetric.

Recall that a representation of SF is given to all the par-
ticles as input, and resides in their internal memory since
the first stage of the execution. For the purpose of the uni-
versal shape formation algorithm, we assume the size of SF
to be a constant with respect to the number of particles in
the system, n (cf. Sect. 2). Also, we may assume SF to be a
minimal shape: if it is not, the particles replace its represen-
tation with that of a minimal shape equivalent to SF , which
has a smaller size and is readily computable. Finally, since
the handedness agreement phase has been completed, all the
particles can be assumed to have the same handedness (see
Theorem 5). Without loss of generality, we assume that their
notion of clockwise direction coincides with the “correct”
one, i.e., the one defined by the cross product of vectors in
R
2.
The goal of the role assignment phase is twofold:

– The particles determine the scale of the shape S′
F , equiv-

alent to SF , that they are going to form. Indeed, if n is
large enough, there is a scaled-up copy of SF that can
be formed by exactly n particles, keeping in mind that,
in the final configuration, particles can be contracted or
expanded.

– Each particle is assigned a constant-size identifier,
describing which element of SF (i.e., a vertex, the inte-
rior of an edge, or the interior of a triangle) the particle
is going to form in the shape composition phase. Recall
that we are assuming SF to be composed of a constant
(i.e., independent of n) number of triangles and edges, in
accordance to the definition of universal shape formation
(see Sect. 2). The size of the identifier is proportional to
the size of SF , and can therefore be stored in a single
particle’s internal memory.

Subdividing the final shape into elements Recall that a
shape is the union of finitely many edges and faces of GD .
Of course, all edges ofGD have length 1, and all faces ofGD

are equilateral triangles of side length 1. Let the final shape
SF be of the form SF = e1 ∪ · · · ∪ e j ∪ t1 ∪ · · · ∪ t j ′ , where
the ei ’s are edges of GD and the ti ’s are (triangular) faces of
GD .

Let S′
F be a shape equivalent to SF . By Lemma 1, the scale

of S′
F is a positive integer λ (recall that SF is minimal). That

is, there is a similarity transformation σ : R2 → R
2 such

that σ(ei ) is a segment of length λ (i.e., it is the union of λ

consecutive segments of GD) contained in S′
F and σ(ti ) is

an equilateral triangle of side length λ contained in S′
F .

Let B be the set of vertices of GD that are contained in
S′
F . We partition B into three families of elements as follows:

– If v is a vertex of GD contained in SF , then σ(v) consti-
tutes a super-vertex of S′

F .
– For every ei , the vertices of GD that are contained in

σ(ei ) and are not super-vertices of S′
F constitute a super-

edge of S′
F . Similarly, for every side s of every triangle

ti , the vertices of GD that are contained in σ(s) and are
not in a super-vertex of S′

F constitute a super-edge of S′
F .

– For every ti , the vertices ofGD that are contained in σ(ti )
and are not super-vertices of S′

F or contained in super-
edges of S′

F constitute a super-triangle of S′
F .

Observe that every super-vertex of S′
F is a vertex ofGD , every

super-edge of S′
F is a set of λ−1 consecutive vertices ofGD ,

and every super-triangle of S′
F is a set of (λ − 1)(λ − 2)/2

vertices of GD whose convex hull is an equilateral triangle
of side length max{0, λ − 3}.

There is a small exception to our previous definition of ele-
ment. Suppose that the system executing the role assignment
phase has k > 1 Leaders, and therefore SF is unbreakably
k-symmetric. Suppose that S′

F is unbreakably k-symmetric,
as well: so, by Lemma 3, λ is not a multiple of k. Finally,
suppose that S′

F contains its own center. We have two cases:

– If k = 2, then the center of S′
F is located in the midpoint

of a super-edge e consisting of an even number of vertices
of GD (see Fig. 7a). So, e is divided by its midpoint into
two partial super-edges e′ and e′′. In this case, e is not
an element of S′

F , but e
′ and e′′ are.

– If k = 3, then the center c of S′
F is located in the center

of a super-triangle t consisting of a number of vertices of
GD that is a multiple of 3 (see Fig. 7b). Let v1, v2, v3 be
the vertices of t , taken in counterclockwise order. Let ζ

be the ray emanating from c in the direction of the vector−−→v1v2, and let ζ ′ and ζ ′′ be the two rays emanating from
c and forming angles of 120◦ with ζ . These three rays
partition t into three symmetric partial super-triangles
t ′, t ′′, and t ′′′ (note that no vertex of GD lies on any of
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(a) An unbreakably 2-symmetric shape with scale 5 with a minimal equivalent shape
consisting of two adjacent faces and two dangling edges

1β1
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2
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3
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(b) An unbreakably 3-symmetric shape with scale 13 with a minimal equivalent
shape consisting of a single face

Fig. 7 Subdivision into elements (gray blobs) of unbreakably k-
symmetric shapes. The directrices, the backbone, and the co-backbone
are also represented

these rays). In this case, t is not an element of S′
F , but t

′,
t ′′, and t ′′′ are.

Observe that the set ζ ∪ζ ′∪ζ ′′ has a 3-fold rotational symme-
try, and so does the partition of t into the elements t ′, t ′′, and
t ′′′. Given t , different particles may disagree on which ver-
tex is v1 and which vertex is v2, and thus they may disagree
on the orientation of ζ . However, since all particles have the
same handedness, they agree on the clockwise direction: so
they agree on ζ ∪ ζ ′ ∪ ζ ′′, and therefore also on the partition
of t into elements.

We denote by mv the number of super-vertices of S′
F , by

me the number of its super-edges, and by mt the number of
its super-triangles. Of course, these numbers are independent
of the scale of S′

F , and only depend on SF .
By definition, forming S′

F means occupying all ver-
tices of B with particles. This is equivalent to forming
all super-vertices, all (partial) super-edges, and all (partial)
super-triangles of S′

F , i.e., all the elements of S′
F .

Combinatorial adjacency between elements For the next
part of the algorithm, we have to define a symmetric combi-
natorial adjacency relation between elements of S′

F . This is
slightly different from the relation induced by the neighbor-
hood of the vertices of GD that constitute the elements.

The combinatorial adjacency rules are as follows:

– A super-vertex located in a vertex v of GD and a (par-
tial) super-edge e are combinatorially adjacent if e has
an endpoint that neighbors v.

– A (partial) super-edge e and a (partial) super-triangle t
are combinatorially adjacent if every vertex of GD that
is in e has a neighbor in t .

Note that this relation induces a bipartite graph on the
elements of S′

F : combinatorial adjacency only holds between
a (partial) super-edge and a super-vertex or a (partial) super-
triangle, and never between elements of the same kind or
between super-vertices or (partial) super-triangles.

Subdividing the elements among leaders Suppose that
there are k > 1 Leaders, and the shape S′

F (similar to SF ) is
unbreakably k-symmetric. We are going to show how each
Leader selects the elements of S′

F that the particles on its
directrixwill form in the shape composition phase. The result
of this selection is exemplified in Fig. 8.

Let σ be a similarity transformation that maps SF to S′
F ,

and let c be the center of SF . We will assume the scale of S′
F

to be λ ≥ 4.
We will first define k rays, called the backbone of S′

F
(see Fig. 7). The backbone is an important structure that will
be used extensively in the shape composition phase of the
algorithm. Additionally, if k = 3, we will also define a co-
backboneof S′

F ,which is another set of k rays thatwill only be
used in the present paragraph. The definitions are as follows.

– If k = 2, then c is located in the midpoint of an edge
e of GD . Let v1 and v2 be the endpoints of the segment
σ(e). One ray β1 of the backbone is defined as the ray
emanating from v1 in the direction opposite to v2. The
other ray β2 of the backbone emanates from v2 in the
direction opposite to v1.

– If k = 3, then c is located in the center of a triangular
face t of GD . Let v1, v2, v3 be the vertices of the trian-
gle σ(t), taken in counterclockwise order. One ray β1 of
the backbone is defined as the ray emanating from v1 in
the direction opposite to v2. Similarly, the second ray β2

emanates from v2 in the direction opposite to v3, and the
third ray β3 emanates from v3 in the direction opposite
to v1.
The first ray β ′

1 of the co-backbone is obtained by trans-
lating β1 by 2 in the direction parallel to the vector

−−→v1v3.
Similarly, the second ray β ′

2 is obtained by translating
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β2 by 2 in the direction parallel to the vector −−→v2v1, and
the third ray β ′

3 is obtained by translating β3 by 2 in the
direction parallel to the vector −−→v3v2.

Suppose that there is a bijection between Leader particles
and rays of the backbone upon which all particles agree.
Without loss of generality, let us say that the Leader pi
“claims” the ray βi of the backbone of S′

F , for 1 ≤ i ≤ k.
If k = 3, the Leader pi also claims the ray β ′

i of the co-
backbone.

Now, each Leader pi selects the elements of S′
F that are

fully contained in its own ray βi of the backbone. If k =
3, then pi also selects the elements of S′

F that have a non-
empty intersection with its own ray β ′

i of the co-backbone
(recall that λ ≥ 4, hence the super-edges consist of at least
two points, and the super-triangles consist of at least one
point). Furthermore, pi selects the unique partial super-edge
or partial super-triangle of S′

F (depending on whether k = 2
or k = 3) that is closest to βi .

Then, eachLeader repeatedly selects an element of S′
F that

is combinatorially adjacent to an element that it has already
selected and that has not been selected by any Leader, yet.
While doing so, it makes sure that, if it has selected a super-
vertex located on the backbone, then it also selects a (partial)
super-edge that is combinatorially adjacent to it (in other
words, there must be no “isolated” super-vertices in its selec-
tion). It is easy to see that selecting elements in this fashion
is always possible.

The actual selection algorithm is not important, as long
as it is deterministic and only depends on the combinatorial
adjacency relation between elements of S′

F . Note that, since
the algorithm is deterministic and S′

F is rotationally symmet-
ric, the selections that the Leaders make are symmetric, too.
In particular, the Leaders agree on each other’s selections,
and eventually S′

F is divided into k symmetric regions, each
belonging to a different Leader.

Recall that SF has constant size, and hence S′
F has a

constant number of elements inducing a combinatorial adja-
cency relation of constant size. If the selection algorithm
only depends on the combinatorial structure of the elements
of S′

F and on their local spatial layout (e.g., how different
super-edges adjacent to the same super-vertex are laid out
around it), then the algorithm can be executed internally by
any particle in a single stage, even with its limited memory
capabilities.
Turing machine analogy Let us focus on a single directrix.
As the phase proceeds, theLeader of this directrixwill “walk”
along it, “updating” the states of the particles it encoun-
ters. Obviously, the Leader cannot physically move through
another particle, but it will rather send it an I-am-Moving-to-
your-Location message. Then, the Leader will clear its own
Leader flag, and the particle that receives themessagewill set
its own. In other words, particles stay still, and the leadership

is transferred from a particle to a neighboring one along the
directrix.

Additional information can be attached to the I-am-
Moving-to-your-Location message, containing a constant-
size “virtual internal state” of the Leader. So, a particle that
is hosting the Leader has its own internal state (as usual), but
can also access and update the virtual internal state of the
Leader (through an exchange of messages). In the following,
to help intuition, we will pretend that the Leader is not a vir-
tual particle with a virtual state, but a special particle with its
own state that can walk through other particles.

As the Leader walks along the directrix, it updates its
own internal state, as well as the states of the particles it
encounters, much like the head of a Turing machine does
as it scans the cells of a tape. So, using the states of the
particles located on the directrix, the Leader can compute
any function that is computable by a deterministic Turing
machine on an blank tape of n/k cells. This already gives the
Leader an arsenal of subroutines and techniques with which
it can operate on the states of the particles.

Say that the Leader wants to perform the same operation
on a row of j particles, where j is too large to be stored in
the Leader’s internal memory. Suppose that the Leader has
already constructed a representation of j , such as a binary
code that fits in the states of the first O(log j) particles of the
directrix. Then, the Leader can come back and decrement
this number every time it operates on a particle. When the
counter reaches 0, the Leader knows it has to stop.

With this technique, the Leader can also “shift” the states
of an entire row of j particles by j ′ positions to the left or to
the right along the directrix, provided that the numbers j and
j ′ are represented in binary in the states of a few particles. It
can “swap” the states of two rows of j particles, etc.

If the Leader has represented two numbers a and b in
binary, it can easily compute the binary representation of
their sum or their product with standard techniques, provided
that the total number of particles on the directrix is at least
O(log(a + b)). Furthermore, given the representation of a
number x , the Leader can compute any polynomial func-
tion of x with constant coefficients, provided that there are
O(log(x)) particles on the directrix.
Linearization of the elements In the role assignment phase,
the particles will use a new internal variable, called Role,
whose initial value isUndefined. By the endof the phase, each
particle will have a well-defined Role. Assigning a Role to a
particle essentially means telling the particle which element
of S′

F it will contribute to forming in the shape composition
phase. Once a Leader has selected a set of elements of S′

F ,
it will “label” each such element with a unique identifier.
Since the number of elements is bounded by a constant, the
Leader canmemorize the correspondence between identifiers
and elements in its internal memory. Then, it will put an
identifier in the Role variable of each particle on its directrix,
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Fig. 8 The elements of an
unbreakably 3-symmetric shape
with a possible subdivision
among leaders. Blobs of the
same color represent elements
selected by the same leader
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thus effectively assigning each particle an element. The way
in which the Leader labels elements is deterministic: so, if
the particles have the same representation of SF in memory,
they implicitly agree also on the labeling of the elements of
S′
F .
The particles that are given the same element identifier

will all be contiguous along the directrix: they will form a
chunk. Chunks can be laid out in any order along a directrix,
and can then be moved around and sorted with the general
techniques outlined above.

Say that the scale of S′
F is λ. Then, the sizes of the chunks

are as follows:

– Each chunk corresponding to a super-vertex consists of
a single particle.

– Each chunk corresponding to a super-edge consists of
λ − 1 particles.

– Each chunk corresponding to a super-triangle consists of
(λ − 1)(λ − 2)/2 particles.

– The chunk corresponding to a partial super-edge consists
of (λ − 1)/2 particles. In this case, k = 2: so SF must
be unbreakably 2-symmetric, and we assume λ to be odd
(cf. Lemma 3).

– The chunk corresponding to a partial super-triangle con-
sists of (λ− 1)(λ− 2)/6 particles. In this case, k = 3: so

SF must be unbreakably 3-symmetric, and we assume λ

not to be a multiple of 3 (cf. Lemma 3).

If we fix SF and we fix k, then the Leader has to assign
super-vertex identifiers to a constant number mv/k of par-
ticles, super-edge identifiers to (me/k) · (λ − 1) particles
(where me/k is a constant), super-triangle identifiers to
(mt/k)·(λ−1)(λ−2)/2 particles (wheremt/k is a constant),
plus perhaps the identifiers corresponding to one partial
super-edge or one partial super-triangle.

For a fixed SF and a fixed k, the number of particles
needed, as a function of λ, is a second-degree polynomial
function P(λ) = aλ2 + bλ + c, for some constants a, b, c
that can be easily computed from SF as linear expressions
of mv , me, and mt . For instance, a = mt/(2k) if there is no
partial super-triangle among the elements, and a = mt/6+1
if there is a partial super-triangle. In particular, the number of
particles that are given a super-vertex identifier or a (partial)
super-edge identifier is a linear functionP ′(λ) = b′λ+c′, for
some constants b′ and c′, which are again linear expressions
of mv , me, and mt .
Main role assignment algorithm For the following algo-
rithm to work, we assume the number of particles in the
system, n, to be large enough compared to the base size of
SF , which is a constant m. As we will show in Theorem 8, n
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has to be at least Θ(m3). An explicit multiplicative constant
for this Θ(m3) bound could be computed from the polyno-
mials P(λ) and P ′(λ) defined above.

We will focus on a single directrix, and thus we will
describe the operations of a single Leader. Of course, all
Leaders in the system will do similar operations on their
respective directrices.

The goal of the Leader is to find an appropriate scale λ for
the shape S′

F , equivalent to SF , that the particles will form in
the shape composition phase. IfP(λ) is smaller than n/k (i.e.,
the number of particles on the directrix), then the particles
will not be able to fit in S′

F ; if P(λ) is too large, then there
will not be enough particles to form S′

F . Of course, there
may not be a λ such that P(λ) is exactly n/k, but recall that
some particles can be expanded in the final configuration:
this gives the system the ability to roughly double the area
it can occupy. For this reason, each particle has a flag called
Double, which is set if and only if the particle is going to be
expanded in the final configuration.

As a first thing, the Leader converts the number n/k in
binary, by simply scanning every particle on its directrix and
incrementing a binary counter every time it reaches a new
particle. This binary number is stored in the first O(log n)

particles on the directrix: each particle remembers one digit.
Then, the Leader sets λ = 7, representing the binary num-

ber 7 in the states of the first three particles on the directrix
(these particles will therefore have to remember two binary
digits: one for λ and one for n/k). Then it computes P(λ),
again in binary, with standard multiplication and addition
algorithms. The result is again stored in the first particles
on the directrix. This number is compared with n/k: if n is
large enough, we may assume that n/k > P(7), and so the
computation continues.

Since the current estimate of λ is too small, the Leader
increments its binary representation by 6, so as to keep it
from being a multiple of 2 or of 3, in accordance to Lemma 3
(if the scale of S′

F is a multiple of k, then S′
F is not unbreak-

ably k-symmetric, and the system is unable to form it). The
Leader repeats the above steps on this new λ, thus computing
P(λ) and comparing it with n/k. IfP(λ) is still too small, the
Leader increments λ by 6 again, and so on. Observe that the
Leader has enough space to compute P(λ), because it only
needs a logarithmic amount of particles, which are abun-
dantly available if n is greater than a (small) constant.

Eventually, the Leader finds the first λ such that P(λ) ≥
n/k: this will be the final scale of S′

F . The Leader also com-
putes d = P(λ) − n/k, which is the number of particles
that will have to be expanded in the final configuration. So,
it sets the Double flag of the last d particles on the direc-
trix: this is equivalent to converting the binary representation
of d in unary. As we will show in Theorem 8, if n is large
enough, there are enough particles to complete this opera-
tion. As a result, d particles have the Double flag set and

s = n/k − d = 2n/k − P(λ) particles do not. Note that
s + 2d = P(λ): so, if each Double particles occupies two
locations in the final configuration, the system covers an area
equal to that of S′

F .
Now that the Leader has determined the scale λ of S′

F , it
has to subdivide the particles into chunks and assign Role
identifiers to all of them. Note that the Leader still has a
binary representation of λ stored in the states of the first
O(log λ) particles, and so it will be able to use it to count. As
explained before, the Leader can easily compute the amount
of particles that it has to put in the same chunk, because this is
a polynomial function of λ that only depends on whether the
chunk corresponds to a super-vertex, a (partial) super-edge,
or a (partial) super-triangle.

The only thing the Leader has to decide is the order in
which to arrange the chunks. It begins by assigning themv/k
identifiers corresponding to super-vertices of S′

F to the first
mv/k particles on the directrix. Then, if there is a partial
super-edge among the elements of S′

F , the Leader assigns the
corresponding identifier to the next (λ−1)/2 particles. Then
it places all the chunks corresponding to the me/k super-
edges. If there is a partial super-triangle among the elements
of S′

F , the Leader places its chunk right after the super-edges.
Finally, it places all the chunks corresponding to the mt/k
super-triangles. As mv +me +mt is bounded by a constant,
the Leader can keep track of what identifier it has to assign
next by using just its internal memory.

Since the Double particles are the last ones on the direc-
trix, they are more likely to be found in super-triangle
chunks. Actually, as we will show in Theorem 8, if n is large
enough, all Double particles will belong to (partial) super-
triangle chunks, while the (partial) super-edge chunks and
the super-vertex chunks will have no Double particles. The
only exception is the case in which SF has no triangles, and
so no element of S′

F is a (partial) super-triangle. In this case,
if n is large enough, all Double particles will be in the same
super-edge chunk.
Correctness

Theorem 8 Let P be the system with k Leader particles
resulting from Theorem 7, and let all particles of P execute
the role assignment phase of the algorithmwith input a repre-
sentation of a final shape SF of constant base sizem. If k > 1,
we assume that SF is unbreakably k-symmetric. Then, if n is
at leastΘ(m3), there is a stage, reached after O(n2) rounds,
where all particles have a Role identifier. Moreover, if SF has
at least one triangle, then all the Double particles have Role
identifiers corresponding to (partial) super-triangles; if SF
consists only of edges, then all the Double particles on the
same directrix have a Role identifier corresponding to the
same (partial) super-edge. No particle moves in this phase.

Proof Let us first assume that SF has some triangles, and so
mt > 0. Recall that, if λ is the scale of S′

F computed by
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the Leader, then exactly 2n/k − P(λ) particles do not have
the Double flag set. We want these particles to include all
the super-vertex chunks and the (partial) super-edge chunks,
which in turn consist of P ′(λ) particles in total. This is true
if and only if 2n/k − P(λ) ≥ P ′(λ), which is equivalent to

2n

k
≥ P(λ) + P ′(λ). (1)

If λ is the scale on which the Leader has stopped, it means
that λ− 6 was too small, and hence n/k > P(λ− 6). So, (1)
reduces to

2P(λ − 6) ≥ P(λ) + P ′(λ). (2)

Recall thatP(λ) = aλ2+bλ+c, where the coefficients a,
b, c are linear expressions ofmv ,me, andmt . To express this
fact, we can write a = A(mv,me,mt ), b = B(mv,me,mt ),
and c = C(mv,me,mt ), where A, B, C are linear functions.
So,P = A ·λ2+B ·λ+C , where for brevity we have omitted
the arguments of A, B, C . Similarly, we have P ′(λ) = B ′ ·
λ + C ′.

Note thatP(λ−6) = A·λ2+B ′′ ·λ+C ′′, where the leading
coefficient is the same as the one in P(λ), and B ′′ and C ′′
are again linear functions of mv , me, and mt . Therefore, (2)
becomes

2Aλ2 + 2B ′′λ + 2C ′′ ≥ Aλ2 + Bλ + C + B ′λ + C ′,

or

Aλ2 ≥ (B + B ′ − 2B ′′) · λ + (C + C ′ − 2C ′′).

Since λ ≥ 1, it suffices to obtain

Aλ2 ≥ (B + B ′ − 2B ′′ + C + C ′ − 2C ′′) · λ,

or

Aλ ≥ B + B ′ − 2B ′′ + C + C ′ − 2C ′′ = D, (3)

where D is a linear function of mv , me, and mt .
Since λ is the scale that caused the Leader to exhaust the

n/k particles on the directrix, we have P(λ) ≥ n/k. Since
λ ≥ 1,

(A + B + C) · λ2 ≥ P(λ) ≥ n/k,

and so

λ2 ≥ n

k · (A + B + C)
.

Recall that A(mv,me,mt ) is proportional tomt : it is either
mt/(2k) ormt/6+1, depending on SF . Since we are assum-
ing mt > 0, then necessarily A > 0. Thus, we reduce (3)
to

A2 · n
k · (A + B + C)

≥ D2,

or

n ≥ D2 · k · (A + B + C)

A2 .

The right-hand side of the above inequality is clearly domi-
nated by a cubic function ofmv ,me, andmt , which in turn is
dominated byΘ(m3). So, if n ≥ Θ(m3), then (1) is satisfied.

Suppose now that SF has no triangles, and so P(λ) =
P ′(λ) = B · λ + C , by definition of P ′. At the end of the
role assignment phase, there are exactly P(λ) − n/k Double
particles, and we want all of them to be in the same (partial)
super-edge chunk, which has size at least (λ − 1)/2. Thus,
we have to obtain

λ − 1

2
≥ P(λ) − n

k
. (4)

As before, we have n/k > P(λ − 6), which reduces (4)
to

λ − 1

2
≥ P(λ) − P(λ − 6). (5)

Observe that P(λ) − P(λ − 6) = 6B, and so (5) becomes

λ ≥ 12B + 1. (6)

Again, we have P(λ) ≥ n/k. So, (B + C) · λ ≥ n/k, and

λ ≥ n

k · (B + C)
.

This reduces (6) to

n

k · (B + C)
≥ 12B + 1,

or

n ≥ (12B + 1) · k · (B + C),

which is dominated by Θ(m2), and a fortiori by Θ(m3), as
required.

It remains to prove the upper bound on the number of
rounds. Note that, according to our Turing machine analogy,
it does not take more than one round to perform a single step
of themachine. Indeed, for themachine tomake anyprogress,
the Leader has to be activated; when this happens, the Leader
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changes its state and sends a message to a neighboring par-
ticle in order to transfer the leadership. Then, in at most one
round the neighboring particle is activated, so it reads the
message, becomes the new Leader, modifies its state, and
transfers the leadership to another particle. Therefore, it will
suffice to prove that a Turing machine can perform all the
required operations in O(n2) steps.

The first operation is the conversion of n/k (i.e., the length
of the “tape”) in binary, and the naive algorithm works in
O(n2) steps: we scan the tape one cell at a time, and every
time we reach a new cell we set a flag in it, we go back to the
beginning of a tape, and we increment a binary counter.

Then we have to compute the optimal λ, starting from
λ = 7 and incrementing it by 6 at each iteration. This process
continues until P(λ) > n/k, which means that the binary
representation of P(λ), and therefore that of λ, takes at most
O(log n) cells. Given a binary representation of λ, we can
compute P(λ) in O(log2 n) machine steps: adding two inte-
gers of size O(log n) takes O(log n) steps, and multiplying
them takes O(log2 n) steps (with the usual long multipli-
cation algorithm). Once we have P(λ), we can compare
it with n/k by doing a subtraction, which takes O(log n)

steps.
Since the value of P(λ) strictly increases every time we

increment λ, we have to repeat the above computations at
most n/k times, which takes O(n log2 n) = O(n2) steps
overall.

Whenwe have found the correct λ, we have to set theDou-
ble flags of the last d particles, which takes O(n2) steps with
the naive algorithm (similar to the one we used to compute
the binary representation of n/k).

Finally, we have to assign the Roles to all particles. The
size of a chunk is polynomial in λ, so we can compute the
size of all chunks in O(log2 n) time overall (since there is
a constant number of chunks). Once we have the size of a
chunk as a binary number, we use it as a counter to assign
a Role to the particles in that chunk. Again, with the naive
algorithm this can be done in O(n2) steps overall. ��

3.7 Shape composition phase

At the end of the role assignment phase, the particles are
located on k directrices, each of which has a Leader. The
scale λ of the final shape S′

F , equivalent to the input shape
SF , has been determined, and S′

F has been subdivided among
the Leaders in equal and symmetric parts. The particles on
the same directrix, which are said to be a team, have been par-
titioned into contiguous chunks, each of which corresponds
to an element of S′

F . In the shape composition phase, the par-
ticles will finally form all the elements of S′

F . If k > 1, the
particles will actually form a copy of S′

F having center in the
center of S0.

Moving to the backbone Recall that, if k > 1, the elements
of S′

F have been split among the Leaders based on their inter-
sectionswith a structure called backbone (see Sect. 3.6). That
is, the team that lies on the directrix γi will form the ele-
ments of S′

F that lie on the ray βi of the backbone, as well
as other carefully chosen contiguous elements of S′

F . Thus,
as a preliminary step of the shape composition phase, it is
convenient to relocate the whole team from γi onto βi . Of
course, if k = 1, this step is skipped.

Let us consider the case k = 2 first. In this case, the
endpoint of βi is located on γi , at distance (λ − 1)/2 on
GD from its endpoint. To relocate the team, the Leader can
reach the last particle on its directrix and execute the pulling
procedure introduced in Sect. 3.5 (λ− 1)/2 times, each time
with destination the next vertex along the directrix. Recall
that the number λ is still represented in binary in the states
of the some particles in the team (from the role assignment
phase of the algorithm). So, the Leader can easily compute a
representation of the number (λ−1)/2 and use it as a counter
to know when to stop pulling (refer to Sect. 3.6).

Suppose now that k = 3. Then, βi is parallel to γi , and its
endpoint is at distance 2(λ − 1)/3 on GD from the endpoint
of γi . To guide the team to βi , the Leader first pulls it along γi
for (λ−1)/3 steps with the technique explained above. Then
it turns counterclockwise by 60◦ and moves in that direction
for another (λ−1)/3 steps, always pulling the entire team.At
this point, the Leader is located onβi at distance n/k−1 from
its endpoint. Finally, the Leader turns counterclockwise by
120◦ and moves in that direction, pulling the team, until the
entire line of particles is straight (note that the Leader does
not have to count to n/k − 1 to know when to stop pulling).
When these operations are complete, the team is all on βi ,
and the Leader is on its endpoint.

In Theorem 9, we will show that we do not have to worry
about collisions with particles from other teams during this
preliminary step of the algorithm, even if different Lead-
ers end up being completely de-synchronized, and one starts
composing S′

F while another is still relocating its own team
to the backbone.

Formation order Suppose that, if k > 1, all the particles on
γi have been relocated to the backbone ray βi , and now they
are all contracted and forma line segmentwith an endpoint on
the endpoint of βi . If k = 1, we define the unique backbone
ray β1 to be coincident with the unique directrix γ1.

Recall that in the role assignment phase the Leader of γi
has selected some elements of S′

F : these constitute a shape
(S′

F )i ⊆ S′
F , which the team particles that is now on βi is

going to form in the current phase of the algorithm.
We have to decide in what order the elements of (S′

F )i
are to be formed. The super-vertices and the super-edges
that lie on βi will be formed last, because βi serves as a
“pathway” for the team to move and get into position. The
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other elements of (S′
F )i are formed starting from the ones

adjacent to βi , and proceeding incrementally; super-vertices
and super-edges are formed first.

This is how the “ordered list” Li of elements of (S′
F )i is

constructed:

– If a (partial) super-edge e of (S′
F )i\βi is combinatorially

adjacent to a super-vertex lying on βi or to a super-vertex
that has already been included in Li , then e is appended
to Li .

– If a super-vertex v of (S′
F )i\βi is combinatorially adja-

cent to a super-edge that has already been included inLi ,
then v is appended to Li .

– If all the super-vertices and the (partial) super-edges of
(S′

F )i\βi have already been included inLi , then the (par-
tial) super-triangles are appended to Li in any order.

– If all the elements of (S′
F )i\βi have already been included

in Li , then the elements lying on βi are appended to
Li in increasing order of distance from the endpoint
of βi .

Once again, we remark that the Leader can store Li in its
internal memory, since the number of elements of (S′

F )i is
bounded by a constant.

The list Li does not have to be confused with the order
in which the chunks are arranged along the backbone: the
chunks can be ordered in any way. Next we are going to
show how the Leaders operate to bring the chunks into their
right positions and finally form all the elements of S′

F .

Main shape composition algorithm The idea of the algo-
rithm is that the i th Leader guides its team in the formation
of (S′

F )i ⊆ SF , one element at a time, following the list Li .
At any time, the particles of the team that do not lie in (S′

F )i
are all lined up on βi , and constitute a “repository” of con-
tiguous chunks, each with a Role identifier corresponding to
an element of (S′

F )i .
In this discussion, we will temporarily forget about the

presence of Double particles in the repository. The forma-
tion of elements by chunks containing Double particles will
be treated after the main parts of the algorithm have been
explained.Other details of the algorithmwill be covered later,
as well.

The following steps are executed assuming that the i th
Leader is on βi , within the repository, and are repeated
until there are no more elements on Li to form. The reposi-
tory is assumed to consist of contracted particles forming a
connected sub-segment of βi ; moreover, the part of βi that
follows the repository is assumed to be devoid of particles.
These conditions are satisfied when the algorithm begins and
will be satisfied again every time the steps have been exe-
cuted.

– The Leader reads the identifier of the next element d on
the list Li (i.e., the identifier of the first element on the
list that has not been formed, yet).

– The Leader locates the particles in the repository that
have Role identifier corresponding to d (in our terminol-
ogy, these particles constitute a chunk) and “shifts” them
to the beginning of the repository (i.e., the part of the
repository that is closest to the endpoint of βi ). That is,
the Leader swaps their Role identifiers and Double flags
with the ones of the particles that precede them, until the
desired particles are at the beginning. This operation is
simple to do, considering the Turing machine analogy
pointed out in Sect. 3.6. Note that the particles do not
have to physically move, but only exchange messages
and modify their internal states.

– Suppose that d does not lie on βi . Since d is next on
the list, it means that there is a sequence of elements
of (S′

F )i connecting βi with d that have already been
formed (refer to the definition of Li ). More precisely,
there is a sequence W = (v0, e0, v1, e1, . . .), where the
v j ’s are super-vertices and the e j ’s are super-edges, and
each element is combinatorially adjacent to the next, such
that v0 lies onβi , all elements ofW except v0 have already
been formed, and the last element d ′ (which could be a
super-vertex or a super-edge) is combinatorially adjacent
to d. Note that W induces a path in (S′

F )i , because it
consists of super-edges and the super-vertices between
them.Letq be thefirst point along this path that neighbors
a point of d.
In the special case in which d is a super-triangle com-
binatorially adjacent to a super-edge e lying on βi , the
above does not hold. In this case, we take both v0 and q
to be the same endpoint of e.
Then the following steps are performed:

– The Leader pulls the entire repository along βi until
the particle that is closest to the endpoint of βi coin-
cideswith v0 (wewill explain how theLeader canfind
v0 later). No “obstructions” are found on βi , because
at this stage it does not contain formed elements, yet.

– The Leader shifts along W all the particles of the
chunk corresponding to d, in such a way that the
first particle of the chunk goes from v0 to q (and
the other particles of the chunk occupy the positions
on W before q, and perhaps also on β, if the chunk
is too long). As a consequence, all the particles of
W are shifted back along W and into β by as many
positions as the size of the chunk.

– The Leader pulls the chunk into d, along with all
of W and the rest of the repository. As a result, the
chunk forms d and the particles of W are back into
their original positions (i.e., the ones they occupied
in the previous step before being shifted). The details
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of how the Leader arranges the chunk to form d, in
case d is a (partial) super-triangle, will be explained
later.

– The Leader returns to v0 along d and W .

– Suppose now that d lies on βi . The following steps are
performed:

– The Leader pulls the entire repository along βi until
the particle that is closest to the endpoint of βi coin-
cides with the vertex of d that is farthest from the
endpoint of βi . Since the elements of (S′

F )i lying
on βi have been inserted in Li in order of distance
from the endpoint of βi , there are no particles on βi
“obstructing” the repository while it is being pulled.
Again, the details of how the Leader finds this point
on βi will be explained later.

– If d is a super-vertex, it has already been formed.
Otherwise, d is a super-edge: the Leader forms it by
pulling the entire repository toward the endpoint of
βi for λ − 2 times. As usual, the Leader can easily
count to λ − 2 using the states of the λ − 1 particles
in the chunk, and therefore it knows when to stop
pulling.

TheLeader alwaysmakes sure to keep a binary representa-
tion of λ in the repository for as long as possible (i.e., as long
as there are enough particles in the repository). So, before
removing a chunk that contains part of this information, the
Leader copies it to other chunks.

Traveling long distances on the backbone In the algorithm
above, the Leader is supposed to pull the repository along
βi until it reaches a certain element of (S′

F )i , which can be
far away. We have to explain how this element can be found,
considering that the Leader may not be able to measure this
distance by counting. We can assume this element to be a
super-vertex: if it is a super-edge lying on βi , then βi also
contains the two super-vertices that bound it, and the Leader
may as well reach one of those instead.

Observe that, as the Leader executes the above steps, it
always knows inwhich element of (S′

F )i it is located, because
it can keep track of it using only a constant amount of mem-
ory.

Now, suppose that the Leader is located on a super-vertex
u1 on βi and has to move to another super-vertex u2, always
on βi , while pulling the repository. Obviously, the distance
between u1 and u2 is λ times the distance between the cor-
responding vertices in the minimal shape SF , which in turn
is a known value that is bounded by a constant (because the
base size of SF is a constant). It follows that the Leader can
measure this distance if it can count to λ.

If the current repository contains a chunk corresponding
to a (partial) super-edge or a (partial) super-triangle, then the

Leader has enough particles at its disposal to count to λ in
binary, and the problem is solved.

So, let us study the case in which the current repository
only contains chunks corresponding to super-vertices. We
deduce that all the super-edges of (S′

F )i have already been
formed, and the Leader has to reach u2 to form a super-vertex
v.

Suppose first that v is not on βi . Then, there is a path
consisting of super-edges and super-vertices of (S′

F )i that
connects u2 with v (due to theway the elements of (S′

F )i have
been selected by theLeader; see Sect. 3.6). In particular, there
is an edge e, combinatorially adjacent to u2, that has already
been formed. So, the Leader can simply proceed along βi
until it finds a particle with Role identifier corresponding
to e among its neighbors. When it finds such a particle, the
Leader is in u2.

Now suppose that v is on βi , and so u2 = v. Recall from
Sect. 3.6 that, if the Leader has selected u2 to be part of
(S′

F )i , then it has also selected a (partial) super-edge e that
is combinatorially adjacent to it. Again, since e has already
been formed, the Leader can proceed along βi until it finds
a neighbor with Role identifier corresponding to e.

Forming shapes with no triangles So far, we have ignored
the presence of Double particles, i.e., particles that have to
be expanded in the final configuration. Next we will explain
how to handle them in the shape composition algorithm.

The issues arise from the fact that a Leader has to be able to
move through contracted particles to reach different elements
of (S′

F )i , as well as pull chains of particles that are supposed
to be contracted. In the shape composition algorithm, this
happenswhen theLeader has to forman element that is reach-
able from βi through a path W consisting of super-vertices
and super-edges. If W contains Double particles, which are
either expanded or leave gaps between particles, then these
operations are not straightforward.

We first consider the case in which SF has no triangles
and consists only of edges. Recall from Theorem 8 that, in
this case, all the Double particles are in a single chunk c
that corresponds to a (partial) super-edge e. Note that which
chunk actually contains the Double particles is irrelevant for
the purposes of shape formation, and so we can choose to put
them in a convenient chunk.

The chunk c′ we choose is the one corresponding to the
super-edge e′ that is last in the list Li . To do the switch, the
Leader simply checks the Role identifiers of all the particles
in the repository, and changes each occurrence of the identi-
fier corresponding to e into the one corresponding to e′, and
vice versa.

The advantage of choosing e′ is that it will never be part
of a path W that the Leader has to follow to reach the next
element to form, except perhaps if such an element is a spe-
cific super-vertex v′ that is combinatorially adjacent to e′.
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So, if v′ appears in the list Li after e′, the Leader first sees
if it can move v′ before e′ while respecting the constraints
that define Li . This is possible if and only if (S′

F )i has a
super-edge distinct from e′ that is combinatorially adjacent
to v′. If this is not the case, the Leader merges the two chunks
corresponding to e′ and v′, and hence it will form e′ and v′
in a single step, as if they were a slightly longer super-edge.

So, all the elements of (S′
F )i except e′ and perhaps v′ are

formed as explained in the main shape composition algo-
rithm. Indeed, if v′ has to be part of a path W as defined
above, then it means that v′ has a combinatorially adjacent
super-edge in (S′

F )i other than e′, and so v′ has been formed
as normal, and its chunk has not been merged with the one
of e′.

We just have to show how to form e′, and perhaps v′ if it
is formed in the same step. The algorithm works as normal,
until the chunk that is going to form e′ (and perhaps v′) has
been pulled up to a point where one of its particles neighbors
an endpoint of e′. Then, the following steps are executed:

– The Leader pulls the chunk along e′ (also pulling the path
W and the repository, as usual) until the last particle of
the chunk has entered e′.

– The Leader makes the particle on which it currently is
into a Puller (by setting an internal flag).

– The Leader leaves e′ and proceeds with the algorithm as
normal. The Puller waits for the Leader to leave e′.

– The Puller starts another pulling procedure. When the
last Double particle of e′ is pulled, it expands and sends
a Movement-Done message to its Predecessor without
contracting again.

– The above step is repeated until all the Double particles
of the chunk are expanded.

Forming shapeswith trianglesFinally,we consider the case
in which SF has at least one triangle. According to Theo-
rem 8, in this case all the Double particles are in chunks
corresponding to (partial) super-triangles. So, all the paths
consisting of super-vertices and super-edges that the Leader
has to traverse to reach new elements of (S′

F )i are unaffected
by Double particles. Therefore, the shape composition algo-
rithmworks aswe already explained, except for the formation
of (partial) super-triangles.

In the following, we will explain how to form a (partial)
super-triangle t whose corresponding chunk c may contain
Double particles. Recall that c enters t through an endpoint of
a combinatorially adjacent (partial) super-edge, and therefore
it starts covering t from one of its three corners.

Suppose first that t is a super-triangle. The algorithm is
roughly the same as the one already used above for the super-
edges, except that now the Leader has to fill a triangle t . The
steps are as follows (refer to Fig. 9):

– The Leader pulls c (as well as the pathW and the reposi-
tory) following the boundary of t in the counterclockwise
direction for λ − 2 steps, thus covering one of its sides.
The Leader can count to λ−2 as usual, representing λ−2
in the states of the particles of c.

– The Leader turns counterclockwise by 120◦ and pulls for
another λ − 3 steps, covering another side of t .

– The Leader turns counterclockwise by 120◦ and pulls
until it finds a particle in front of it.

– The previous step is repeated until the last particle of c
enters t .

– The Leader makes the particle on which it currently is
into a Puller.

– The Leader leaves t (following the chain it just pulled)
and proceeds with the shape composition algorithm. The
Puller waits for the Leader to leave t .

– The Puller pulls c, turning counterclockwise by 120◦ if it
finds a particle in front of it.When the lastDouble particle
of c is pulled, it expands and sends a Movement-Done
message to its Predecessor without contracting again.

– The above step is repeated until all the Double particles
of the c are expanded.

If t is a partial super-triangle, the algorithm is almost iden-
tical, with the only difference that now the Leader does not
have to cover the perimeter of an equilateral triangle with
sides of length λ−3, but of an isosceles trapezoid with sides
of length (λ − 4)/3, (λ − 4)/3, (λ − 4)/3, and 2(λ − 4)/3.

Correctness We can now prove the correctness of the uni-
versal shape formation algorithm.

Theorem 9 Let P be a system of n particles forming a simply
connected shape S0 at stage 0. Let SF be a shape of constant
base size m that is unbreakably k-symmetric if S0 is unbreak-
ably k-symmetric. If all particles of P execute the universal
shape formation algorithm with input a representation of the
final shape SF , and if n is at least Θ(m3), then there is a
stage, reached after O(n2) rounds, where P forms a shape
equivalent to SF . The total number of moves performed by P
up to this stage is O(n2), which is asymptotically worst-case
optimal; particles no longer move afterwards.

Proof Under these assumptions, Theorems 3–8 apply. So, we
can assume that at some stage the particles will be found on
k directrices, each containing exactly one Leader particle.
Moreover, if k > 1, then SF is unbreakably k-symmetric.
The Leaders have implicitly agreed on a shape S′

F and have
split its elements among each other. Since the handedness
on which the particles agree (cf. Theorem 5) may not be the
“real” one, S′

F may actually be a reflected copy of SF . How-
ever, the definition of the shape formation problem allows
for any similarity transformation of the shape, which include
reflections (see Sect. 2).
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(a) The chunk is pulled along the arrow. (b) The Double particles expand to cover the super-
triangle.

Fig. 9 Formation of a super-triangle by a chunk containing some double particles. The double particles are drawn in white; the other particles in
the chunk are drawn in gray

If k = 1, the correctness of the shape composition algo-
rithm follows by construction. If there is more than one
Leader, we only have to show that different Leaders will
never interfere with each other, and their respective teams
will never get in each other’s way. This is because differ-
ent teams are confined to move within different regions of
GD throughout the phase. This is obvious if the k teams are
all executing the preliminary relocation step or if they are
all executing the main composition algorithm. Suppose now
that k = 3, and one team is moving from its directrix γi to
the backbone βi , while another team is already executing the
main composition algorithm. Recall from Sect. 3.6 that all
the elements of S′

F that are incident to the co-backbone ray
β ′
i are selected by the Leader of γi to be part of (S′

F )i : these
are precisely the elements that are incident with γi , as well.
So, as particles are being pulled from γi to βi , they only pass
through elements that have been selected by their Leader,
making it impossible for them to encounter particles from
other teams.

Let us count the total number of moves of P and the num-
ber of rounds it takes to form S′

F . Up to the beginning of the
shape composition phase, P performs at most O(n2) moves
in at most O(n2) rounds, as Theorems 3–8 imply. When a
Leader relocates its team onto the backbone, it pulls all the
particles at most O(n) times, and the total number of moves,
as well as rounds, is at most O(n2). Then, in order to form
one element of S′

F , a Leader may have to pull at most O(n)

particles for at most O(n) times along the backbone to get
the chunk into position: this yields at most O(n2) moves
and rounds. Then it has to pull at most O(n) particles for a
number of times that is equal to the size of the element of
S′
F , which is O(n). Since the number of elements of S′

F is
bounded by a constant, this amounts to at most O(n2)moves
and rounds, again. All other operations involve only message
exchanges and no movements, so the O(n2) upper bound on
the number of moves follows. Due to the matching lower

bound given by Theorem 2, our universal shape formation
algorithm is asymptotically worst-case optimal with respect
to the number of moves.

To conclude, observe that shifting chunks within a repos-
itory, computing polynomial functions of λ, and using them
as counters takes O(n2) rounds overall, since this has to be
done at most once per chunk, i.e., a constant number of times.
So, the upper bound of O(n2) rounds follows, as well. ��

4 Conclusion and further work

We have described a universal shape formation algorithm
for systems of particles that performs at most O(n2) moves,
which is asymptotically worst-case optimal. The number of
rounds taken to form the shape is O(n2) as well: with a
slight improvement to the last phases of our algorithm, we
can reduce it toO(n log n) rounds, and the example described
in Theorem 2 yields a lower bound of Ω(n) rounds. Deter-
mining an asymptotically optimal bound on the number of
rounds is left as an open problem.

We have established that, given a shape SF of constant size
m, a systemofn particles can forma shapegeometrically sim-
ilar to SF (i.e., essentially a scaled-up copy of SF ) starting
from any simply connected configuration S0, provided that
SF is unbreakably k-symmetric if S0 is, and provided that n
is large enough compared tom. We only determined a bound
of Θ(m3) for the minimum n that guarantees the formability
of SF . We could improve it to Θ(m) by letting the Double
particles be in any chunk and adopting a slightlymore sophis-
ticated pulling procedure in the last phase. We may wonder
if this modification would make our bound asymptotically
optimal.

When discussing the role assignment phase, when the par-
ticles are arranged along straight lines, we have argued that
the system can compute any predicate that is computable by
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a Turing machine on a tape of limited length. If we allow the
particles to move back and forth along these lines to simulate
registers, we only need a (small) constant number of particles
to implement a full-fledged Turing machine with an infinite
tape. So, in the role assignment phase, we are actually able
to compute any Turing-computable predicate (although we
would have to give up our upper bounds of O(n2)moves and
stages).

With this technique, we are not only able to replace our
Θ(m3) with the best possible asymptotic bound in terms of
m, but we have a universal shape formation algorithm that,
for every n and every SF , lets the system determine if n parti-
cles are enough to form a shape geometrically similar to SF .
This is done by examining all the possible connected con-
figurations of n particles and searching for one that matches
SF , which is of course a Turing-computable task.

Taking this idea even further, we can extend our notion
of shape to its most general form. Recall that the shapes
considered in [10] were sets of “full” triangles: when a shape
is scaled up, all its triangles are scaled up and become larger
full triangles. In this paper, we extended the notion of shape
to sets of full triangles and edges: when an edge is scaled
up, it remains a row of points. Of course, we can think of
shapes that are not modeled by full triangles or edges, but
behave like fractals when scaled up. For instance, we may
want to include discretized copies of the Sierpinski triangle as
“building blocks” of our shapes, alongside full triangles and
edges. Scaling up these shapes causes their “resolution” to
increase and makes finer details appear inside them. Clearly,
the set of all the scaled-up and discretized copies of a shape
made up of full triangles, edges, and Sierpinski triangles is
Turing-computable.

Generalizing, we can replace our usual notion of geomet-
ric similarity between shapes with any Turing-computable
equivalence relation ∼. Then, the shape formation prob-
lem with input a shape SF asks to form any shape S′

F such
that SF ∼ S′

F . This definition of shape formation problem
includes and greatly generalizes the one studied in this paper,
and even applies to scenarios that are not of a geometric
nature. Nonetheless, this generalized problem is still solv-
able by particles, thanks to the technique outlined above.
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