
Gathering and Election by Mobile Robots in a1

Continuous Cycle2

Paola Flocchini3

School of Electrical Eng. and Comp. Sci., University of Ottawa, Ottawa, ON, K1N 6N5, Canada.4

Ryan Killick5

School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada.6

Evangelos Kranakis7

School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada.8

Nicola Santoro9

School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada.10

Masafumi Yamashita11

Dept. of Comp. Sci. and Comm. Eng., Kyushu University, Motooka, Fukuoka, 819-0395, Japan.12

Abstract13

Consider a set of n mobile computational entities, called robots, located and operating on a continuous14

cycle C (e.g., the perimeter of a closed region of R2) of arbitrary length `. The robots are identical,15

can only see their current location, have no location awareness, and cannot communicate at a16

distance. In this weak setting, we study the classical problems of gathering (GATHER), requiring all17

robots to meet at a same location; and election (ELECT), requiring all robots to agree on a single one18

as the “leader”. We investigate how to solve the problems depending on the amount of knowledge19

(exact, upper bound, none) the robots have about their number n and about the length of the cycle20

`. Cost of the algorithms is analyzed with respect to time and number of random bits. We establish21

a variety of new results specific to the continuous cycle – a geometric domain never explored before22

for GATHER and ELECT in a mobile robot setting; compare Monte Carlo and Las Vegas algorithms;23

and obtain several optimal bounds.24

2012 ACM Subject Classification Theory of computation → Distributed algorithms25

Keywords and phrases Cycle, Election, Gathering, Las Vegas, Monte Carlo, Randomized Algorithm26

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.1127

Acknowledgements Paola Flocchini: University Research Chair28

Paola Flocchini, Evangelos Kranakis, Nicola Santoro: Research supported in part by NSERC29

Discovery grant.30

Ryan Killick: Research supported by the NSERC Canada Graduate Scholarship31

1 Introduction32

1.1 The Framework33

Consider a distributed system composed of a set R of autonomous mobile computational34

entities, called robots, located and operating in an Euclidean space U . The robots are35

identical: without identifiers or distinguishing features, they have the same capabilities and36

execute the same algorithm. Although autonomous, their goal is to collectively perform some37

assigned system task or to solve a given problem. Among the important tasks and problems38

are: gathering (GATHER), requiring all robots to meet at a same location; and election39

(ELECT), requiring all robots to agree on a single one as the “leader". Indeed, GATHER is40

one of the fundamental problems in theoretical mobile robotics, while ELECT is typically41

solved as an intermediate step in the resolution of many important problems, in particular42

© Paola Flocchini, Ryan Killick, Evangelos Kranakis, Nicola Santoro, and Masafumi Yamashita;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Gathering and Election by Mobile Robots in a Continuous Cycle

pattern formations. Both GATHER and ELECT have been extensively investigated under43

a variety of assumptions on the capabilities of the robots (e.g., memory, communication,44

visibility, orientation, speed), on the space in which they operate, and on the power of the45

adversary. From the point of view of the behaviour of the robots, the two main models are46

Look-Compute-Move (LCM) and Continuous Time (CT). In LCM the robots operate by47

cycling through three separate processes: observing the space (Look), executing the algorithm48

to determine a destination (Compute), and moving towards it (Move). In CT the robots are49

permanently active and continuosly performing all three processes. For a recent overview see50

[15] and the chapters therein.51

In all investigations, in both models, the theoretical concern is to identify the weakest52

possible conditions that make the problems solvable.53

In this paper, we consider GATHER and ELECT by identical robots when the space U54

is a continuous cycle C (e.g., the perimeter of a closed region of R2). This spatial setting55

has been investigated in the LCM model with respect to the scattering problem, requiring56

identical robots to place themselves at uniform distance along the cycle [13]. In the CT57

model, a continuous cycle has been studied in the context of solving patrolling when the58

robots are identical [9] and when they have different motorial capabilities [7]; gathering has59

also been investigated, but only with robots having different motorial capabilities [22].60

We study GATHER and ELECT in the CT model in a very weak computational setting:61

the identical robots can only see their current location and have no location awareness;62

furthemore they cannot communicate at a distance (i.e., communication is possible only63

between robots located at the same point at the same time).64

It is immediate to observe that, in our setting, both problems are deterministically65

unsolvable: there is no deterministic algorithm that, in all possible executions of the algorithm66

by the robots and regardless of the initial position of the robots in the cycle, will always67

correctly solve the problem within finite time. This is obvious in the case of ELECT because,68

to render a single robot uniquely different from all others it requires the existence of some69

asymmetry in the system (e.g., in the initial placement of the robots, in shape of the Euclidean70

space) if no difference is present among the robots (e.g., distinct ids, different speeds). In71

our setting the impossibility holds also for GATHER, which does not have such a stringent72

requirement, and can sometimes be deterministically solved in absence of asymmetries and73

differences among the robots (e.g. [5]). Further observe that, since visibility is limited to the74

current robot’s location, in our setting both problems are deterministically unsolvable even if75

the initial configuration is asymmetric, and the robots are aware of this fact. Summarizing,76

the only possible solution algorithms are randomized ones.77

1.2 Main Contributions78

In this paper we start the investigation of solving GATHER and ELECT by the set of robots79

R deployed in a continuous cycle C. Since GATHER is of easy resolution once a leader has80

been elected, we primarily focus on ELECT.81

We propose both Las Vegas and Monte Carlo decentralized election protocols where: a82

Las Vegas algorithm correctly teminates with probability one in an unpredictable amount of83

time; a Monte Carlo algorithm has a fixed termination time but pays for this determinism84

with a positive – yet bounded – probability that it has terminated incorrectly. In other words,85

a Las Vegas algorithm “gambles with resources” and a Monte Carlo algorithm “gambles with86

correctness”.87

We evaluate the complexity of the proposed algorithms with respect to two cost measures:88

the time until the algorithm terminates, and the total number of random bits (coin flips)89

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 11:3

required by the algorithm. The costs depend not only on the length ` of the cycle and the90

number n of mobile robots (note that n can be arbitrarily larger than `), but also and more91

importantly on the knowledge (none, exact, upper bound) the robots have on ` and/or n.92

We estabish several results. In particular, we prove that, with knowledge of `, a leader93

can be elected with probability one in optimal time with an optimal number of random bits,94

even without any knowledge of (an upper bound on) n. If only an upper bound L = O (`) is95

known, then a leader can be elected with high probability in optimal time with an optimal96

number of random bits, even without any knowledge of (an upper bound on) n.97

The results of the paper are summarized in Tables 1 and 2. As we are analyzing98

randomized algorithms, the cost measures are often random variables; when this is the case,99

we give both the value achieved in the average and that with high probability.100

Table 1 Results according to the knowledge of the robots (“Ex.” = exact, “-” = no knowledge,
“UB” = upper bound). Texp (resp. BexP) represents the expected time (resp. random-bit) complexity.
The column “Type” gives the type of randomized algorithm (LV = Las Vegas, MC = Monte Carlo).
The last column gives the corresponding algorithm label in the text. When an upper bound on
` (resp. n) is known it is represented by L (resp. N); and the constructed upper bound on n is
N̂ = Ln

`
.

n ` Texp Bexp Type Algo.
Ex. UB O (L) O (n) LV A1
Ex. - O (n + `) O (n + n log d`/ne) LV A1 + A7
- Ex. O (`) O (n) LV A1 + A6

UB UB O (L) O (n) MC A3
UB - O (N + N · `/n) O (n + n log d`/ne) MC A3 + A7
- UB O (L) O (n) MC A3+A8

Table 2 Same as Table 1 for time and bit complexities with high probability.

n ` Twhp Bwhp Type Algo.
Ex. UB O (L log n) O (n log n) LV A1
Ex. - O (n + ` log n) O (n log n + n log d`/ne) LV A1 + A7
- Ex. O (` log n) O (n log n) LV A1 + A6

UB UB O (L log N) O (n log N) MC A3
UB - O (N + N · `/n · log N) O (n log n + n log d`/ne) MC A3 + A7
- UB O

(
L log N̂

)
O
(
n log N̂

)
MC A3+A8

The paper is organized as follows. We first consider the case when the robots have some101

level of knowledge (exact or upper bound) of both parameters (Section 3). We prove that,102

when the robots possess knowledge of n, the knowledge of an upper bound L = O (`) allows103

for a LV solution which is optimal with respect to both complexity measures. In case the104

robots know only upper bounds on both n and `, we give a Monte Carlo algorithm. In105

Section 4 we consider the cases when the robots have no knowledge (exact nor upper bound)106

of one of the two parameters. In these cases we provide Las Vegas algorithms by which the107

robots can obtain knowledge of the unknown parameter efficiently, and subsequently elect a108

leader using the algorithms of Section 3. In Section 5 we demonstrate that unless the robots109

know n and/or ` exactly, a Las Vegas algorithm cannot exist that solves ELECT. Extensions,110

including the solutions for GATHER using the results for ELECT, and open questions are111

discussed in Section 6.112

ISAAC 2019

11:4 Gathering and Election by Mobile Robots in a Continuous Cycle

1.3 Related work113

There exists an extensive literature on problem solving by n identical mobile robots in114

continuous spaces, both within the distributed computing and the control communities;115

e.g., see the books [4, 14, 15]. In distributed computing, the problem of gathering identical116

robots has been the focus of intensive investigations under a variety of assumptions on117

the computational power and communication capabilities of the robots (e.g., [5, 6, 16, 27]).118

Similarly, the problem of electing a leader and its relationship to asymmetry has been119

observed, investigated and discussed when studying solvability of a variety of problems120

by autonomous mobile robots, in particular pattern formations (e.g., [10, 17, 19]). Indeed,121

a great deal of research has been devoted to the link between degree of symmetries and122

deterministic problem solving; see [15] and chapters therein for a recent account, in particular123

[30]. Almost all of this work is on deterministic solutions, with few exceptions (e.g., [20]).124

Robots operating specifically in a continuous cycle have been studied in the context of125

rendezvous and gathering, but only with robots having different motorial capabilities [11, 22].126

Other investigated problems in a continuous cycle are: patrolling, studied both when the127

robots are identical and when they have different motorial capabilities (e.g. see [7, 8, 9]);128

and scattering, where the robots must place themselves at uniform distance on the cycle [13].129

The geometric continuous settings in which the mobile entities can move freely are130

in general more suitable than discrete settings for distributed computing applications in131

robotics [4]. This is further enforced by the fact that after a system shut-down in a robot132

application the participating robots cannot be guaranteed to occupy the vertices of a graph133

but rather might be placed at arbitrary locations in the underlying geometric domain.134

Settings of identical mobile entities operating in discrete spaces (i.e., in graphs) are135

extremely important as they naturally describe a wide variety of computational environments,136

including networked systems supporting mobile software agents, and ad-hoc wireless networks.137

In these settings, the analogue of a set of mobile robots in a continuous cycle is a set of138

identical mobile agents in a ring of identical nodes. Interestingly, this discrete setting has been139

extensively studied, especially for rendezvous and gathering; e.g., see the monograph [26]. In140

absence of distinct features of the agents and of the nodes (e.g., ids, markers, tokens), solutions141

are necessarily randomized, and their development has been the object of several investigations.142

In particular Ooshita et al. studied the gathering problem in anonymous unidirectional ring143

networks for multiple (mobile) agents with limited knowledge and characterized the relation144

between probabilistic solvability and termination detection [29]. Izumi et al. investigated145

the feasibility of polynomial-expected-round randomized gathering for n robots and show146

that any randomized algorithm has Ω(exp(n)) expected-round lower bound [24].147

In the computational universe of static (or stationary) entities connected via a commu-148

nication network (i.e. the traditional message-passing universe in distributed computing),149

the computational entities coincide with the network nodes (i.e., the nodes are the active150

agents). Note that, in this universe, the problem GATHER does not exist; on the other hand,151

ELECT is a fundamental problem. When the entities are identical, the system is known as152

an anonymous network, and several researchers have focused on computing in an anonymous153

ring (e.g., [1, 2, 12]). The problem of electing a leader in an anonymous network, known154

also as symmetry breaking and for which clearly only probabilistic solutions exist, has been155

investigated in an anonymous ring network (e.g., [3, 18, 23]). In particular, Itai and Rodeh156

proposed probabilistic algorithms for both the synchronous and asynchronous case; they157

considered both cases when the size of the ring may be either known or unknown to the158

nodes and studied its impact on termination with a nonzero probability [23].159

Interestingly, of all the related work, the one closest in spirit to our investigation is that160

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 11:5

of symmetry breaking in an anonymous ring, in spite of the fact that the computational161

universes are completely different: static entities and discrete space in one while mobile162

entities and continuous space in ours.163

2 Model164

Let R be a set of n ≥ 2 autonomous mobile computational entities, called robots, located in165

a continuous cycle C (e.g., the perimeter of a closed region of R2) of real length ` in arbitrary166

and pairwise distinct positions.167

The robots are identical: without identifiers or distinguishing features, they have the same168

(computational, motorial and communication) capabilities and execute the same algorithm.169

We assume that all robots move at speed one. Each robot r ∈ R has a local memory170

composed of a finite set of registers, including a special register state(r) which stores the171

current state of r; initially, the content of the memory of every robot is the same. Each robot172

is in possession of a fair coin which outputs H or T each with probability 1/2. At any time173

a robot may flip its coin and base a decision on the outcome of that flip. For a robot r we174

will use the notation b(r) to represent a special register which always contains the outcome175

of its most recent coin-flip. We will use the notation b(r)← flip() to represent the action of176

flipping a coin and assigning the outcome to b(r).177

The robots can only see their current location and have no location awareness. Furthermore178

they cannot communicate at a distance; that is, communication is possible only between179

robots located at the same point at the same time (face-to-face). A robot may move along180

C in either the cw (clockwise) or ccw (counter-clockwise) direction and may stop and/or181

reverse its direction of movement at any time. For simplicity, we will assume that the robots182

have consistent orientations and argue in Section 6 why this assumption is not necessary.183

The robots are permanently active and continuously performing three processes: executing184

the algorithm (which might require flipping a coin), moving in a given direction or not at185

all (if so prescribed by the algorithm), and communicating with co-located robots. A robot186

can distinguish among its co-located robots and is able to instantaneously exchange any187

amount of information with each of them. When two robots moving in opposite directions188

meet, or a moving robot meets a stopped robot, the two robots become co-located; we call189

this an encounter. During an encounter, one of the robots can decide to merge with the190

other, thereby comitting itself to following all actions of the robot it has merged with. As a191

result of this process, robots will form robot stacks with the head of the stack the only robot192

actively participating in an algorithm (the stack acts as a single robot). A robot r will keep193

track of the number of robots present in its stack in a special register denoted by cnr(r).194

We assume a fully synchronous system in the following sense. Each robot possesses an195

identical copy of the same clock and each robot can use their respective clocks to measure196

arbitrarily small intervals with respect to the same unit of time (which we may take to be 1197

without loss of generality). All robots will begin an algorithm at the same moment and all198

robots move with the same speed (which we may also take to be 1 without loss of generality).199

This implies that robots can fix a unit length as the distance traveled in one unit of time.200

We study how such robots can solve ELECT and GATHER, and at what cost. The election201

problem, ELECT, requires the robots to transition from an initial configuration where each202

robot is in an identical state, to one where a single robot can be uniquely distinguished203

from the others. When solving this problem, we will assume the robots can be found in204

one of the three states CANDIDATE, FOLLOWER, or LEADER. The gathering problem,205

GATHER, requires the robots to transition from an initial configuration where each robot is206

ISAAC 2019

11:6 Gathering and Election by Mobile Robots in a Continuous Cycle

in an identical state, to one where all robots are co-located and will no longer move. Since207

GATHER is of easy resolution once a leader has been elected, we primarily focus on ELECT.208

We distinguish between two types of randomized algorithms: those of the Las Vegas type209

and those of the Monte Carlo type [28, 21]. An algorithm is of the Las Vegas type, if, for210

any problem instance, it is correct when it terminates and it terminates with probability 1.211

In contrast, an algorithm is of the Monte Carlo type if, for any problem instance, it always212

terminates and it is correct with a probability p which is bounded away from zero.213

The costs of a solution algorithm are evaluated with respect to two measures: 1) time214

complexity – the time until the algorithm terminates; and 2) random-bit complexity – the215

total number of random bits/coin flips used by the algorithm. The costs depend not only on216

the system parameters, the length ` of the cycle and the number n of mobile robots, but also217

and more importantly on the type of knowledge available to the robots about the values of218

those parameters. As we are analyzing randomized algorithms, these complexity measures219

will often be random variables. When this is the case, we will give the value achieved in the220

average and with high probability.221

3 Election with knowledge of both n and `222

In this section we consider ELECT when the robots possess knowledge of both n and ` (either223

exact or upper bounds). We begin with the case that the robots have exact knowledge.224

Pseudocode for all algorithms can be found in the appendix.225

3.1 Exact knowledge of n and `226

I Theorem 1. Let n and ` be known to the robots. There is a Las Vegas algorithm solving227

ELECT which terminates in time O (`) on average and in time O (` logn) with high probability;228

and requires O (n) random bits on average and O (n logn) with high probability.229

The proof is based on the algorithm ElectLV(n, `). This algorithm is formally described230

as Algorithm 1 and takes as inputs the number of robots n and the length of the cycle `.231

Initially all robots begin in the same CANDIDATE state and each robot r has cnr(r) set232

to 1. The algorithm proceeds in a series of rounds beginning with the round t = 0. In each233

round the CANDIDATE robots will run the procedure ElectionRound(D) with input234

Dt = min{ `
2 ,

`
n (4/3)t}, the result of which is that a subset of the robots merge and enter the235

FOLLOWER state. This will continue on until only a single CANDIDATE robot remains236

with a stack containing all n robots. As the robots know the value of n, this last remaining237

robot will know it is the last and will thus enter the LEADER state.238

The procedure ElectionRound(D) is formally described as Algorithm 2. The idea of239

this procedure is as follows. Each robot begins by flipping a coin. Those that flip T will240

remain stationary for a time 4Dt. Those that flip H will: move ccw a distance Dt; return241

to their initial positions; move cw a distance Dt; and again return to their initial positions.242

If ever it occurs that a robot r who flipped H encounters a robot s who flipped T then s will243

merge with r and r will update the value of cnr(r) to reflect this.244

We begin our analysis by determining how effective the procedure ElectionRound(D)245

is at reducing the number of candidates. This will be the subject of the next two lemmas.246

I Lemma 2. Let n and n′ respectively represent the number of CANDIDATE robots before247

and after ElectionRound(D) is run with input D > 0. Then E[n′] ≤ n
2 + 1

2
⌈

`
2D

⌉
.248

Proof. Partition the cycle into m =
⌈

`
2D

⌉
disjoint intervals such that each interval has length249

`
m ≤ 2D. For each i ∈ [1,m] let ni and n′i respectively represent the number of CANDIDATE250

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 11:7

robots contained in the ith interval at the beginning and end of ElectionRound(D). Then251

it is clear that n =
∑m

i=1 ni and n′ =
∑m

i=1 n
′
i. This latter expression allows us to write the252

expectation of n′ as follows:253

E[n′] =
m∑

i=1
E[n′i] =

m∑
i=1

ni∑
x=1

xPr[n′i = x]. (1)254

To determine the probability Pr[n′i = x] consider the ith interval which initially contains255

ni > 0 CANDIDATE robots. If at least one of these ni robots flipped H then the number of256

them that will remain CANDIDATE is exactly the number of them that flipped H. Thus, if257

we let ki represent the random variable which counts the number of CANDIDATE robots258

that flipped H in an interval i then we can conclude that Pr[n′i = x|ki ≥ 1] = 1 if x = ki and 0259

otherwise. For x ∈ [1, ni] this implies that Pr[n′i = x] =
∑ni

j=0 Pr[n′i = x|ki = j] Pr[ki = j] or260

Pr[n′i = x] = Pr[ki = x] + Pr[n′i = x|ki = 0] Pr[ki = 0]. Using this expression for Pr[n′i = x]261

we find that E[n′i] =
∑ni

x=0 xPr[ki = x] +
∑ni

x=0 xPr[n′i = x|ki = 0] Pr[ki = 0].262

It is not hard to see that ki is binomially distributed with parameters ni and p =263

1/2 implying that
∑ni

x=0 xPr[ki = x] = ni/2, and that Pr[ki = 0] = (1/2)ni . The sum264 ∑ni

x=0 xPr[n′i = x|ki = 0] represents the expected number of CANDIDATE robots surviving265

in an interval i given that they all flipped T. Clearly this expectation is bounded by ni and266

we can thus conclude that E[n′i] ≤ ni

2 + ni

(1
2
)ni ≤ ni

2 + 1
2 .267

To bound the expectation of n′ we can substitute this inequality into (1) to get E[n′] =268 ∑m
i=1 E[n′i] ≤

∑m
i=1
(

ni

2 + 1
2
)

= n
2 + m

2 where we have used the fact that n =
∑m

i=1 ni in the269

last step. Since m =
⌈

`
2D

⌉
the lemma follows. J270

I Lemma 3. Let nt count the number of CANDIDATE robots remaining in round t ≥ 0 of271

ElectLV(n, `). Then E[nt] ≤
⌈(3

4
)t
n
⌉
.272

Proof. The proof is by induction on t. The base case t = 0 is clearly true. We assume that273

the claim holds up to t = k. Using the induction hypothesis and Lemma 2 we can write274

E[nk+1] ≤ 1
2

⌈(3
4
)k
n
⌉

+ 1
2

⌈
`

2Dk

⌉
where Dt = min

{
`
2 ,

`
n

(4
3
)t
}
. The lemma clearly holds if275

Dk ≥ `
2 . If this is not the case then Dk = `

n

(4
3
)k and again it is easy to see that the lemma276

holds. J277

In the next three lemmas (Lemma 4, Lemma 5, and Lemma 6) we bound the number of278

rounds, time, and random-bits required until only a single candidate robot remains. In order279

to do so we will employ a useful theorem by Karp [25] concerning the solutions of stochastic280

recurrence relations. This theorem is described in the appendix as Theorem 22.281

I Lemma 4. Let T be the first round of ElectLV(n, `) in which only a single CAN-282

DIDATE robot remains. Then E[T] ≤
⌊
log4/3(n)

⌋
+ 1 and, for any positive integer w,283

Pr
[
T ≥

⌊
log4/3(n)

⌋
+ 1 + w

]
≤
(3

4
)w n

(4/3)blog4/3(n)c .284

Proof. Observe that T = T (n) satisfies the stochastic recurrence relation T (n) = 1 +T (h(n))285

with base condition T (1) = 0 and where the expectation of h(n) is bounded using Lemma 3,286

i.e., E[h(n)] ≤
⌈ 3

4n
⌉
. With this observation the lemma follows easily from Theorem 22. J287

I Lemma 5. Let τ be the time required until only a single CANDIDATE robot remains288

in ElectLV(n, `). Then E[τ] ≤ 8L and, for any positive integer w, Pr[T ≥ 2L(4 + w)] ≤289 (3
4
)w n

(4/3)blog4/3(n)c .290

ISAAC 2019

11:8 Gathering and Election by Mobile Robots in a Continuous Cycle

Proof. Set tL as the first round which satisfies L/n(4/3)t ≥ L/2, i.e. tL =
⌈
log4/3(n/2)

⌉
.291

Assume that it takes T > tL rounds until only one CANDIDATE robot remains. The time292

τ required to complete these T rounds is τ = 4 L
n

∑tL−1
t=0 (4/3)t + 2

∑T
t=tL

L ≤ 12 L
n (4/3)tL +293

2(T − tL)L ≤ 8L+ 2(T − tL). The lemma now follows from Lemma 4. J294

I Lemma 6. Let B be the random variable which counts the number of coin-flips used in295

ElectLV(n, `). Then E[B] ≤ 4n and, for any positive integer w, Pr[T ≥ (4 +w)n] ≤
(3

4
)w.296

Proof. Similarly to the proof of Lemma 4 we observe B = B(n) satisfies the stochastic297

recurrence relation B(n) = n + B(h(n)) with base condition B(1) = 0 and where h(n)298

has expectation E[h(n)] ≤
⌈ 3

4n
⌉
. With this observation the lemma follows easily from299

Theorem 22. J300

The proof of Theorem 1 now follows immediately from Lemmas 5, and 6.301

3.2 Inexact knowledge of n and/or `302

We now consider the cases that the robots are provided with inexact knowledge (upper303

bounds) of at least one of n or `. We begin with the case that the robots know n and an304

upper bound on `.305

Observe that nowhere in the proof of Theorem 1 did we require the robots to know306

exactly the value of `. In particular, if the robots were to instead use an upper bound L on `307

then the only change we need to make is to replace ` with L in the time complexity. This308

observation thus easily leads to the following corollary of Theorem 1:309

I Corollary 7. Let n and an upper bound L ≥ ` be known to the robots. There is a Las310

Vegas algorithm solving this problem which terminates in time O (L) on average and in time311

O (L logn) with high probability; and requires O (n) random bits on average and O (n logn)312

with high probability.313

The same argument does not work if the robots know ` and an upper bound N ≥ n since314

ElectLV requires the exact value of n in order to terminate. We will see in the next section315

that exact knowledge of ` however allows the robots to determine n and we will therefore316

postpone a discussion of this case until then.317

If the robots only possess upper bounds on both n and ` then a Las Vegas algorithm does318

not exist (see Section 5). We thus provide a Monte Carlo algorithm (Algorithm 3) to solve319

the problem.320

I Theorem 8. Let upper bounds N ≥ n and L ≥ ` be known to the robots. Then, for any321

positive integer w there is a Monte Carlo algorithm solving ELECT with error probability322

O ((3/4)w). This algorithm terminates in time O (wL) and requires O (wn) random bits.323

Proof. The proof is based on the algorithm ElectMC(N,L,w) which takes as inputs the324

upper bounds N and L, and a positive integer w which controls the runtime. This algorithm325

is formally described as Algorithm 3. This algorithm is identical to ElectLV(N,L) except326

that it deterministically terminates on the round t∞ =
⌈
log4/3(N)

⌉
+ w. We may therefore327

reuse many of our previously derived results. In particular, the time τ until termination328

follows from the proof of Lemma 5 and is given by τ = 8L + 2(w + 1)L. The random-bit329

complexity follows from Lemma 6. The error probability of the algorithm is also easy330

to derive. In particular, if we let T be the number of rounds required until only a single331

CANDIDATE remains then the probability that the algorithm terminates incorrectly is simply332

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 11:9

the probability Pr[T > t∞] = Pr
[
T >

⌈
log4/3(N)

⌉
+ w

]
= Pr

[
T ≥

⌈
log4/3(N)

⌉
+ 1 + w

]
333

and this probability is given by Lemma 4. J334

4 Election with knowledge of either n or `335

In this section we investigate ELECT when the robots are provided with knowledge of only336

one of n or ` (exact or upper bounds). In all cases we use the same strategy to solve the337

problem: we develop algorithms by which the robots gain knowledge of the unknown of n or338

` and then use the algorithms of the previous section to solve ELECT. Pseudocode for all339

algorithms presented can be found in the appendix.340

4.1 Exact knowledge of n or `341

I Theorem 9. Let either n or ` be known to the robots. Then there are Las Vegas algorithms342

solving ELECT. If ` is known the algorithm terminates in time O (`) on average and in time343

O (` logn) with high probability; and requires O (n) random bits on average and O (n logn)344

with high probability. If n is known the algorithm terminates in time O (n+ `) on average345

and in time O (n+ ` logn) with high probability; and requires O
(
n+ n log

⌈
`
n

⌉)
random bits346

on average and O
(
n log(n) + n log

⌈
`
n

⌉)
with high probability.347

As previously stated, our proof strategy is to first develop algorithms by which the robots348

can gain knowledge of the unknown of n or `. More specifically, the goal of this section is to349

constructively demonstrate the validity of the following two lemmas from which Theorem 9350

will easily follow.351

I Lemma 10. Consider n robots on a cycle of length ` and assume the robots know only352

the value of `. Then there exists a Las Vegas algorithm by which the robots can determine353

the value of n. This algorithm terminates in time O (`) on average and with high probability;354

and requires O (n) random bits on average and with high probability.355

I Lemma 11. Consider n robots on a cycle of length ` and assume the robots know only356

the value of n. Then there exists a Las Vegas algorithm by which the robots can determine357

an O (`) upper bound L on `. This algorithm terminates in time O (n+ `) on average and358

with high probability; and requires O
(
n+ n log

⌈
`
n

⌉)
random bits on average and with high359

probability.360

We will begin by introducing two procedures which will be used throughout the remainder361

of the section. The first procedure will be used by the robots to count coin flips, and the362

second is a minimum finding procedure.363

A procedure to count coin flips: The procedure CountFlips(D) is formally described as364

Algorithm 4 and takes as input a distance D. For simplicity in the following description365

we will assume that D = `. The procedure presumes that each robot r has flipped a coin366

and stored the result in b(r). It will result in each robot either knowing the total number of367

robots or that all robots have flipped the same thing.368

At the beginning the robots that flip H will move cw a distance ` around the cycle and369

count each robot they encounter which flipped T. The robots that flipped T will likewise370

wait for a time ` and count each robot they encounter that flipped H. Since each moving371

robot makes a full traversal of the cycle they are guaranteed to see all stationary robots.372

Thus, after the first ` time units, each robot will determine the number of robots which373

ISAAC 2019

11:10 Gathering and Election by Mobile Robots in a Continuous Cycle

flipped opposite to themselves. In the last ` time units of the algorithm the robots which374

initially flipped H (resp. T) will move ccw a distance ` around the cycle (resp. wait for `375

time units). In either case, a robot will determine the total number of robots that flipped the376

same as themselves from the first robot they encounter which flipped opposite to themselves.377

Thus, after 2` time units each robot will have determined both the total number of robots378

which flipped H and the number that flipped T and from this they can compute n. If all379

robots flipped the same thing then the robots will know this since each will have determined380

that NH(r) = NT(r) = 0. From this description it is easy to establish the following lemma:381

I Lemma 12. Assume that all robots have flipped a coin. Then in exactly 2` time units the382

procedure CountFlips(`) will result in either each robot knowing n or that all robots have383

flipped the same thing.384

When an input D > ` is used in the procedure we claim the following:385

I Lemma 13. Assume that all robots have flipped a coin and that D ≥ `. Then in exactly386

2D time units the procedure CountFlips(D) will result in either each robot r computing an387

upper bound N(r) ≥ n or that all robots have flipped the same thing.388

Proof. Clearly, if all robots flip the same then each robot will compute NH(r) +NT(r) = 0.389

Thus, assume that at least two robots flip differently. Let nT and nH represent the actual390

number of robots that flipped T and H respectively, i.e. nT + nH = n. Since each robot391

that flipped H traverses the cycle at least once each such robot is guaranteed to encounter392

all robots that flipped T. Likewise, each robot that flipped T is guaranteed to encounter393

each robot that flipped H. It is therefore not possible for a robot r to compute a value of394

NH(r) < nH or NT(r) < nT and thus it is ensured that NT(r) +NH(r) ≥ n for all robots. J395

Finally, if an input D < ` is used in the procedure then we claim the following:396

I Lemma 14. Assume that all robots have flipped a coin and that D < `. Then in exactly 2D397

time units the procedure CountFlips(D) will result in each robot r computing a lower-bound398

N(r) ≤ n.399

Proof. The only thing we need to demonstrate is that all robots will compute a value400

N(r) ≤ n. Clearly, in order for this not to be true, at least one of the robots must double401

count another robot. This, however, is not possible unless a robot traverses the cycle more402

than once and this will clearly not be the case if D < `. J403

A minimum finding procedure: The minimum finding procedure FindMin(L,N0) is for-404

mally described as Algorithm 5 and takes as input an upper bound L ≥ ` on the cycle405

length, and a value N0 (which is specific to each robot). The algorithm results in each robot406

computing the minimum of the inputs N0. It assumes that all robots have flipped a coin and407

that at least two robots have flipped differently.408

Each robot that flipped H will initially move cw a distance L ≥ ` around the cycle and is409

guaranteed to encounter every robot that flipped T. Likewise every robot that flipped T will410

encounter every robot that flipped H. Thus, after the first L time units, every robot that411

flipped H (resp. T) will know the minimum value of every robot that flipped T (resp. H). In412

the second L time units the robots that flipped H will move ccw a distance L and will again413

encounter every robot that had flipped T. They can thus determine the minimum value of414

all robots that flipped H from the first robot they encounter that flipped T. Likewise, each415

robot that flipped T will determine the minimum value of all robots that flipped T from the416

first robot they encounter that flipped H. The algorithm clearly terminates after 2L time417

units. We can thus claim the following without proof:418

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 11:11

I Lemma 15. Assume that all robots have flipped a coin, at least two have flipped differently,419

and that L ≥ `. Then in exactly 2L times units the procedure FindMin(L,N0(r)) will result420

in each robot r computing the minimum of all inputs N0(r).421

Computing n using `: We will now tackle the proof of Lemma 10 which is based off of the422

algorithm CountRobots(`). This algorithm is formally described as Algorithm 6 and takes423

as input the length of the cycle. The idea is to repeatedly flip coins and run the procedure424

CountFlips(`) until the first round in which at least two robots flip differently. When this425

occurs each robot will compute the total number of robots that flipped T and the total426

number that flipped H and will thus determine n to be the sum of these values.427

Proof. (Lemma 10) The correctness of CountRobots(`) is obvious. The algorithm will428

terminate on the first round during which at least two robots flip differently. The probability429

that all robots flip the same is 21−n and therefore the algorithm terminates after an expected430

1
1−21−n ≤ 2 rounds. The probability that the algorithm terminates after T rounds is431

2(T−1)(1−n)(1− 21−n). From this it is clear that the algorithm terminates after O (1) rounds432

with high probability. The time and random-bit complexities follow from the fact that each433

round lasts time at most 2` and in each round all n robots flip their coins. J434

Computing a O (`) upper bound on ` using n: The proof of Lemma 11 is based off of the435

algorithm BoundCycle(n). This algorithm is formally described as Algorithm 7 and takes436

as input the number of robots on the cycle. In each round t ≥ 0 the robots will employ the437

procedure CountFlips in an attempt to determine a strict upper bound on the number438

of robots using an estimate Lt = n · 2t for an upper bound on `. This will result in each439

robot r computing a value N(r). If Lt < ` then, by Lemma 14, the robots will each compute440

N(r) ≤ n and the algorithm will proceed to the next round. If Lt ≥ ` then the robots441

will each compute N(r) ≥ n and, after performing FindMin, they will all agree on the442

computed value of N(r). Let t∗ be the first round in which all robots compute N(r) > n.443

The corresponding value of Lt in the round t∗ will then be an upper bound on `. We reduce444

Lt∗ by a factor 1
2

⌊
N(r)

n

⌋
to ensure that the returned upper bound is O (`).445

Proof. (Lemma 11) To determine the running time we let t0 be the first round for which446

Lt > 2`. Then t0 =
⌈
log 2`

n

⌉
if n < 2` and t0 = 0 if n ≥ 2`. The algorithm will certainly447

terminate in the first round t∗ > t0 in which at least two robots flip differently. Since the448

probability that all robots flip the same is 21−n we will have t∗ = t0 + O (1) with high449

probability. The algorithm will therefore take at most
⌈
log 2`

n

⌉
+ O (1) rounds. Since the450

procedures CountFlips(Lt) and FindMin(Lt) each take time 2Lt to complete, each round451

of the algorithm lasts time 4Lt = n · 2t+2. The total time required is thus
∑t∗

t=0 n · 2t+2 =452

4n(2t∗+1 − 1). If n > 2` then the above is clearly O (n). If n ≤ 2` then we have that453

4n(2t∗+1 − 1) = 4n
(

2dlog 2`
n e+O(1) − 1

)
= O (`).454

Thus, we can conclude that the algorithm terminates in time O (n+ `) on average and455

with high probability. In each round of the algorithm all robots flip a coin and thus the456

algorithm requires O (n) random bits if n > 2` and otherwise O
(
n log

⌈ 2`
n

⌉)
when n ≤ 2`. J457

4.2 Inexact knowledge of n or `458

We now consider the cases that the robots are only provided with an upper bound on n or459

only an upper bound on `. The main result follows:460

ISAAC 2019

11:12 Gathering and Election by Mobile Robots in a Continuous Cycle

I Theorem 16. Let only an upper bound L ≥ ` or an upper bound N ≥ n be known to the461

robots. Then, for any positive integer w there are Monte Carlo algorithms solving ELECT462

with error probability O ((3/4)w). If the robots know L ≥ ` then the algorithm terminates in463

time O (wL) and requires O (wn) random bits. If the robots know N ≥ n then the algorithm464

terminates in time O
(
N + wN

n `
)
and requires O

(
wn+ n log

⌈
`
n

⌉)
random bits.465

Our goal is again to develop algorithms by which the robots will gain knowledge of the466

unknown of n or ` and then employ the algorithm ElectMC to solve ELECT. We therefore467

want to demonstrate the following two lemmas:468

I Lemma 17. Consider n robots on a cycle of length ` and assume the robots know an upper469

bound L ≥ `. Then there exists a Las Vegas algorithm by which the robots can determine an470

upper bound N = O
(

L
` n
)
on n. This algorithm terminates in time O (L) on average and471

with high probability; and requires O (n) random bits on average and with high probability.472

I Lemma 18. Consider n robots on a cycle of length ` and assume the robots know only473

an upper bound on the value of n. Then there exists a Las Vegas algorithm by which the474

robots can determine an O
(

N
n `
)
upper bound L on `. This algorithm terminates in time475

O
(
N + N

n `
)
on average and with high probability; and requires O

(
n+ n log

⌈
`
n

⌉)
random476

bits on average and with high probability.477

Clearly Theorem 16 will directly follow from the above two lemmas as well as Theorem 8.478

We begin with the case that the robots know L ≥ `.479

Computing an upper bound on n from an upper bound on `: Here we will use an algorithm480

essentially identical to CountRobots(`) except with the addition of a FindMin procedure.481

The robots will repeatedly flip coins and run the procedure CountFlips(L) until at least482

two robots flip differently. At this point each robot r will know an upper bound N(r) ≥ n.483

They will then run the procedure FindMin(L,N(r)) in order to determine the same upper484

bound. The correctness of the algorithm follows easily from Lemmas 13 and 15. The fact485

that the robots compute a O
(

L
` n
)
upper bound follows from the fact that the robots will486

traverse the cycle L
` times. The asymptotic running time of the algorithm is identical to487

that of CountRobots with ` replaced with L. The random-bit complexity does not change.488

Lemma 17 follows without proof from this discussion.489

Computing an upper bound on ` from an upper bound on n: Here we simply use the490

algorithm BoundCycle with the input N ≥ n instead of n.491

Proof. The proof is nearly identical to that of Lemma 11 except we replace n with N and492

require at least t0 rounds where t0 is the first round in which Lt = N · 2t ≥ 2
⌈

N
n

⌉
`, i.e.493

t0 =
⌈
log
(⌈

N
n

⌉ 2`
N

)⌉
= O

(
log
⌈

`
n

⌉)
. J494

5 Impossibility results495

In the previous sections we have developed Las Vegas algorithms which solve ELECT when496

one of n or ` is known exactly to the robots. We have also developed Monte Carlo algorithms497

when only upper-bounds on n and/or ` are known. In the sequel we demonstrate that, unless498

the robots know at least one of n or ` exactly, there does not exist a Las Vegas algorithm499

which solves ELECT.500

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 11:13

Figure 1 Left: The instance I with two robots r1 and r2 on a cycle of length `. Right: The
instance I ′ with four robots r1, r2, r′1, and r′2 on a cycle of length 2`.

I Theorem 19. Assume that the robots do not know ` nor n exactly. Then there is no Las501

Vegas type algorithm which solves ELECT.502

To demonstrate this we first prove the weaker statement that a Las Vegas algorithm cannot503

exist if the robots know nothing of n nor `.504

I Lemma 20. If neither n nor ` is available then there is no Las Vegas type algorithm which505

solves ELECT.506

Proof. To derive a contradiction suppose that there is a Las Vegas type algorithm A which507

solves the problem. Consider an instance I in which there are two robots r1 and r2 at508

antipodal positions on a cycle with circumference `. Since A solves the problem it terminates509

with probability 1 in a finite, though unpredictable, amount of time T . Let O1 and O2 be510

the sequence of outcomes of coin flips of r1 and r2.511

Consider another instance I ′ in which there are four robots r1, r2, r′1, and r′2 at equally512

spaced locations of a cycle with circumference 2` such that r1 and r′1 (resp. r2 and r′2) are513

antipodal (see Figure 1). Assume that the pair r1 and r′1 (resp. r2 and r′2) each have the514

same orientation and each receives the outcome of coin flips O1 (resp. O2). Call an encounter515

between a pair of robots r1 and r2 a left encounter (resp. a right encounter) if r1 and r2516

encounter each other while either r1 is moving ccw and r2 is stationary, r2 is moving cw and517

r1 is stationary, or r1 is moving ccw and r2 is moving cw (resp. while either r1 is moving518

cw and r2 is stationary, r2 is moving ccw and r1 is stationary, or r1 is moving cw and r2519

is moving ccw). Then for every left encounter of r1 and r2 in I there is a corresponding520

identical left encounter between r1 and r2 in I ′ and between r′1 and r′2 in I ′. Likewise, for521

every right encounter of r1 and r2 in I there are corresponding identical right encounters522

between r1 and r′2 in I and between r2 and r′1 in I ′. Thus, at time T , each of r1 and r′1523

(resp. r2 and r′2) in I ′ must come to the same conclusion as r1 (resp. r2) in I. However, this524

implies that at the end of the execution of A in I ′ we will have elected two leaders. Since525

there is a positive probability that r1 and r′1 (resp. r2 and r′2) both get the outcome of coin526

flips O1 (resp. O2) then there is a positive probability that A incorrectly terminates in time527

T . This contradicts our assumption that A correctly terminates with probability one. J528

It is not hard to extend this to the situation that the robots know only an upper bound on n:529

I Corollary 21. Suppose that the robots only know an upper bound N on n. Then there is530

no Las Vegas type algorithm which solves ELECT.531

Proof. To derive a contradiction suppose that there is a Las Vegas type algorithm A for532

ELECT. We use the instances I and I ′ given in the proof of Theorem 19. Provided that533

ISAAC 2019

11:14 Gathering and Election by Mobile Robots in a Continuous Cycle

N = 5 is given, consider the execution of A for I. Then in time T , A terminates in which O1534

and O2 are the sequences of outcomes of the coin flips of r1 and r2.535

Then A terminates incorrectly in time T , when it is executed for I ′ with N = 5, as argued536

in the proof of Lemma 20, which is a contradiction. J537

Proof. (Theorem 19) Assume that a Las Vegas algorithm A exists by which the robots can538

solve ELECT if they know upper bounds N and L on n and ` respectively. Now consider an539

instance of the problem when only an upper bound N on n is known. Then by Lemma 18540

there exists a Las Vegas algorithm by which the robots can determine L. Once the robots541

know L they run algorithm A to elect a leader. This implies that there exists a Las Vegas542

algorithm by which the robots can elect a leader when they only know an upper bound N on543

n. This contradicts the previous result of Corollary 21 which states that such an algorithm544

cannot exist. We may therefore conclude that a Las Vegas algorithm does not exist if the545

robots know both upper bounds N and L. This further implies that a Las Vegas algorithm546

does not exist when the robots know only L. J547

6 Extensions and Open Questions548

Here we discuss why the consistent orientation assumption is unnecessary; the extension of549

our election algorithms to the GATHER problem; and other extensions/open problems.550

Orientation: In the previous sections we have assumed that the robots have consistent551

orientations. Here we will argue why this assumption is not required.552

First, observe that with the consistent orientation assumption it will never occur that553

two moving robots encounter each other. By removing this assumption we will have to deal554

with the extra encounters involving two robots which move in opposite directions. For most555

of these encounters the solution is simple – the two moving robots will simply ignore each556

other. A more problematic encounter occurs if two moving robots encounter a stationary557

robot from opposite directions at the same time. Fortunately, this is also easily remedied –558

we simply have the stationary robot choose to “process” the moving robot arriving from its,559

say, cw direction first. We can thus conclude that all of our results still hold if we remove560

the consistent orientation assumption.561

Gathering: In the previous sections our primary goal has been on how to solve ELECT.562

However, it is easy to see that our algorithms also solve GATHER at no extra cost. Indeed,563

consider Algorithm 1 where, during the election process, robots only enter a FOLLOWER state564

when they merge with a remaining CANDIDATE robot. When only a single CANDIDATE565

remains all other robots will be part of its stack. This is also the case for Algorithm 3,566

however, since this is a Monte Carlo algorithm, there is a bounded probability that more567

than one stack remains when the algorithm terminates. Thus, by construction, Algorithm 1568

is a Las Vegas algorithm which solves GATHER and Algorithm 3 is a Monte Carlo algorithm569

which solves GATHER. Clearly, the complexities of these algorithms remain the same when570

applied to either the ELECT or GATHER problems.571

6.1 Discussions and Open Problems572

In this paper we have studied the ELECT and GATHER problems for n identical robots in the573

CT model on a continuous cycle of length `. We have established several results including574

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 11:15

optimal algorithms with respect to time and random bits when the robots know `, or an575

upper bound L = O (`) (in the latter case with high probability).576

There are a number of open questions remaining. Firstly, we have not considered the577

possibility (or lack thereof) of a Monte Carlo algorithm when the robots do not possess any578

knowledge of n or `. In addition, we have only considered a fully synchronous time model579

and a natural extension is therefore to study ELECT and GATHER when this assumption is580

removed. In particular one can consider a model where the robots do not begin an algorithm581

simultaneously but otherwise their respective clocks tick at the same rate, or a model where582

even the robots’ clocks are not synchronized.583

References584

1 Hagit Attiya and Yishay Mansour. Language complexity on the synchronous anonymous ring.585

Theoretical Computer Science, 53(2-3):169–185, 1987.586

2 Hagit Attiya, Marc Snir, and Manfred K. Warmuth. Computing on an anonymous ring. J.587

ACM, 35(4):845–875, 1988.588

3 Rena Bakhshi, Wan Fokkink, Jun Pang, and Jaco van de Pol. Leader election in anonymous589

rings: Franklin goes probabilistic. In 5th IFIP International Conference On Theoretical590

Computer Science (TCS), pages 57–72, 2008.591

4 Francesco Bullo, Jorge Cortes, and Sonia Martinez. Distributed Control of Robotic Networks.592

Princeton University Press, 2009.593

5 Mark Cielibak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing594

by mobile robots: Gathering. SIAM Journal on Computing, 41(4):829–879, 2012.595

6 Reuven Cohen and David Peleg. Convergence properties of the gravitational algorithm in596

asynchronous robot systems. SIAM Journal on Computing, 34(6):1516–1528, 2005.597

7 Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, and Evangelos Kranakis. Boundary598

patrolling by mobile agents with distinct maximal speeds. In 19th Annual European Symposium599

on Algorithms, ESA, pages 701–712, 2011.600

8 Jurek Czyzowicz, Kostantinos Georgiou, and Evangelos Kranakis. Patrolling. In P. Flocchini,601

G. Prencipe, and N. Santoro, editors, Distributed Computing by Mobile Entities, chapter 15,602

pages 371–400. Springer, 2019.603

9 Jurek Czyzowicz, Evangelos Kranakis, Dominik Pajak, and Najmeh Taleb. Patrolling by604

robots equipped with visibility. In 21st International Colloquium on Structural Information605

and Communication Complexity, SIROCCO, pages 224–234, 2014.606

10 Yoann Dieudonné, Franck Petit, and Vincent Franck. Leader election problem versus pattern607

formation problem. In 24th International Symposium on Distributed Computing (DISC), pages608

267–281, 2010.609

11 Ofer Feinerman, Amos Korman, Shay Kutten, and Yoav Rodeh. Fast rendezvous on a cycle610

by agents with different speeds. In 5th International Conference on Distributed Computing611

and Networking, ICDCN, pages 1–13, 2014.612

12 Paola Flocchini, Evangelos Kranakis, Danny Krizanc, Flaminia L. Luccio, and Nicola Santoro.613

Sorting and election in anonymous asynchronous rings. Journal of Parallel and Distributed614

Computing, 64(2):254–265, 2004.615

13 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Self-deployment of mobile sensors on616

a ring. Theoretical Computer Science, 402(1):67–80, 2008.617

14 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious618

Mobile Robots. Morgan & Claypool, 2012.619

15 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Mobile620

Entities. Springer, 2019.621

16 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Gathering of622

asynchronous mobile robots with limited visibility. Theoretical Computer Science, 337(1-3):147–623

168, 2006.624

ISAAC 2019

11:16 Gathering and Election by Mobile Robots in a Continuous Cycle

17 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Arbitrary pattern625

formation by asynchronous, anonymous, oblivious robots. Theoretical Computer Science,626

407(1-3):412–447, 2008.627

18 Greg N. Frederickson and Nicola Santoro. Breaking symmetry in synchronous networks. In628

1st Aegean Workshop on Computing (now SPAA), pages 26–33, 1986.629

19 Nao Fujinaga, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Asynchronous630

pattern formation by anonymous oblivious mobile robots. SIAM Journal on Computing,631

44(3):740–785, 2015.632

20 Noam Gordon, Israel A. Wagner, and Alfred M. Bruckstein. A randomized gathering algorithm633

for multiple robots with limited sensing capabilities. In International Workshop on Multi-Agent634

Robotic Systems, 2005.635

21 Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar. On randomization in sequential and636

distributed algorithms. ACM Comput. Surv., 26(1):7–86, 1994.637

22 Evan Huus and Evangelos Kranakis. Rendezvous of many agents with different speeds in a638

cycle. In 14th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW,639

pages 195–209, 2015.640

23 Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks. Information and641

Computation, 88(1):60–87, 1990.642

24 Taisuke Izumi, Tomoko Izumi, Sayaka Kamei, and Fukuhito Ooshita. Randomized gathering of643

mobile robots with local-multiplicity detection. In 11th International Symposium on Stabilizing,644

Safety, and Security of Distributed Systems, SSS, pages 384–398, 2009.645

25 Richard M. Karp. Probabilistic recurrence relations. J. ACM, 41(6):1136–1150, 1994.646

26 Evangelos Kranakis, Danny Krizanc, and Euripides Markou. The Mobile Agent Rendezvous647

Problem in the Ring. Morgan & Claypool, 2010.648

27 Ji Lin, A. Stephen Morse, and Brian D.O. Anderson. The multi-agent rendezvous problem.649

Parts 1 and 2. SIAM Journal on Control and Optimization, 46(6):2096–2147, 2007.650

28 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University651

Press, 1995.652

29 Fukuhito Ooshita, Shinji Kawai, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Randomized653

gathering of mobile agents in anonymous unidirectional ring networks. IEEE Transactions on654

Parallel and Distributed Systems, 25(5):1289–1296, 2014.655

30 Yukiko Yamauchi. Symmetry of Anonymous Robots. In P. Flocchini, G. Prencipe, and656

N. Santoro, editors, Distributed Computing by Mobile Entities, chapter 6, pages 109–133.657

Springer, 2019.658

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 11:17

A Description of Karp’s theorem659

Consider the stochastic recurrence relation660

T (n) = a(n) + T (h(n)) (2)661

which describes a process in which we start with an input of size n and after investing some662

amount of resources (represented by a(n)) we are left with a smaller problem of size h(n)663

upon which we recurse. As it applies here, n represents the number of candidate robots, a(n)664

will represent the number of rounds/time/random-bits, and h(n) the expected number of665

robots remaining after one iteration of a leader election algorithm.666

Formally, n is a nonnegative integer variable; a(n) a nonnegative real-valued function667

of n; h(n) a random variable with support [0, n] and expectation bounded by m(n); and668

m(n) is a nonnegative real-valued function of n. The equation τ(n) = a(n) + τ(m(n)) is the669

deterministic analogue of (2) and, when it exists, has the unique least nonnegative solution670

u(n) given by671

u(n) =
∞∑

k=0
a(m[k](n)) (3)672

with m[k](n) inductively defined by m[0](n) = n and m[k](n) = m(m(k−1)(n)), k ≥ 1. Karp673

proved the following:674

I Theorem 22. (Karp [25], Theorems 1.1 and 1.2). Consider the stochastic recurrence (2),675

a continuous function m(n) with m(n)/n non-decreasing, and let u(n) be given by (3).676

1. Suppose there is a constant d such that a(n) = 0, n < d; and a(n) = 1, n ≥ d. Let677

ck = min{n|u(n) ≥ k}. Then, for every positive integer n and every positive integer w,678

Pr[T (n) ≥ u(n) + w] ≤
(

m(n)
n

)w−1
m(n)
cu(n)

.679

2. Suppose that a(n) is strictly increasing on {n|a(n) > 0}. Then, for every positive integer680

n and every positive integer w, Pr[T (n) > u(n) + wa(n)] ≤
(

m(n)
n

)w

.681

B Pseudocode for algorithms of Section 3.1682

Algorithm 1 ElectLV(n, `)
Input: n > 0 (integer); ` > 0 (real); . The number of robots and the length of the cycle.
Initialize: state(r)← CANDIDATE; cnr(r)← 1; t← 0;
Begin:
1: repeat
2: D ← min

{
`
2 ,

`
n

(4
3
)t
}
;

3: ElectionRound(D); t← t+ 1; . Run one election round.
4: if cnr(r) = n then state(r)← LEADER; . Stack contains n robots, terminate.
5: until state(r) = FOLLOWER or LEADER

:End

ISAAC 2019

11:18 Gathering and Election by Mobile Robots in a Continuous Cycle

Algorithm 2 ElectionRound(D)
Input: D > 0 (real);
Begin: b(r)← flip();
1: if b(r) = H then . H was flipped
2: Move ccw a distance D; cw a distance 2D; ccw a distance D;
3: if a robot s with b(s) = T is encountered while moving then
4: cnr(r)← cnr(r) + cnr(s); . Update cnr(r) since s will merge with r.
5: else . T was flipped
6: Remain stationary for time 4D:
7: if a robot s with b(s) = H is encountered while waiting then
8: state(r) = FOLLOWER;
9: Merge with robot s;

:End

C Pseudocode for algorithms of Section 3.2683

Algorithm 3 ElectMC(N,L,w)
Input: N > 0 (integer); L > 0 (real); w ≥ 0 (integer); . upper bounds on n and `; termination

parameter w.
Initialize: state(r)← CANDIDATE; t← 0; t∞ ←

⌈
log4/3(n)

⌉
+ w; . t∞ = termination round.

Begin:
1: repeat
2: Dt ← min

{
L
2 , L

N

(
4
3

)t
}
;

3: ElectionRound(Dt); t← t + 1; . Run one election round.
4: until state(r) = FOLLOWER or t = t∞
5: if state(r) = CANDIDATE then state(r)← LEADER;

:End

D Pseudocode for algorithms of Section 4.1684

Algorithm 4 CountFlips(D)
Input: D > 0 (real); . An estimate of the length of the cycle.
Initialize: NH(r)← 0; NT(r)← 0; . To count the robots flipping H and T.
Begin:
1: if b(r) = H then . H was outcome of last coin flip
2: Move cw a distance D;
3: if a robot s with b(s) = T is encountered while moving then NT(r)← NT(r) + 1;
4: Move ccw a distance D;
5: if NH(r) = 0 and a robot s with b(s) = T is encountered while moving then
6: NH(r)← NH(s); . Determine NH.
7: else . T was outcome of last coin flip
8: Wait for time D;
9: if a robot s with b(s) = H is encountered while waiting then NH(r)← NH(r) + 1;
10: Wait for time D;
11: if NT(r) = 0 and a robot s with b(s) = H is encountered while waiting then
12: NT(r)← NT(s); . Determine NT.
13: return NH(r) + NT(r); . Returns 0 if all robots flipped the same.
:End

P. Flocchini, R. Killick, E. Kranakis, N. Santoro, and M. Yamashita 11:19

Algorithm 5 FindMin(L,N0)
Input: L > 0 (real); N0 (real); . upper bound cycle length; quantity to find the minimum of.
Initialize: N(r)← N0; . Will contain the minimum of the inputs N0.
Begin:
1: if b(r) = H then . H was outcome of last coin-flip
2: Move cw a distance L and then move ccw a distance L;
3: if robot s with b(s) = T is encountered then N(r)← min{N(r), N(s)};
4: else . T was outcome of last coin-flip
5: Wait for time 2L;
6: if robot s with b(s) = H is encountered then N(r)← min{N(r), N(s)};
7: return N(r);

:End

Algorithm 6 CountRobots(`)
Input: ` > 0 (real); . The length of the cycle.
Initialize: N(r); . Will contain the computed value of n.
Begin:
1: repeat
2: b(r)← flip(); N(r)← CountFlips(`);
3: until N(r) > 0
4: return N(r);

:End

Algorithm 7 BoundCycle(n)
Input: n > 0 (integer); . The number of robots.
Initialize: N(r); t← −1;
Begin:
1: repeat
2: t← t + 1;
3: Lt = n · 2t−1;
4: b(r)← flip();
5: N(r)← CountFlips(Lt);
6: N(r)← FindMin(Lt, N(r));
7: until N(r) > n

8: return 2Lt
bN(r)/nc ;

:End

E Pseudocode for algorithms of Section 4.2685

Algorithm 8 BoundRobots(L)
Input: L > 0, real . upper bound on the length of the cycle.
Initialize: N(r); . Will contain the computed upper bound on n.
Begin:
1: repeat
2: b(r)← flip(); N(r)← CountFlips(L);
3: until N(r) > 0
4: N(r)← FindMin(L, N(r));
5: return N(r);

:End

ISAAC 2019

	Introduction
	The Framework
	Main Contributions
	Related work

	Model
	Election with knowledge of both n and l
	Exact knowledge of n and l
	Inexact knowledge of n and/or l

	Election with knowledge of either n or l
	Exact knowledge of n or l
	Inexact knowledge of n or l

	Impossibility results
	Extensions and Open Questions
	Discussions and Open Problems

	Description of Karp's theorem
	Pseudocode for algorithms of Section 3.1
	Pseudocode for algorithms of Section 3.2
	Pseudocode for algorithms of Section 4.1
	Pseudocode for algorithms of Section 4.2

