
Network Decontamination under m-Immunity1

Paola Flocchinia, Fabrizio Lucciob, Linda Paglib, Nicola Santoroc

aUniversity of Ottawa, Canada. Email: flocchin@site.uottawa.ca
bUniversità di Pisa, Italy. Email: {luccio,pagli}@di.unipi.it

ccorresponding author. School of Computer Science, Carleton University, K1S 5B6
Ottawa, Canada. Phone: 1-613-520-4333. Fax:1-613-520-4336. Email:

santoro@scs.carleton.ca

Abstract

We consider the problem of decontaminating an infected network using as few
mobile cleaning agents as possible and avoiding recontamination. After a clean-
ing agent has left a vertex v, this vertex will become recontaminated if m or
more of its neighbours are infected, where m ≥ 1 is a threshold parameter of
the system indicating the local immunity level of the network. This network
decontamination problem, also called monotone connected graph search and in-
truder capture, has been extensively studied in the literature when m = 1 (no
immunity).

In this paper, we extend these investigations and consider for the first time
the network decontamination problem when the parameter m is an arbitrary in-
teger value m ≥ 1. We direct our study to widely used interconnection networks,
namely meshes, tori, and trees. For each of these classes of networks, we present
decontamination algorithms with threshold m; these algorithms work even in
asynchronous setting, either directly or with a simple modification requiring
one additional agent. We also establish general lower bounds on the number of
agents necessary for decontamination with immunity m; these bounds are tight
in the case of trees, while large gaps still exists in the case of meshes and tori.

Keywords:. network decontamination, connected graph search, monotone al-
gorithms, immunity, meshes, tori, trees.

1. Introduction

1.1. The Framework

Parallel and distributed computing systems are designed around intercon-
nection networks. As the size, the complexity, and the importance of a system
increases, the presence of malicious threats cannot be avoided. Such threats

1Some of these results have been presented at the 23rd IEEE International Parallel and
Distributed Processing Symposium and at the 8th International Conference on Algorithms
and Complexity.

Preprint submitted to Elsevier July 18, 2015

may be brought by intruders that travel through the network and infect any
visited site, as for example a virus. The focus of this paper is on counteract-
ing such a threat by a team of mobile cleaning agents (or simply agents) that
traverse the network decontaminating the visited sites.

The team of mobile agents enter the network, viewed as a simple undirected
graph, at a single vertex, called homebase. An agent located at a vertex v can
move to any of the neighbouring nodes of v, decontaminating it with its presence;
upon departure of the (last) agent, a vertex can become re-contaminated if a suf-
ficient number of its neighbours are contaminated. The goal is to decontaminate
the whole network using as small a team of cleaning agents as possible avoiding
any recontamination. This network decontamination problem, known also as
monotone connected graph search and as intruder capture, has been extensively
studied in the literature (e.g., see [1, 2, 6, 11, 12, 13, 17, 19, 24, 25, 28, 33]).

The re-contamination process is regulated by a parameter m: if no agent is
there, a decontaminated vertex v will become re-contaminated if m or more of
its neighbours are infected. The parameter m indicates the local immunity level
of the network. The number of agents necessary to decontaminate the entire
network is clearly a function of m and of the basic parameters of the given
network.

In the literature the problem has generally been studied only when m = 1,
that is the presence of a single infected neighbour recontaminates a disinfected
node with no agents. This assumption corresponds to a system without any
immunity, and the problem has been investigated under such assumption for a
variety of network classes, including trees, hypercubes, meshes, tori, outerplanar
graphs, chordal graphs, etc. (e.g., see [3, 9, 11, 12, 13, 17, 28])

The assumption m = 1 is quite restrictive. In fact, to enhance reliability,
many systems employ threshold rules at each site, for example performing vot-
ing among various copies of crucial data between neighbours at each step [31].
Indeed, threshold schemes are used for consistency resolution protocols in dis-
tributed database management; data consistency protocols in quorum systems;
mutual exclusion algorithms; key distribution in security; reconfiguration un-
der catastrophic faults in system level analysis; and computational models in
discrete–time dynamical systems. This leads to consider systems with a higher
level of resistance to viral threats, where a vertex can be recontaminated af-
ter an agent has left only if a threshold m > 1 of its neighbours are infected.
In turn, this opens the research investigation of the general decontamination
problem when the threshold indicating the level of local immunity is a global
parameter m ≥ 1. This is precisely the question we address in this paper.

1.2. Main Contributions

We investigate the decontamination problem for arbitrary m ≥ 1. We focus
on three common classes of interconnection networks: Meshes, Tori, and Trees;
for each network G in those classes, we establish bounds on the number of
agents necessary to decontaminate G with threshold m. The upper bound
proofs are constructive, and some of our decontamination protocols are shown
to be optimal. More precisely:

2

• We first consider d-dimensional meshes with N = n1×n2×· · ·×nd vertices,
where d ≥ 2; w.l.g., let 2 ≤ n1 ≤ n2 ≤ · · · ≤ nd. We prove that for each
such mesh one agent suffices for m ≥ d, and n1 × n2 × ... × nd−m agent
suffice for 1 ≤ m < d by exhibiting a solution algorithm that uses these
many agents. We also establish a general lower bound, and show it is tight
for m = d− 1.

• We then extend the analysis to d-dimensional toroidal meshes M , with
N = n1 × n2 × · · · × nd vertices, where d ≥ 2; w.l.g., let 2 ≤ n1 ≤ n2 ≤
· · · ≤ nd. We prove that 2m × n1 × n2 × ... × nd−m agents suffice for
1 ≤ m ≤ d− 1, and 22d−m agents suffice for d ≤ m ≤ 2d.

Note that with growing m more infected neighbors must be present to re-
contaminate a vertex, so the number of agents must decrease if m grows.
This is immediately clear in our protocol for d ≤ m ≤ 2d. For 1 ≤ m ≤
d − 1 the number of agents grows with the term 2m but decreases more
rapidly with the number of ni present in the bound, under the obvious
hypothesis that all ni are greater than 2.

We also establish a general lower bound, and show it is tight for some
values of d and m.

• Finally we consider the family of trees. Unlike the case of meshes and tori,
the number of needed cleaning agents may be different for different trees
of the same size. For every tree and any value of m ≥ 1 we determine a
lower bound to the number of agents, and we then prove that this number
is also sufficient by presenting a simple decontamination protocol using
precisely those many agents.

The algorithms for meshes and tori are established in a quasi-synchronous
setting: agents operate in synchronized steps, but operations within a step (e.g.,
movements) are not necessarily synchronized. The algorithms can be extended
to completely asynchronous settings with simple modifications to their structure
and the use of one single extra agent, as in [11, 12, 13]. The proposed algorithms
for trees work directly in asynchronous settings.

Although not the main concern of this paper, we also consider the number
of moves performed by an optimal-size team of agents as a function of the
parameter m. We prove that, for all three families of graphs, all the solution
protocols we have presented are optimal, in order of magnitude, with respect to
the number of moves.

The paper is organized as follows. In Section 2, we introduce the model and
basic properties. In Sections 3, 4, and 5 we present decontamination algorithms
for meshes, toroidal meshes, and trees, with the upper and lower bounds on the
numbers of agents and moves. In the concluding Section 6 we discuss extension
of our studies.

1.3. Previous Work

The network decontamination problem was surprisingly introduced in spele-
ology [7], and then has been extensively studied in the field of graph searching

3

(e.g., see [4, 5, 26]). The problem also arises in graph pebbling [22], as a pursuit-
evasion game [27, 30], and in VLSI design [21]. An important aspect of these
studies is that there are always monotone solutions that use a minimum num-
ber of agents, that is protocols that avoid recontamination of vertices after they
have been decontaminated [5, 23]. Although formally very similar to ours, all
these investigations assume that the decontaminating agents are able to jump
from one vertex to any other vertex in one step. This marks a first difference
with our mode of operation, called contiguous search, where the agents can only
move from a node to a neighbours in the graph. In fact, the removal of the
jumping assumption makes the previous solutions no longer valid [3] .

Contiguous search was first proposed in [2], where optimal monotone strate-
gies were shown for trees. The investigation has then been directed to the
monotone decontamination of specific classes of networks, in particular Trees
[3], weighted Trees [9, 10], Hypercubes [11], Meshes [13], Pyramids [33], Chordal
Rings [12], Tori [12], outerplanar graphs [17], chordal graphs [28], Sierpinski
graphs [25], Star graphs [20], product graphs [19], graphs with large clique num-
ber [34], while the study of arbitrary graphs has been started in [6] and [18].
While knowledge of the network is generally assumed, some results are also
known when only limited amount of information is available or can be obtained
[3, 18, 29]. In all these studies it is assumed that, in the absence of a clean-
ing agent, a decontaminated vertex without agents becomes re-contaminated if
m = 1 of its neighbours is contaminated.

The case when re-contamination, to occur, requires the presence of more
than one contaminated neighbour is referred to as local immunity. The only
study of network decontamination with local immunity was given in [24] for
meshes and trees. In that paper a vertex can be recontaminated after an agent
is gone if the majority of its neighbors are infected, while here recontamination
is ruled by a global parameter m that applies to all vertices.

A different type of immunity has been defined in the case of synchronous
networks; when an agent leaves a vertex, that vertex is immune from recontami-
nation for t ≥ 0 additional time units, regardless of the number of contaminated
neighbours [14]. This type of temporal immunity has been studied for tree net-
works [14] and meshes and tori [8].

2. Model and Basic Properties

The network is represented as a simple connected undirected graph G with
N vertices. For a vertex v in G, let δ(v) denote its degree, and let δ(G) denote
the maximum value of δ(v) among all the vertices of G.

A team of agents with distinct Ids operates in G. The agents have their own
constant memory, communicate with each other when at the same node, move
from node to neighboring node, and execute the same protocol. Distinct Ids
and face-to-face communication allow the agents to coordinate their activities
and to assign different roles and tasks as and when required by the protocol.

Initially, all vertices are infected and the agents enter the network at a single
vertex, called homebase. The presence of one or more agents at a vertex decon-

4

taminates that vertex making it clean. We say that at a given time a vertex is
grey if infected, black if it is clean and it contains one or more agents, and white
if it is clean but no agent is there.

A white vertex is re-contaminated (i.e., it becomes grey) if m or more of its
neighbors are grey. Notice that, by definition, a white vertex v with δ(v) < m
can never be re-contaminated. When an agent moves from u to v on edge (u, v),
it protects u from possible contamination by v. By definition, a black vertex
does not become grey regardless of the color of its neighbors. A system so
defined is said to have an immunity threshold m to recontamination, or simply
to have m-immunity.

The task of the team of agents is to decontaminate G avoiding any recon-
tamination. The goals are (1) to determine the smallest team size for which such
a task can be achieved; and (2) to devise an optimal monotone strategy, that is
a solution protocol that allows such a minimal team to decontaminate G with-
out recontamination. Note that, by definition, for any solution algorithm, at
any time during its execution, all the clean vertices form a connected subgraph.
This problem is that of monotone connected graph search, where (immunity to)
re-contamination is controlled by the parameter m. A secondary purpose is for
the minimal team to be able to perform decontamination using as few moves as
possible.

Our main results, to be discussed in the following sections, are about de-
contamination of the most commonly used interconnection networks, namely
meshes, toroidal meshes (or tori), and arbitrary trees. Each family will be char-
acterized by proper parameters concerning the shape and size of its members,
and the respective algorithms will be designed in function of these parameters
and of m. Note that the homebase depends on the family under investigation.
As usual in these studies the homebase for meshes is a corner: a different ver-
tex would require different algorithms and yield different results. For toroidal
meshes, taking any vertex as homebase would produce the same results due
to the complete symmetry of the network. In the case of trees, instead, the
homebase is taken as a parameter of the problem.

Let A(G,m) (resp. M(G,m)) denote the minimum number of agents (resp.
the number of moves) needed to decontaminate network G with m-immunity;
when no ambiguity arises, we will omit the indication of G.

For decontamination with m-immunity the following bounds hold for any
network:

Proposition 1. Let G be a simple connected graph. We have:
(i) A(m) = 1 if m ≥ δ(G);
(ii) A(m) ≤ 2 if m = δ(G)− 1.

Proof. (i) By definition, a white vertex v with δ(v) ≤ m can never be re-
contaminated; hence a single agent traversing the network will perform the
decontamination. (ii) This is easily achieved, e.g., having an agent stay at the
homebase while the other performs a traversal of the network.

5

Of course Proposition 1 does not rule out the possibility that a single agent
can decontaminate the graph also for m = δ(G) − 1 or even smaller values of
m (this will happen in meshes). The proof indicates that the decontaminating
algorithm is monotone no matter which path the agent follows in its traversal;
as for the number of moves, if the graph G contains a Hamiltonian path π, as it
happens in meshes and tori, we haveM(G,m) = N−1 for m ≥ δ(G)−1, where
N is the number of nodes. If a Hamiltonian path does not exist, as in arbitrary
trees, these values are higher. Due to Proposition 1 only the case m < δ(G)− 1
is really of interest and will be thoroughly studied.

In synchronous systems the agents operate in synchronized steps: in each
step all the agents communicate (with those at the same vertex), compute, and
move (when required). We actually consider the less powerful quasi-synchronous
systems, where all operations started in step i are completed by step i+ 1, but
the operations within a step might not be instantaneous. In particular, if some
(or all) agents move at step i no assumption is made on when they reach the
target vertex provided they are all in their next destination before step i + 1
begins. For example let m = 1 (that is, one infected neighbour suffices for
contaminating any vertex) and consider the two elementary examples of Figure
1. Case (a) is immediate. In case (b), when agent a1 leaves from v3 this vertex
may be re-contaminated by v4 during the same step if agent a2 has not yet
reached v4. Symmetrically when agent a2 leaves from v2 this vertex may be
re-contaminated.

In a asynchronous system there is no common notion of time or step, no
assumptions exist on synchronization of the agent’s actions and movements,
and every operation by each agent takes a finite but otherwise unpredictable
amount of time.

(b)

v3

v2

(a)

v1

v4

a1

a2

v3

v2

v1

v4

a1

a2

Figure 1: Let m = 1. At a given step agents a1,a2 (black dots) move as indicated. After
the step all vertices become decontaminated in graph (a), while vertices v2,v3 may be re-
contaminated in graph (b).

Our protocols for trees work in any environment, including asynchronous
ones. Our algorithms for meshes and tori operate in quasi-synchronous systems;
in some cases they operate in asynchronous systems as well. If not, the following

6

technique allows extending the algorithms to handle the asynchronous case with
the addition of one agent, as observed in [11, 12, 13]:

• If a set of agents decontaminates a network working synchronously, then
the same moves can be done asynchronously provided that, between any
wave of parallel moves, one additional agent travels through the clean
vertices of the network to inform all the other agents that the current
wave of moves is completed (recall that the clean vertices form a connected
subgraph).

In other words, using this mechanism, the synchronous solutions can operate
also in asynchronous environment with the use of a single additional agent.

The protocols we present are described from a global point of view; their
operations are however fully distributed. Since the agents have distinct IDs,
are aware of the topology, and initially they are all located at the same node,
each agent will initially be assigned a specific role; this role allows the agent
to locally determine the sequence of movements it has to perform according
to the protocol. In the case of meshes and tori, the protocols are described
assuming a quasi-synchronous system; in such a system, each agent can locally
compute also the timing (in terms of number of steps) of each of its moves. If
the mesh/torus is asynchronous, the timing would be given by the additional
distinct agent whose task is to synchronize the operations.

3. Decontaminating Meshes

A d-dimensional mesh Z (d-mesh for short) is a network ofN = n1×n2×· · ·×
nd vertices, with d ≥ 2 and 2 ≤ n1 ≤ n2 ≤ · · · ≤ nd. Each vertex vi1,i2,...,id ,
0 ≤ ij ≤ nj − 1, is connected to the 2d vertices vi1−1,i2,...,id , vi1+1,i2,...,id ,
vi1,i2−1,...,id , vi1,i2+1,...,id ,, vi1,i2,...,id−1, vi1,i2,...,id+1, whenever these indices
stay inside the closed intervals [0, nj − 1] (i.e., any border vertex vi1,...,ij=0,...,id ,
or vi1,...,ij=nj−1,...,id , cannot be respectively connected to vi1,...,ij−1,...,id , or to
vi1,...,ij+1,...,id).

3.1. Upper Bound for Meshes

We present a protocol ClearMesh, for decontaminating a synchronous d-
mesh with m-immunity and analyze its complexity. The decontamination pro-
cess consists of two phases. Phase 1 amounts to defining an initial set C of
vertices and dispatching |C| agents into these vertices. In Phase 2, these agents
move from C to clean the whole mesh. The size of C depends on the values of
m and d. Taking v0,0,...,0 as the homebase, we pose:

Definition 1. The initial set C of a d-mesh contains: (i) the only vertex
v0,0,...,0, for m ≥ d; (ii) all the vertices with indices id, id−1, ..., id−m+1 equal
to zero, for 1 ≤ m < d. In case (ii) we have |C| = n1 × n2 × ...× nd−m.

7

x3

x1

x2

x3

x1

x2

(a) (b)

Figure 2: (a) A 3-mesh with n1 agents placed on C, for m = 2. (b) Decontamination of the
plane i3 = 0. All the vertices not explicitly shown are gray.

In the 3-mesh of Figure 2(a), letting m = d − 1 = 2, C consists of the n1

vertices with indices i3 = i2 = 0. At the end of phase 1 C contains one agent
per vertex and is built in such a way that no white vertices are created during
the process, to avoid possible re-contamination. This is achieved by moving the
agents inside C only. Several agents are placed in the same vertex v at certain
steps, one of which remains in v as its final destination while the others move
away.

Algorithm INITIAL-SET of Figure 3 gives a general scheme of phase 1 for
m ≤ d. In fact, for m = d the initial set consists of vertex v0,0,,0 only. This
algorithm will also apply to toroidal meshes of the next section 4. A key point
is that each agent reaches its final destination through a shortest path from
v0,0,,0. The move operation of the last statement is done synchronously for all
the agents involved. We have:

Lemma 1. For a d-mesh with 1 ≤ m < d, INITIAL-SET is a monotone
algorithm that places n1× n2× ...× nd−m synchronous agents in the vertices of
C in less than 1

2 (d−m)nd−m+1
d−m moves.

Proof. The number of agents equals the cardinality of C. For proving mono-
tonicity note that only the vertices of C are eventually reached by an agent,
and that one agent remains in any such a vertex up the the algorithm termi-
nation. For computing the number of moves, note that each agent starts from
the homebase and reaches its final destination through a shortest path, then
the total number of moves equals the sum of the lengths of all such paths.
Since in the homebase all the indices are equal to zero and the length of the
paths is computed in Manhattan metric, the number of moves in turn equals
the sum of the values of the indices of all the vertexes of C. Letting j = d−m
and ∆j = 1

2nj(nj − 1), the number of moves is: ∆1n2n3...nj + ∆2n1n3...nj +
...+ ∆jn1n2...nj−1 = 1

2 (n2
1n2...nj + n1n

2
2...nj + ...+ n1n2...n

2
j − j(n1n2...nj)) ≤

1
2j(n

j+1
j − nj1), where the equality holds for n1 = n2 = ... = nj , and the bound

8

algorithm INITIAL-SET(d,m)

if (Z is a d-mesh with m ≤ d)
let C be the submesh of Z composed of all the vertices

with indices id, id−1, ..., id−m+1 equal to zero;

if (Z is a d-tomesh)
if (m ≥ d) let C be the (2d-m)-cube with base v0,0,...,0

else let C be the (d-m)-d-brick with base v0,0,...,0;

forany v ∈ C choose a shortest path from v0,0,...,0 to v;

let P be the set of such paths for all the vertices of C;

start with a set of |C| agents in v0,0,...,0;

while ∃ v ∈ C containing more than one agent:

let (v, w1), ..., (v, wr) be the edges from v included
in a path in P ;

let pi be the number of paths in P containing (v, wi);

keep one agent in v (its final destination);

for i = 1 to r move pi agents to wi through edge (v, wi).

Figure 3: Decontamination phase 1 for a d-mesh or a d-toroidal-mesh Z.

follows. 2

By Lemma 1 the number of moves to put the agents in C is O(dN), where
the upper bound is attained for m = 1. If d is taken as a constant, this value
does not exceed, in order of magnitude, the lower bound of N − 1 necessary to
visit the whole mesh starting from the homebase.

In phase 2 of the decontamination process, the agents move from the vertices
of C until the whole d-mesh has been cleaned. This is attained by algorithm
MESH given in Figure 4. Let us first explain informally how it works for d = 3
(Figure 2), with m = 3 or m = 2. For m = 3, C contains only the homebase
v0,0,0 and one agent suffices. The agent travels along the x1 axis to reach vertex
vn1−1,0,0. Note that none of the vertices traversed by the agents can be re-
contaminated, because vertex v0,0,0 has degree 3 and 1 clean neighbor, and
vertices v1,0,0,0, v2,0,0,0, ..., vn1−2,0,0 have degree 4 and 2 clean neighbors. Now
the agent makes one step in the x2 direction to vn1−1,1,0 and then travels for
decreasing values of the index x1 through vn1−2,1,0, vn1−3,1,0,..., to v0,1,0. The
vertices thus traversed have degree 5 and 3 clean neighbors, so they also stay
clean. The agent continues its journey through v0,2,0 to vn1−1,2,0, then vn1−1,3,0

to v0,3,0, etc., until the whole bottom plane i3 = 0 is decontaminated. Then
the agent makes one step in the x3 direction to decontaminate the plane i3 = 1,
and proceeds plane by plane for increasing value of i3 until the whole mesh is
cleaned. During this process the internal vertices of the mesh have degree 6
and 4 clean neighbors (including the one below) so they also stay clean. This

9

algorithm MESH(d,m)

let each vertex of C contain an agent;

if (m = d) move the agent in v0,0,...,0 along the canonical path in Z;

if (m < d)

{ foreach vertex v = vī1,...,̄id−m,0,...,0 of C
{ let Zv be the m-submesh composed of all the vertices with

i1 = ī1, ..., id−m = īd−m;
let πv be the canonical path in Zv

(the indices id, id−1, ..., id−m+1 are updated in nested cycles,
from id−m+1 in the inner cycle to id in the outer cycle) };

move all the agents v in synchronous steps along their πv. }

Figure 4: Decontamination phase 2 for a d-mesh Z, with m ≤ d.

Hamiltonian path followed by the agent will be called canonical. Note that it
can be obviously extended to any number of dimensions.

Form = 2, after the agents have been placed in the vertices of C by INITIAL-
SET (Figure 2(a)), they move in the bottom plane i3 = 0 in synchronous waves,
for increasing values of the vertex index i2, until they reach the right-hand side
of the plane (i2=n2 − 1). During this transfer each vertex of the bottom plane
is in contact with only one gray neighbor, in fact the one with i3 = 1, and is
not re-contaminated; so the bottom plane stays clean (Figure 2(b)). Now all
the agents go up synchronously of one step, to the vertices with i2=n2 − 1 and
i3 = 1, and then move as before along the plane i3=1, from right to left, until
they reach the left-hand side of the plane. Again all the vertices of the plane
have been exposed to the only gray neighbors above them. The process goes
on similarly, plane by plane for increasing value of i3, until the whole mesh is
cleaned.

In general algorithm MESH is based on the following principles. For m = d
one agent can decontaminate the whole network traveling along a canonical
path, as already discussed for the example of Figure 2. As the same strategy
obviously applies for any m > d, the algorithm is defined for 1 ≤ m ≤ d. For
m < d consider a generic vertex v of the initial set C, and the agent a placed
in v by the algorithm INITIAL-SET. This agent decontaminates a specific m-
submesh Zv consisting of all the vertices with the d − m indices id−m, ..., i1
with the same values as the ones of v, and the other indices id, id−1, ..., id−m+1

assuming all combinations of values. In the example of Figure 2(a), the agent
in v2,0,...,0 will decontaminate the 2-submesh containing all vertices with i1 = 2,
that can be represented as a vertical face parallel to the plane x2, x3. For
this purpose, agent a travels in Zv along the Hamiltonian path πv obtained
spanning on all the values of the indices id, id−1, ..., id−m+1 in nested cycles,
changing id−m+1 first, then changing id−m+2, etc. up to id. Note that πv is the
canonical path for Zv. It is crucial that all the agents of C move in synchronous

10

waves along identical paths in their m-submeshes Zv for protecting the vertices
just left. It is worth noting that, at each wave, the agents occupy a new (d-m)-
submesh whose vertices have the same values for m indices. In fact they are the
indices with value 0 in C, one of which changes at each wave. We have:

Lemma 2. MESH is a monotone decontamination algorithm with |C| syn-
chronous agents starting in C. For m = d the single agent makes N − 1 moves.
For 1 ≤ m < d the n1 × n2 × ...× nd−m agents make N − n1 × n2 × ...× nd−m
moves.
Proof. For proving complete decontamination and monotonicity note that all
the vertices of Z are visited by an agent and, in all the move operations,
each vertex v left by an agent has at least δ(v) −m + 1 clean neighbors. For
computing the number of moves note that all the vertices of the mesh outside
C are traversed exactly once by one agent, so they are all cleaned in N − |C|
moves. 2

Combining Lemmas 1 and 2 we immediately have:

Theorem 1. Protocol ClearMesh monotonically decontaminates a d-mesh in
M(m) = Θ(N) moves by a team of A(m) synchronous agents, where

A(m) = 1, for m ≥ d;
A(m) = n1 × n2 × ...× nd−m, for 1 ≤ m < d.

3.2. Lower Bound for Meshes

By definition, at any step of a monotone decontamination protocol of a
graph G, all the clean vertices form a connected subgraph B that includes the
homebase; B, also said to be clean, is called a guarded block and constitutes
the key concept for a lower bound argument. Let α(B) denote the number of
vertices of B with at least m gray neighbors. Since each of these vertices must
contain an agent, α(B) gives the minimum number of agents needed by that
protocol to protect B from re-contamination.

Let P be the set of all monotone decontamination algorithms for a d-mesh Z
with home base v0,0,...,0. Given algorithm P ∈ P , each execution in Z generates
a sequence S(P) = B0, B1, ..., Bk(P) of guarded blocks, where Bi ⊂ Bi+1, B0

contains the homebase only, and Bk(P) = Z. Let α(S(P)) = Maxi{α(Bi)};
then the number of agents used by P is obviously greater than or equal to
α(S(P)).

Given that one agent is sufficient to decontaminate Z with m ≥ d, lower
bounds on A(m) must be studied for 1 ≤ m < d.

Theorem 2. For a d-mesh with 1 ≤ m ≤ d − 1 we have A(m) ≥ n1 + n2 +
· · ·+ nd−m − (d−m− 1).

Proof. Given P ∈ P, let S(P) = B0, B1, ..., Bk(P), and let t be the smallest
index such that Bt ∈ S(P) contains a vertex at the extreme of the mesh in at
least d − m directions; that is, there is a permutation xi1 , ..., xid of x1, ..., xd,
such that for each coordinate ij , 1 ≤ j ≤ d − m, at least one vertex of Bt

11

x i1

x i2

x i3

e
1

e
2

Figure 5: Paths π1, π2 in a 3-mesh with m = 1. We have ni1 = 5, ni2 = 7 and any value of
ni3 , hence ν = 5 + 7− 1 = 11. In this case the paths lie in the subspace xi1 , xi2 .

has coordinate ij = nij − 1. Let e1, . . . , ed−m be such extreme vertices (or
one of them for each coordinate, if there are more than one). Since Bt is
connected and contains the home base, Bt must contain a path πi from v0,0,...,0

to each of the ei. The total number of vertices in these paths must be ν ≥
1+(ni1−1)+(ni2−1)+ · · ·+(nid−m

−1) = ni1 +ni2 + · · ·+nid−m
− (d−m−1)

(see Figure 5).
Note that for each vertex v in each πi there may be other vertices in Bt

with the same values of ij , 1 ≤ j ≤ d − m, and different values of the other
coordinates. Among these vertices consider the ones with maximum value of
id−m+1; then, among them, the ones with maximum value of id−m+2, etc., up
to the single vertex w with maximum value of id.

Either vertex w was contained in Bt−1, then it has at least one gray neighbor
in each of the m dimensions ij > d −m. Or w has been inserted in Bt for the
first time. In both cases, w must contain an agent, hence Bt must contain at
least ν agents.

The minimum value of ν holds for a block Bt consisting only of the ver-
tices lying on the paths πi, along the coordinate axes xi1 , . . . , xid−m

. This
value is minimized for the permutation xi1 ,..., xid = x1,..., xd, proving that
n1 + n2 + · · · + nd−m − (d −m − 1) ≤ α(Bt) ≤ α(S(P)). Since this holds for
every P ∈ P, the theorem follows. 2

As a consequence, by Theorem 1, our algorithm ClearMesh is optimal for
m = d − 1. Notice that the proof of Theorem 2 holds even if the executions
sequences S(P) are restricted to be the ones occurring in fully synchronous set-
tings; hence the lower bound holds under all possible timing and synchronization
constraints. As for the number of moves, we simply note that the obvious lower
bound of N − 1 on M(m) matches the upper bound of Theorem 1 in order of
magnitude.

For m < d − 1 there is a gap between the upper and the lower bound

12

of Theorems 1 and 2, that increases for decreasing values of m and becomes
very large if m is small. Possibly the lower bound could be greatly improved, to
approach the upper bound of Theorem 1. Consider the guarded blocks B0, B1, ...
in any decontamination process. For 1 ≤ m ≤ d− 2 let Bi be the first guarded
block contained in a subspace of r = d − m dimensions, that is m = d − r.
Since each vertex of Bi has at least one gray neighbor in each of the other
d − r dimensions, all the vertices of Bi must contain an agent. If the guarded
blocks following Bi in the decontaminating sequence keep growing in the same
subspace, their size tends to the product of the corresponding r = d−m values
ni, and the lower bound tends to n1×n2×...×nd−m. However the guarded blocks
may invade subspaces with r > d−m dimensions before the above situation is
met, making the lower bound evaluation much more difficult. If Bj is one such
block, only the vertices on the frontier F of Bj may need a protecting agent,
where F is a ”surface” of dimension r − 1 whose number of vertices also tends
to the product of r − 1 ≥ d−m values ni.

4. Decontaminating Toroidal Meshes

As in the definition of simple meshes (see previous section), a d-dimensional
toroidal mesh Z (d-tomesh for short) is a network with N = n1 × n2 × · · · × nd
vertices, 2 ≤ n1 ≤ n2 ≤ · · · ≤ nd. Each vertex vi1,i2,...,id , 0 ≤ ij ≤ nj − 1, is
connected to the 2d vertices vi1−1,i2,...,id , vi1+1,i2,...,id , vi1,i2−1,...,id , vi1,i2+1,...,id ,
...., vi1,i2,...,id−1, vi1,i2,...,id+1, where, in the present case, all the operations on the
indices ij are done mod nj . That is border vertices do not exist and a vertex
vi1,...,ij=0,...,id , or vi1,...,ij=nj−1,...,id , is also connected to vi1,...,ij=nj−1,...,id , or
to vi1,...,ij=0,...,id , respectively. As we shall see this complicates the situation
substantially.

As before Z can be built by connecting a number nd of (d-1)-tomeshes
Z0, ..., Znd−1, called (d-1)-submeshes of Z, with each submesh Zi adjacent to
Zi−1, Z(i+1)mod id . Recursively a d-tomesh contains nd × nd−1 × · · · × nd−i dis-
joint (d-i-1)-submeshes, for 0 ≤ i ≤ d − 1 (for i = d − 1 each submesh reduces
to a single vertex).

4.1. Upper Bound for Toroidal Meshes

As for simple meshes, the decontamination protocol ClearToMesh consists
of a Phase 1 where an initial set C of vertices is defined and |C| agents are
dispatched into these vertices starting from the homebase v0,0,...,0; and a Phase
2 where these agents move from C to clean the whole d-tomesh.

Due to Proposition 1 the basic cases m = 2d and m = 2d−1 are elementary.
We have A(2d) = 1, A(2d− 1) = 2, and M(2d) = M(2d− 1) = N − 1, where these
values obviously match the lower bounds. For general values of m and d the
situation is more complicated. C may be a c-cube, 1 ≤ c ≤ d, or a b-h-brick,
i.e. a set of 2h−b adjacent b-submeshes of Z, 1 ≤ b < h ≤ d. See the definitions
below where a base vertex v̄ of the set is also specified. Either in cube or in
brick form, the set C contains one agent per vertex at the end of phase 1, and is

13

built in such a way that no white vertices are created during the process. As for
simple meshes each agent reaches its destination vertex in C along a shortest
path from the homebase. For a d-tomesh Z and a vertex v̄ = vī1,ī2,...,īd we pose:

Definition 2. A c-cube with base v̄, 1 ≤ c ≤ d, is a set of 2c vertices contained
in Z. In each vertex of the c-cube the indices ij, 1 ≤ j ≤ c, assume the two
values īj (as in v̄), īj + 1 in all possible combinations, while the remaining
indices (if any) have the same values īc+1, ..., īd of v̄.

Note that a c-cube has the same structure of a c-dimensional hypercube.

Definition 3. A b-h-brick with base v̄, 1 ≤ b ≤ h ≤ d, is a set of 2h−b

adjacent b-submeshes contained in Z. In each vertex of the b-h-brick the indices
ij, 1 ≤ j ≤ b, assume all the values 0, 1, ..., nj − 1 in all possible combinations;
the indices ij, b+ 1 ≤ j ≤ h (if any), assume the two values īj (as in v̄), īj + 1
in all possible combinations; and the remaining indices (if any) have the same
values īh+1, ..., īd of v̄.

We immediately have:

Proposition 2. A c-cube contains 2c vertices, each adjacent to c other vertices
of the cube. A b-h-brick contains 2h−bn1n2...nb vertices, each adjacent to b+ h
other vertices of the brick.

See Figure 6 for examples. A 3-cube has 23 = 8 vertices each adjacent to
other three, and a 2-3-brick has 2n1n2 vertices each adjacent to other five. Note
that a b-h-brick with b = h is an h-submesh of Z, with 0 ≤ ij ≤ nj − 1 for
1 ≤ j ≤ b, and the other indices with the same values īj as in v̄.

4.1.1. Tomesh decontamination phase 1

The algorithm for phase 1 is INITIAL-SET of Figure 3, already used for
meshes, with proper initialization of the set C. Note that C is a cube for
d ≤ m ≤ 2d, or a brick for 1 ≤ m ≤ d− 1. In fact the algorithm does not need
to be applied for m > 2d− 2 since decontamination is trivial in this case. The
reasons for the particular choice of C will be clear in the following. Note that
no vertex v of the initial set C is left unattended after it has been reached for
the first time, i.e. no such a vertex becomes white, because when v is reached
for the first time one of the visiting agents is kept in v as its final destination.
We have:

Lemma 3. Algorithm INITIAL-SET uses 22d−m synchronous agents and re-
quires Mc = 22d−m−1(2d−m) moves, for d ≤ m ≤ 2d; or uses 2mn1n2...nd−m
agents and requires Mb = 2m−1n1n2...nd−m(n1 + n2 + · · · + nd−m + 2m − k)
moves for 1 ≤ m ≤ d− 1.
Proof. The number of agents derives immediately from Proposition 2. The
number of moves equals the sum of the values of the indices of all the vertices
of C. In fact each agent starts in the homebase where all the indices are equal
to zero, and reaches its final destination through a shortest path whose length

14

(b)

x3

x1

(a)

x2

x3

x1

x2

x3

x1

(a)

x2

x3

x1

(c)

x2

x3

x1

x2

x3

x1

(d)

x2

x3

x1

x2

Figure 6: c-cubes and b-h-bricks in a 3-dimensional mesh. (a) 3-cube with base v0,0,0. (b)
1-2-brick with base v0,n2−2,1. (c) 1-3-brick with base v0,0,0. (d) 2-3-brick with base v0,0,n3−2

.

is computed in Manhattan metric. With this in mind, the value of Mc for a
cube is computed immediately. For a b-d-brick with b = d − m, instead, we
have Mb = M1 + M2, where M1, M2 are computed separately as the sum of
all the values of the indices i1 to ib, and ib+1 to id, respectively. With some
easy computations we obtain: M1 = 2m−1n1n2...nb(n1 + n2 + · · · + nb − b),
M2 = 2m−1n1n2...nb(d− b), and the statement follows. 2

If C is a cube, the numbers of agents and moves required by algorithm
INITIAL-SET are a function of m and d only. If C is a brick, instead, these
numbers are also a function of the dimensions of Z. For example, for a 2-3-
brick (i.e., d = 3 and m = 1, then d − m = 2) we need 2n1n2 agents and
n1n2(n1 + n2 − 1) moves (see Lemma 3). Note that the number of moves may
be quite higher than the number of vertices of the brick (e.g., this number is
2n1n2 for a 2-3-brick), due to the fact that many agents traverse the same
vertices.

4.1.2. Tomesh decontamination phase 2

Depending on the value of m, phase 2 of the decontamination process starts
with one of the two different initial sets built with algorithm INITIAL-SET.
Although the following actions will differ, a common result applies to both
cases. We have:

15

Definition 4. A b-h-brick B is clean if b+ h ≥ 2d−m+ 1 and all the vertices
of B are clean.

Proposition 3. A clean brick B cannot be re-contaminated even if the agents
present in B (if any) leave from the brick.

Proposition 3 is immediately proved by recalling that each vertex v of B is
adjacent to b+ h other vertices in B by Proposition 2, then the neighbors of v
lying outside of B are 2d−(b+h) ≤ m−1. If the agents in B move out the brick
is left with white vertices only, but still cannot be re-contaminated. Note that a
clean brick is a special case of a guarded block as introduced in subsection 3.2.

The general strategy for phase 2 is using a minimum number of agents for
building a clean brick. As this brick may now be left unguarded, the agents move
to an adjacent brick of the mesh Z and the process is iterated. The following
algorithms CUBE and BRICK initially build a clean brick for d ≤ m ≤ 2d and
1 ≤ m ≤ d− 1, respectively. The process is then repeated on adjacent bricks of
the same size until a (2d-m)-submesh S of Z (for CUBE), or the whole mesh
Z (for BRICK), is decontaminated. In the former case, for m = d the submesh
S coincides with Z while for m > d the tomesh is subdivided into (2d-m)-
submeshes S1=S, S2, ..., Sr, with r = n2d−m+1 ·n2d−m+2 · ... ·nd, and S2, ..., Sr

are then decontaminated. The whole algorithm is ITERCUBE reported below.
To ease the formulation of all these algorithms we assume that the values of
n1, ..., nd are even. Odd dimensions only require some obvious corrections to
handle border conditions, without affecting the number of agents and affecting
only marginally the total number of moves.

Consider the set A of agents brought into the initial vertex set C by algorithm
INITIAL-SET. For a vertex v and x ∈ {1, 2, . . . , d}, let v(x,+1) (respectively,
v(x,−1)) denote the vertex with the same index values of v except for index
ix that is increased (respectively, decreased) by 1 modulo nx. The following
macro-code MOVE(W,x, y) is called for W ⊂ A and y ∈ {+1,−1}. Recall that
each move operation is performed synchronously for all the agents involved.

macro MOVE(W,x, y)

move each agent of W from its vertex v to v(x, y)

Consider now algorithm CUBE of Figure 7, to be applied for d ≤ m ≤ 2d−2
(recall that decontamination is trivial for m > 2d−2). Assume that d ≥ 2. C is
a (2d-m)-cube with base v0,0,...,0, with the initial set A of 22d−m agents placed
in C as done with algorithm INITIAL-SET. For an arbitrary non-empty set
α ⊂ {1, 2, ..., k} and for j ∈ α, let Aj ⊂ A and Āj ⊂ A be the subsets of agents
in the vertices with index values ij = 1, and ij = 0, respectively. CUBE is a
recursive algorithm working on Z,A, called with input parameter t = 2d −m.
y is a global variable. We have:

Lemma 4. Algorithm CUBE called with t = 2d−m and y = +1 decontaminates
a (2d-m)-submesh S of Z leaving the agents in a (2d-m)-cube.
Proof. Consider the basic case t = 2 (i.e. m = 2d− 2). In the cycles for i the
agents of A1 are moved along dimension 1, forward or backward depending on

16

algorithm CUBE(t,y)

if t = 2

for j = 1 to n2/2

{ for i = 1 to (n1 − 2) MOVE(A1,1,y);

y = −y;

if j < n2/2 { MOVE(Ā2,2,−1); MOVE(A2,2,+1); } }
else for h = 1 to nt/2

{ CUBE(t-1);

if h < nt/2 { MOVE(Āt,t,−1); MOVE(At,t,+1); } }

Figure 7: Decontamination of a (2d-m)-submesh of Z, for d ≤ m ≤ 2d− 2 and d ≥ 2.

the value of j. At the end of the cycles for j the agents occupy an (2d-m)-cube
C ′, and have created a 2-(2d-m)-brick B with base v0,0,...,0 and all white vertices
in B\C ′. Note that v0,0,...,0 6∈ C ′. When the agents of A move along dimensions
3, 4, ..., 2d−m at each iteration of the nested cycles for h, all the vertices of B
become white and cannot be re-contaminated. 2

The submesh S decontaminated by CUBE has vertices with indices ij =
0, ..., nj − 1 for 1 ≤ j ≤ 2d −m, while all the other indices (if any) have value
0. If m = d we have S = Z. The functioning of CUBE is illustrated in Figure
8 for a 3-tomesh with m = 4. In this simple case we have t = 2, so the else
portion of the algorithm is not executed and the decontaminated submesh is the
”plane” (2-2-brick) x1, x2. In any case we then invoke algorithm ITERCUBE
shown in Figure 9, that works on Z,A, makes use of CUBE, and is called for
d ≤ m ≤ 2d− 2 with input parameter s = d (if m = d ITERCUBE calls CUBE
only once). The tomesh of Figure 8 would be decontaminated by ITERCUBE
plane by plane for increasing index i3, by moving the four agents one position
ahead along x3 at each iteration of the i-cycle.

Based on algorithms INITIAL-SET and ITERCUBE, and including the triv-
ial cases m = 2d, m = 2d − 1, we can state an upper bound on the number of
agents and moves.

Lemma 5. For d ≤ m ≤ 2d, a d-tomesh can be decontaminated by 22d−m

synchronous agents with N + 22d−m−1(2d−m− 2) moves.
Proof. Consider algorithm ITERCUBE with input s = d. Each call CUBE(2d-
m) decontaminates a (2d-m)-submesh S of Z as shown in Lemma 4. The agents
are then moved away and all vertices of S become white. This submesh is a
b-h-brick with b = h = 2d−m, that is b+ h > 2d−m since m < 2d. Hence S
is a clean brick (see Definition 4) and cannot be re-contaminated. The process
is iterated recursively in the i-cycles, with obvious meaning. The total number
of moves is Mc + M1 where the two terms account for the moves required by
INITIAL-SET and ITERCUBE, respectively. Mc is given in Lemma 3. M1

17

(b)

x3

x1

(a)

x2

x3

x1

x2

x3

x1

(a)

x2

(d)

x3

x1

(c)

x2

x3

x1

x2

x3

x1

(

x2

Figure 8: Algorithm CUBE applied to a 3-tomesh, for m = 4: agents are black dots, and the
white vertices are displayed in dashed lines. (a) The initial 2-cube. (b) White vertices after
the first completion of the i-cycle. (c) The configuration after the first moves of Ā2, A2. (d)
The final configuration.

is computed immediately noting that, in each execution of CUBE and in the
following executions of MOVE in the cycles for i, agents move only to clean
vertices. Hence M1 equals the number of clean vertices left after the application
of INITIAL-SET. Then the moves are 22d−m−1(2d−m) +N − 22d−m. 2

Let us now consider the case 1 ≤ m ≤ d − 1. The initial set C built
by algorithm INITIAL-SET is a b-d-brick with b = d − m and base v0,0,...,0,
occupied by a set A of 2mn1n2...nb agents. Phase 2 is now solved by algorithm
BRICK of Figure 10 that works recursively on Z,A and is called with input
parameter t = d. Its structure, and the following analysis, is similar to the one
of CUBE; its functioning is illustrated in Figure 11 for a 3-tomesh with m = 2.
We have:

Lemma 6. For 1 ≤ m ≤ d−1, a d-tomesh can be decontaminated by 2mn1n2...nb
synchronous agents, where b = d −m, with N + 2m−1n1n2...nb(n1 + n2 + ... +
nb + 2m− d− 2) moves.
Proof. Consider algorithm BRICK with input t = d. At the end of the basic
i-cycle the agents occupy a b-h-brick C ′ and have created a (b+1)-d-brick B
with base v0,0,...,0 and all the vertices of B\C ′ are white. Each vertex of B has
(b + 1) + d = 2d − m + 1 clean neighbors, hence m − 1 gray neighbors, and

18

algorithm ITERCUBE(s)

if (s = 2d−m) CUBE(s)

else for i = 1 to ns

{ ITERCUBE(s− 1); MOVE(A,s,+1); }

Figure 9: Phase 2 of a d-tomesh decontamination for d ≤ m ≤ 2d− 2.

algorithm BRICK(t)

if t = b+ 1

{ for i = 1 to (nb+1 − 2) MOVE(Ab+1,b+ 1,y);

y = −y; }
else for j = 1 to nt/2

{ BRICK(t-1);

if j < nt/2

{ MOVE(Āt,t,−1); MOVE(At,t,+1); } }

Figure 10: Phase 2 of a d-tomesh decontamination for 1 ≤ m ≤ d − 1. The initial set is a
b-d-brick with b = d−m.

cannot be re-contaminated. The process is iterated recursively in the j-cycles,
with obvious meaning.
M(m) is given by Mb + M2 where the two terms account for the moves

required by INITIAL-SET and BRICK, respectively. Mb is given in Lemma 3.
M2 is computed immediately noting that, in each execution of the basic i-cycle,
and in the following executions of MOVE in the j-cycles, agents move only to
clean vertices. Then the moves are 2m−1n1n2...nb(n1 +n2 + ...+nb + 2m−d) +
N − 2mn1n2...nb, and the thesis follows. 2

Combining Lemmas 5 and 6, with easy calculations on the number of moves
under the reasonable assumption that d < nd, we have:

Theorem 3. Protocol ClearToMesh monotonically decontaminates a d-tomesh
with a team of A(m) synchronous agents in M(m) moves, where

A(m) = 2mn1n2...nd−m and M(m) < dN, for 1 ≤ m ≤ d− 1;
A(m) = 22d−m and M(m) < 2N, for d ≤ m ≤ 2d.

4.2. Lower Bound for Toroidal Meshes

The study of the lower bound for toroidal meshes is conducted on the same
grounds as the one for simple meshes, although all the vertices have the same
degree 2d and the guarded blocks have a different structure due to the absence
of border conditions in the network.

19

(b)

x3

x1

(a)

x2

x3

x1

x2

x3

x1

(a)

x2

x3

x1

(c)

x2

x3

x1

x2

x3

x1

(d)

x2

x3

x1

x2

Figure 11: Algorithm BRICK for d = 3 and m = 2, hence t = 3 and b = 1: agents and
white vertices are displayed in the engrossed and dashed areas, respectively. (a) The initial
1-3-brick. (b) White vertices after the completion of the first i-cycle. (c) The configuration
after the first moves of Ā3, A3. (d) The final configuration.

Let P be the set of all monotone decontamination algorithms for a d-tomesh
Z with home base v0,0,...,0. Given algorithm P ∈ P , each execution in Z gener-
ates a sequence S(P) = B0, B1, ..., Bk(P) of guarded blocks, where Bi ⊂ Bi+1,
B0 contains the homebase only, and Bk(P) = Z. Let α(S(P)) = Maxi{α(Bi)};
then the number of agents used by P is obviously greater than or equal to
α(S(P)).

As done for the upper bound, the two cases 1 ≤ m ≤ d − 1, and d ≤ m ≤
2d will be considered separately. For 1 ≤ m ≤ d − 1 Theorem 2 stated for
meshes is still valid because the protection against recontamination offered by
the coordinate hyper-planes of the space x1, ..., xn is not effective in tori. In fact
we must expect stronger bounds in the present case.

Theorem 4. For a d-tomesh with 1 ≤ m ≤ d− 1 we have A(m) ≥ 2(n1 + n2 +
· · ·+ nd−m − (d−m− 1)).
Proof. The proof is an extension of the one of Theorem 2 for meshes, based on
an arbitrary permutation xi1 , ..., xid of the indices of x1, ..., xd, and a guarded
block Bt where, for each coordinate ij , 1 ≤ j ≤ d − m, there is a path πij
spanning over all the values 0 ≤ ij ≤ ni−j − 1. As in the proof for meshes, at
least ni1 +ni2 + · · ·+nid−m

− (d−m−1) agents are needed to guard Bt, located

20

x i1

x i2

x i3

a

b

c

Figure 12: The example of Figure 5 in a toroidal mesh. Two agents a, b are needed at xi1 = 2,
xi2 = 6. If agent c makes a step along any of the coordinate axes a new agent is needed in its
previous position.

in vertices with values īj , 1 ≤ j ≤ d−m relative to all the paths πij .
As more than one vertex with coordinates īj may exist in Bt, in the case

of meshes an agent was placed in the vertex with maximum value of id−m+1,
then with maximum value of id−m+2, etc.. Now, due to the absence of border
conditions in tori, at least two agents are needed as shown in Figure 12 (agents
a and b) where the paths πij are the same as in Figure 5. If only one vertex with
coordinates īj exists, only one agent is needed (agent c). However, when in the
evolution of the algorithm another vertex with coordinates īj is decontaminated,
a second agent will be needed. In particular agent c may move along any of the
coordinate axes, and another agent must be placed in the vertex just left by c.

As a conclusion, at least two agents are needed for any of the coordinates
of the vertices in all paths πij . The total number of vertices in these paths is
minimized for the permutation of the indices xi1 ,..., xid = x1,..., xd, completing
the proof. 2

For d ≤ m ≤ 2d we can state:

Theorem 5. For a d-tomesh with we have A(m) ≥ 22d−m for 2d−3 ≤ m ≤ 2d,
and A(m) ≥ 23 for d ≤ m ≤ 2d− 4.
Proof. The lower bounds for m = 2d and m = 2d − 1 (1 and 2 agents) can
be immediately proved by inspection, matching the upper bounds of Theorem
3. Furthermore, it can be proved by straightforward exhaustion that 3 (respec-
tively 7) agents are insufficient to decontaminate any d-tomesh for m = 2d− 2
(respectively m = 2d− 3) because, after a very few steps, the agents could not
move any further without causing re-contamination. The lower bound of 23

agents trivially holds for the case d ≤ m ≤ 2d− 4. 2

Note that, in the case d ≤ m ≤ 2d − 4, an exhaustive proof could provide a
better bound for some values of m; clearly this approach becomes exceedingly
complicated for growing m.

21

As a consequence, by Theorem 3, our algorithm CleanToMesh is optimal for
2d − 3 ≤ m ≤ 2d. Notice that the proof of Theorems 4 and 5 hold even if
the executions sequences S(P) are restricted to be the ones occurring in fully
synchronous settings; hence the lower bound holds under all possible timing and
synchronization constraints.

As for the number of moves, we simply note that the obvious lower bound of
N − 1 onM(m) matches the upper bound of Theorem 3 in order of magnitude
for d ≤ m ≤ 2d, and it is inferior by a factor d for 1 ≤ m ≤ d− 1 .

5. Decontaminating Tree Networks

We now study decontamination of an arbitrary unrooted tree T . Observe
that, in a tree T , the removal of an edge (u, v) in T creates two rooted subtrees:
the subtree rooted in u (and not containing v) which we denote T (u \ v), and
the one rooted in v (and not containing u) denoted by T (v \ u).

In a tree T , a single agent performing a simple traversal starting from a leaf
is sufficient to decontaminate T if m ≥ δ(T)− 1. Hence in the following we will
assume m < δ(T)− 1

5.1. Lower Bounds for Trees

The minimum number of agents needed to decontaminate a tree T depends
on the choice of the homebase, i.e., the node v of T from which the agents start.
Let A(v, T,m) denote the minimum number of agents needed to decontaminate
T when v is the homebase; then A(T,m) = minv{A(v, T,m)} denotes the small-
est number of agents needed to decontaminate T when the agents can choose
the homebase.

We now are going to determine a lower bound on A(v, T,m). Let v1, ..., vd
be the neighbors of v in T , where d = δ(v). Without loss of generality, let
A(vi, T (vi \ v),m) ≥ A(vi+1, T (vi+1 \ v),m) for 1 ≤ i < d.

Theorem 6.
(i) If d = 0, then A(v, T,m) = 1.
(ii) If d > 0, then A(v, T,m) ≥ A(v1, T (v1 \ v),m).
(iii) If d > m and A(v1, T (v1 \ v),m) = A(vm+1, T (vm+1 \ v),m), then
A(v, T,m) ≥ A(v1, T (v1 \ v),m) + 1.

Proof. Cases (i) and (ii) trivially hold: when d = 0, T is composed of a
single node and A(v, T,m) = 1; when d > 0, by definition, A(v1, T (v1 \ v),m)
agents are needed to decontaminate the subtree T (v1 \ v) starting from v1,
and, since the homebase is v, because of monotonicity the decontamination of
T (v1 \ v) must start from v1; hence A(v, T,m) ≥ A(v1, T (v1 \ v),m). In case
(iii), we have d > m and A(v1, T (v1 \ v),m) = A(vm+1, T (vm+1 \ v),m) = A.
Consider the subtrees T (vj \ v), 1 ≤ j ≤ m + 1 and, by contradiction let
A(v, T,m) = A(v1, T (v1 \ v),m) = A; since the decontamination of any of the
subtrees T (vj \ v), 1 ≤ j ≤ m+ 1, requires the transfer of A agents to T (vj \ v),
and since we have assumed A(v, T,m) = A, then when decontaminating the

22

first of those subtrees, v is left unprotected while the other m such subtrees are
still contaminated; hence, v will become recontaminated. In other words, in
case (iii), it must be A(v, T,m) > A(v1, T (v1 \ v),m). 2

We now are going to determine a lower bound on A(v, T,m). Consider the
function α(v, T,m) defined recursively as follows

α(v, T,m) =

1 if d = 0

α(v1, T [v1 \ v],m) if 0 < k ≤ m
α(v1, T [v1 \ v],m) if (k > m) and (a1 > am+1)

1 + α(v1, T [v1 \ v],m) if (k > m) and (a1 = am+1)

where ai = α(vi, T (vi \ v),m).
For all pairs of neighboring nodes u, v the values α(v, T,m), α(u, T,m),

α(v, T (v\u),m) and α(u, T (u\v),m) can be computed by solving the recurrent
relation; hence the value α(v, T,m) is uniquely determined for every v in T , and
so is the value α(T,m) = minv{α(v, T,m)}. Note that this computation can
be performed efficiently using the saturation technique [32], as in [2, 24]. The
importance of the function α is that it is a lower bound on A.

Theorem 7. A(v, T,m) ≥ α(v, T,m)

Proof. By induction on the height h(T, v) of T when rooted in v. Triv-
ially, when h(T, v) = 0 (i.e., T is composed of a single node), A(v, T,m) =
1 = α(v, T,m). Let the theorem hold for any tree T ′ and node v′ where 0 ≤
h(T ′, v′) ≤ h. Consider now a tree T and node v when h(T, v) = h+1; by induc-
tive hypothesis, for each subtree T (vj\v), A(vi, T (vi\v),m) ≥ α(vi, T (vi\v),m).
We now consider two cases,

Case 1. Let α(v1, T (v1 \ v),m) = α(vm+1, T (vm+1 \ v),m); in this case, by
definition of α and inductive hypothesis,

A(v1, T (v1 \ v),m) + 1 ≥ α(v1, T (v1 \ v),m) + 1 = α(v, T,m).

If A(v1, T (v1 \ v),m) = A(vm+1, T (vm+1 \ v),m), then, by theorem 6 and in-
ductive hypothesis, we have

A(v, T,m) ≥ A(v1, T (v1 \ v),m) + 1 ≥ α(v, T,m).

If A(v1, T (v1 \ v),m) > A(vm+1, T (vm+1 \ v),m), then, by Theorem 6 and
inductive hypothesis,

A(v, T,m) ≥ A(v1, T (v1 \ v),m) > A(vm+1, T (vm+1 \ v),m) ≥

≥ α(vm+1, T (vm+1 \ v),m) = α(v1, T (v1 \ v),m);

that is, A(v, T,m) ≥ α(v1, T (v1 \ v),m) + 1 = α(v, T,m).
Case 2. Let α(v1, T (v1 \ v),m) > α(vm+1, T (vm+1 \ v),m); in this case, by

definition of α, Theorem 6, and inductive hypothesis, we have

A(v, T,m) ≥ A(v1, T (v1 \ v),m) ≥ α(v1, T (v1 \ v),m) = α(v, T,m).

which completes the proof. 2

23

Algorithm Decontaminate(T, v,m)

move α(T, v) agents to v;
let v1, ..., vd be the neighbours of v in T , and wlg let

α(vi, T (vi \ v),m) ≥ α(vi+1, T (vi+1 \ v),m), 1 ≤ i < d.
for j = d downto j = 1

Decontaminate(T (vj \ v), vj ,m).
move all the agents at vj to v.

Figure 13: Decontamination of a tree T starting from v, with 1 ≤ m ≤ d− 1

We next consider a lower bound on the number of moves performed by a
minimal team of agents. Let µ(v, T,m) denote the minimum number of moves
necessary to decontaminate T starting from v with A(v, T,m) agents, with all
agents returning to v. Again, let v1, ..., vd be the neighbors of v in T , where
k = δ(v).

Theorem 8.
µ(v, T,m) = 0 if d = 0

µ(v, T,m) =
∑

1≤j≤d

[µ(vj , T (vj \ v),m) + 2 A(vj , T (vj \ v),m)] if d > 0

Proof. Consider the subtrees T (vj \ v), 1 ≤ j ≤ d, of T . By definition,
A(vj , T (vj\v),m) agents must be moved from v to vj to decontaminate T (vj\v);
since all agents must return to v, this accounts for 2 A(vj , T (vj \ v),m) moves;
by definition µ(vj , T (vj \ v),m) moves are needed to decontaminate T (vj \ v)
with A(vj , T (vj \ v),m) agents starting from vj . 2

Let M(m) denote the minimum number of moves necessary to decontami-
nate T starting from v with A(m) agents and all agents returning to the home-
base. By definition, M(m) = min{µ(v, T,m) : A(v, T,m) = A(m)}.

5.2. Upper Bound and Optimality for Trees

We first prove that the lower bound of Theorem 7 is tight; that is

Theorem 9. A(v, T,m) = α(v, T,m)

The proof is constructive. Consider the protocol Decontaminate(T, v,m) to
decontaminate T starting from v shown in Figure 13.

Theorem 10. Procedure Decontaminate(T, v,m) decontaminates monoton-
ically T starting from v using α(v, T,m) agents.

Proof. The proof is by induction on the height h(T, v) of T . The theorem
trivially holds when h(T, v) = 0 (i.e., T is composed of a single node). Let
the theorem hold for 0 ≤ h(T, v) ≤ h. Consider now T when h(T, v) = h + 1.
Let v1, ..., vd be the neighbours of v in T , and wlg let α(vi, T (vi \ v),m) ≥
α(vi+1, T (vi+1\v),m), with 1 ≤ i < d. By inductive hypothesis, for each subtree

24

Algorithm OptimalTreeDecontamination(T,m)

choose as starting point a vertex v such that
α(v, T,m) = A(T,m) and µ(v, T,m) =M(T,m),

Decontaminate(T, v,m).

Figure 14: Optimal decontamination of a tree T , with 1 ≤ m ≤ d− 1

T (vj\v) can be decontaminated by Procedure Decontaminate(T (vj\v), vj ,m)
starting from vj using α(vi, T (vi \ v),m) agents. Hence in the execution of
Procedure Decontaminate(T, v,m) with α(v, T,m), the subtrees T (vi \ v)
(1 < i ≤ d), T (vi \ v) are sequentially decontaminated starting from those
requesting the smallest number of agents. During this entire process v is always
protected from recontamination: when j ≥ m, by definition of α, α(vj , T (vj \
v),m) < α(vi, T (vi \ v),m) and thus vi is protected by the remaining agents;
when j < m, vi does not require protection anymore because at most m − 1
neighbours are still contaminated. 2

From Theorems 7 and 10, Theorem 9 follows.
To obtain a decontamination protocol that uses precisely A(T,m) agents

performing M(T,m) moves is now straightforward (see Figure 14). Note that
the algorithm performs an ordered sequential traversal of the tree, each step
performed in one time unit; since once all nodes have been visited no return to
the home base is needed, the total amount of time is less than 2(N − 1)

Theorem 11. Protocol OptimalTreeDecontamination decontaminates mono-
tonically any arbitrary tree T using A(T,m) agents performing M(T,m) moves
in at most 2N − 3 steps.

6. Conclusions and Open Problems

We have investigated the network decontamination problem under an arbi-
trary immunity level m ≥ 1, which includes as a particular case the existing
studies that assume no immunity (m = 1). We have established upper bounds
on the number of agents needed to decontaminate meshes, tori, and tree net-
works. The algorithms yielding these bounds can operate even if the networks
are completely asynchronous, either directly or with a simple modification re-
quiring one additional agent. We have also established general lower bounds on
the number of agents necessary for decontamination with immunity m. These
bounds are tight in the case of trees; in the case of meshes and tori, they are
tight only for some values of the parameters. Large gaps still exists.

These results are the first in the investigation of the decontamination prob-
lem with m > 1. Many research directions are now open.

First and foremost, there is a large gap between upper and lower bounds for
meshes; the same holds for tori. Narrowing these gaps, in particular proving
stronger lower bounds, is the outstanding open problem. This however appears
to be a rather challenging research objective.

25

Another important task is to extend the investigation to other families of
interconnection networks and graph classes of practical interest. In particular
meshes of trees, that is bi-dimensional meshes with binary tree access to the rows
and the columns; butterflies, for which the synchronization problem discussed
in Figure 1 crucially arises; and cube-connected cycles (CCC’s), an extension of
hypercubes. Regarding to CCC’s, note that local immunity for all the graphs
with vertices of degree at most 3 has been studied in [24] where the majority
of infected neighbors of each vertex was considered instead of a general value
of m. Since all the vertices of a CCC have degree 3, immunity reduces here to
the trivial case m = 2 for which two agents suffice. The case m = 1, instead,
appears particularly hard to handle.

Recently, the model for synchronous environments has been extended allow-
ing for a temporal immunity [14]: without an agent, a decontaminated node is
immune to re-contamination for τ ≥ 0 units of time; after that, it can again be
recontaminated. Note that τ = 0 corresponds to the classical model. Temporal
immunity has been investigated, for tree networks [14] and meshes and tori [8],
assuming that (after τ time units) the re-contamination threshold is m = 1. An
important research direction is thus to consider the monotone connected graph
search problem in the most general model with both temporal immunity τ ≥ 0
and local immunity threshold m ≥ 1.

In our investigation, as well as in most of the existing literature, the immu-
nity threshold is a global parameter m. The only exception is [24] where the
decontamination of meshes and tori was studied when the threshold immunity
of a node is not a global parameter but a majority function of the degree of that
node. Thus an important research direction is to define the immunity threshold
as a function of the degree of each vertex. This generalizes the decontamination
problem, including all the existing results as special cases.

Acknowledgments.
The authors would like to thank the anonymous referees for their insightful com-
ments and questions. This work has been partially supported by the Italian Min-
istry MIUR under PRIN 2012C4E3KT - national research project AMANDA; by
NSERC under Discovery Grants; and by Prof. Flocchini’s University Research
Chair.

26

[1] L. Barrière, P. Flocchini, F.V. Fomin, P. Fraignaud, N. Nisse, N. Santoro,
and D.M. Thilikos. Connected graph searching. Information and Compu-
tation 219: 1-16, 2012.

[2] L. Barrière, P. Flocchini, P. Fraignaud, and N. Santoro. Capture of an
intruder by mobile agents. Proceedings of the 14th Symposium on Parallel
Algorithms and Architectures (SPAA), 200-209, 2002.

[3] L. Barrière, P. Fraignaud, N. Santoro, and D. Thilikos. Searching is
not jumping. Proceedings of the 29th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), 34-45, 2003.

[4] D. Bienstock. Graph searching, path-width, tree-width and related prob-
lems. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 5: 33–49, 1991.

[5] D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal
of Algorithms 12: 239–245, 1991.

[6] L. Blin, P. Fraignaud, N. Nisse, and S. Vial. Distributed chasing of network
intruders. Theoretical Computer Science 399 (1-2): 12-37. 2008.

[7] R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers
VI(5): 72–78, 1967.

[8] Y. Daadaa, P. Flocchini, N. Zaguia. Network decontamination with tem-
poral immunity by cellular automata. Proceedings of the 9th International
Conference on Cellular Automata for Research and Industry (ACRI), 287-
299, 2010.

[9] D. Dereniowski. Connected searching of weighted trees. Theoretical Com-
puter Science 412 (41): 5700-5713, 2011.

[10] D. Dereniowski. Approximate search strategies for weighted trees. Theo-
retical Computer Science 463 : 96-113, 2012.

[11] P. Flocchini, M.J. Huang, and F.L. Luccio. Decontamination of hypercubes
by mobile agents. Networks 52 (3): 167-178, 2008.

[12] P. Flocchini, M.J. Huang, and F.L. Luccio. Decontaminating chordal rings
and tori using mobile agents. International Journal of Foundations of Com-
puter Science 18 (3): 547-563, 2006.

[13] P. Flocchini, F.L. Luccio, and L.X. Song. Size optimal strategies for cap-
turing an intruder in mesh networks. Proceedings of the International Con-
ference on Communications in Computing (CIC), 200-206, 2005.

[14] P. Flocchini, B. Mans, and N. Santoro. Tree decontamination with tem-
porary immunity. Proceedings of the 19th International Symposium on
Algorithms and Computation (ISAAC), 330–341, 2008.

27

[15] P. Flocchini and N. Santoro. Distributed Security Algorithms for Mobile
Agents. Book Chapter of J. Cao, S. Das (Eds.), Mobile Agents in Network-
ing and Distributed Computing, Wiley 2012.

[16] F.V. Fomin, D.M. Thilikos. An annotated bibliography on guaranteed
graph searching. Theoretical Computer Science 399(3): 236-245, 2008

[17] F.V. Fomin, D.M. Thilikos, and I. Todineau. Connected graph searching
in outerplanar graphs. Proceedings of the 7th International Conference on
Graph Theory (ICGT), 213-216, 2005.

[18] D. Ilcinkas, N. Nisse and D. Soguet. The cost of monotonicity in distributed
graph searching. Distributed Computing 22 (2), 117-127, 2009.

[19] N. Imani, H. Sarbazi-Azadb, and A.Y. Zomaya. Capturing an intruder in
product networks. Journal of Parallel and Distributed Computing 67 (9):
1018–1028, 2007.

[20] N. Imani, H. Sarbazi-Azad, A.Y. Zomaya, and P. Moinzadeh. Detecting
threats in star graphs. IEEE Transactions on Parallel and Distributed
Systems 20 (4): 474-483 , 2009.

[21] N. Kinnersley. The vertex separation number of a graph equals its path-
width. Information Processing Letters 42(6): 345–350, 1992.

[22] L. Kirousis and C. Papadimitriou. Searching and pebbling. Theoretical
Computer Science 47(2): 205–218, 1986.

[23] A. Lapaugh. Recontamination does not help to search a graph. Journal of
the ACM 40(2): 224–245, 1993.

[24] F. Luccio, L. Pagli, and N. Santoro. Network decontamination in pres-
ence of local immunity. International Journal of Foundations of Computer
Science 18(3): 457–474, 2007.

[25] F.L. Luccio Contiguous search problem in Sierpinski graphs. Theory of
Computing Systems 44(2): 186-204, 2009.

[26] N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The
complexity of searching a graph. Journal of the ACM 35(1): 18–44, 1988.

[27] S. Neufeld. A pursuit-evasion problem on a grid. Information Processing
Letters 58(1): 5–9, 1996.

[28] N. Nisse. Connected graph searching in chordal graphs. Discrete Applied
Mathematics 157 (12): 2603-2610, 2009

[29] N. Nisse, D. Soguet. Graph searching with advice. Theoretical Computer
Science 410 (14): 1307-1318, 2009

28

[30] T. Parson. Pursuit-evasion in a graph. Theory and Applications of Graphs,
Lecture Notes in Mathematics, Springer-Verlag, 426–441, 1976.

[31] D. Peleg. Local majorities, coalitions and monopolies in graphs: A review.
Theoretical Computer science, 231-257, 2002.

[32] N. Santoro. Design and Analysis of Distributed Algorithms. Wiley-
Interscience. Hoboken, NJ, 2007.

[33] P. Shareghi, H. Sarbazi-Azad, and N. Imani. Capturing an intruder in the
pyramid. Proceedings of the International Computer Science Symposium
in Russia (CSSR), 580-590, 2006.

[34] B. Yang, D. Dyer, and B. Alspach. Sweeping graphs with large clique
number. Discrete Mathematics 309 (18): 5770-5780, 2009.

29

