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Abstract
Fuzzy cellular automata (FCA) are continuous cellular automata where the local

rule is defined as the “fuzzification" of the local rule of a corresponding Boolean cel-
lular automaton in disjunctive normal form. In this paper, we are interested in the
relationship between Boolean and fuzzy models and, for the first time, we analyti-
cally show the existence of a strong connection between them by focusing on two
properties: density conservation and additivity.

We begin by showing that the density conservation property, extensively studied
in the Boolean domain, is preserved in the fuzzy domain: a Boolean CA is density
conserving if and only if the corresponding FCA is sum preserving. A similar re-
sult is established for another novel “spatial" density conservation property. Second,
we prove an interesting parallel between additivity of Boolean CA and oscillations of
the corresponding fuzzy CA around its fixed point. In fact, we show that a Boolean
CA is additive if and only if the behaviour of the corresponding fuzzy CA around its
fixed point coincides with the Boolean behaviour. Finally, we give a probabilistic in-
terpretation of our fuzzification which establishes an equivalence between convergent
fuzzy CA and the mean field approximation on Boolean CA, an estimation of their
asymptotic density.

These connections between the Boolean and the fuzzy models are the first formal
proofs of a relationship between them.

Keywords. Cellular automata, continuous cellular automata, fuzzy cellular automata,
density conservation, additivity.
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1 Introduction

1.1 Fuzzy Cellular Automata
Since the introduction of cellular automata (CA) by von Neumann [27] the study of their
properties, in particular of Boolean CA, has interested various disciplines as diverse as
ecology, biology, engineering and theoretical computer science (e.g., see [4, 10, 12, 17,
29]).

Fuzzy cellular automata (FCA) are a particular type of continuous cellular automata
where the local transition rule is the “fuzzification" of the local rule of the corresponding
Boolean cellular automaton in disjunctive normal form1. Fuzzy cellular automata were
introduced in [7] and some of their properties have been studied in [13, 14, 21, 22], es-
pecially when considering finite configurations in quiescent backgrounds. Recently, they
have been shown to be useful tools for pattern recognition purposes (e.g., see [19, 20]), and
good models for generating images mimicking nature (e.g. [9, 26]).

To date, little is know about the dynamics of FCA, and the only existing results concern
elementary FCA (i.e., with dimension and neighbourhood one). In quiescent backgrounds,
it has been shown that none of the elementary FCA has chaotic dynamics [14, 21, 22].
The case of circular elementary FCA has been studied experimentally from random initial
configurations. An empirical classification has been proposed based on these studies [13]
suggesting that all elementary rules have asymptotic periodic behaviour but, surprisingly,
with periods of only certain lengths: 1,2,4, and n (where n is the size of the circular lattice).
Analytical studies to formally confirm the proposed classification have begun in [3].

In addition to the many interesting questions about the properties of fuzzy CA and their
applications, a crucial research question is the nature of the relationship between fuzzy
CA and Boolean CA. In fact, the dynamics of fuzzy CA might shed some light on their
Boolean counter-parts, and properties of Boolean CA could be interpreted differently in
light of those of fuzzy CA. If clear links between the two systems can be established,
properties of Boolean CA not previously observed might be revealed by their presence in
FCA. Unfortunately, until now, no such light had been shed and no such results existed.
In fact, it was not even clear whether such a connection existed. To date, none of the
studies on fuzzy asymptotic behaviour seemed to suggest any similarities between the two
models. The only interesting link between them was observed in [14] for the case of
elementary Boolean rule 90 (one of the most studied elementary CA rules) where it was
shown that its asymptotic behaviour was identical to the dynamics of the oscillations of
the corresponding fuzzy CA around its fixed point, one half. In other words, fuzzy rule 90
eventually stabilizes on one half, oscillating around it and the oscillations follow Boolean
rule 90 itself. The reasons for such behaviour and the general implications for fuzzy CA
were unknown until now.

1These are not to be confused with a variant of cellular automata, also called fuzzy cellular automata,
where the fuzziness refers to the choice of a deterministic local rule (e.g., see [1])
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1.2 Our Results
The main results of this paper are the formal proofs of the existence of a strong relationship
between fuzzy and Boolean CA with respect to two properties: density conservation and
additivity.

We begin the study of density with the exploration of density conservation in the dis-
crete and continuous models. More precisely, we consider two types of density conserva-
tion: a temporal one, which is the classical notion of number conservation and has been
studied extensively in the Boolean domain (e.g., see [5, 6, 11, 12, 24]), and a spatial one
that has not been studied before. We prove that our fuzzification preserves both: in other
words, a one-dimensional Boolean circular cellular automaton (i.e., with periodic initial
configuration) is density-conserving if and only if its corresponding fuzzy circular cellu-
lar automaton is sum preserving. The result follows from the fact that DNF-fuzzification
results in the unique extension to the Boolean rule which is affine in each variable. As
a simple corollary of our result, we re-discover the number conservation property of ele-
mentary rule 184 (already well known in the Boolean domain) and we find an interesting
spatial density conservation property of another elementary rule (rule 46) that can be trans-
lated into the Boolean domain: for any configuration of even size at time t > 0, the density
of the odd cells is equal to the density of the even cells.

We continue by examining a class of fuzzy rules whose asymptotic behaviour continues
to reflect that of their associated Boolean rules even as they converge to a fixed point.
We call this property self-oscillation. We show that a fuzzy CA rule is self-oscillating if
and only if the corresponding Boolean CA rule is an additive rule or its negation. This
result fully characterizes the class of d-dimensional, infinite CA with this behaviour, thus
explaining the phenomenon observed in [14] for rule 90.

Finally, we explore the unique nature of our fuzzification based on a probabilistic inter-
pretation that links a fuzzy value in a given location during the evolution of a FCA with the
probability of a one occurring in that location in the corresponding Boolean CA. We show
that in the case of convergent fuzzy CA, the point of convergence is a stable density of the
mean field approximation [16] of the corresponding Boolean CA, a well known estimate
of its asymptotic density. Although for simplicity of description the rest of the paper takes
its examples from one-dimensional CA, all the results hold for any dimension d.

2 Definitions
A d-dimensional infinite Boolean cellular automaton can be described by a quadruplet
C〈Zd, {0, 1}, N, g〉 where: Zd represents the set of cells, {0, 1} is the set of Boolean
states of the cells, N is the neighbourhood of a cell and can be defined in different ways
but usually contains the cell itself plus the neighbouring cells up to a certain radius, and
g : {0, 1}|N | → {0, 1} is the local transition rule (or simply local rule) of the automa-
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ton. Given an initial configuration, C0, that is a mapping C0 : Zd → {0, 1}, cell states
are synchronously updated at each time step by the local transition rule applied to their
neighbourhoods. A configuration is the resulting map Ct : Zd → {0, 1} at any time t. A
d-dimensional Boolean cellular automaton is said to have a finite configuration if it has a
finite number of non-zero states in an infinite quiescent background. That is, Ct(z) = 0
for all but finitely many z ∈ Zd. Circular cellular automata can be thought of as infinite
CA with a periodic repeating pattern, or as a finite circular d-dimensional grid.

In the case of one-dimensional circular Boolean cellular automata, a configuration is a
finite vector Xt ∈ {0, 1}n = (xt0, x

t
, . . . , x

t
n−1) where cells are index modulo n, the length

of the finite array. Alternatively, one can think of an infinite array containing a periodic
configuration. The neighbourhood of a cell consists of the cell itself and its r left and right
neighbours, thus the local transition rule has the form: g : {0, 1}2r+1 → {0, 1}. The global
dynamics of a one-dimensional circular cellular automaton composed of n cells is then
defined by the global transition rule: G : {0, 1}n → {0, 1}n s.t. ∀X ∈ {0, 1}n,∀i ∈
{0, . . . , n− 1}, the i-th component G(X)i of G(X) is G(X)i = g(xi−r, . . . , xi, . . . , xi+r),
where all operations on indices are modulo n. Cellular automata with dimension and radius
one are called elementary.

The local transition rule g of a Boolean CA is typically given in tabular form by listing
the 22r+1 binary tuples corresponding to the 22r+1 possible local configurations a cell can
detect in its direct neighbourhood, and mapping each tuple to a Boolean value bi (0 ≤ i ≤
22r+1−1): (00 · · · 00, 00 · · · 01, . . . . . ., 11 · · · 10, 11 · · · 11)→ (b0, · · · , b22r+1). The binary
representation (b0, · · · , b22r+1) is often converted into the decimal representation

∑
i 2

ibi,
and this value is typically used as the decimal code of the rule (or rule number). Let us
denote by di the tuple mapping to bi, and by T1 the set of tuples mapping to one. The
local transition rule can also be canonically expressed in disjunctive normal form (DNF)
as follows:

g(v−r, · · · , vr) =
∨

i<22r+1

bi
∧

j=−r:r

v
di,j+r

j

where di,j is the j-th digit, from left to right of di (counting from zero) and v0j (resp. v1j )
stands for ¬vj (resp. vj) i.e.,

∧
j=−r:r v

di,j+r

j will be equal to one precisely when v−r · · · vr
viewed as a single binary number is equal to di.
Example. Consider, for example, elementary rule 18 whose local transition rule in tabular
form is given by: (000, 001, 010, 011, 100, 101, 110, 111)→ (0, 1, 0, 0, 1, 0, 0, 0). The local
transition rule in DNF form is the following:

g(v−1, v0, v1) = (¬v−1 ∧ ¬v0 ∧ v1) ∨ (v−1 ∧ ¬v0 ∧ ¬v1).

A fuzzy cellular automaton (FCA) is a particular continuous cellular automaton where
the local transition rule is obtained by DNF-fuzzification of the local transition rule of
a classical Boolean CA. The fuzzification consists of a fuzzy extension of the Boolean
operators AND, OR, and NOT in the DNF expression of the Boolean rule. Depending on
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which fuzzy operators are used, different types of fuzzy cellular automata can be defined.
Among the various possible choices, we consider the following: (a ∨ b) is replaced by
min{1, (a + b)}, (a ∧ b) by (ab), and (¬a) by (1 − a). Note that, in the case of FCA,
min{1, (a + b)} = (a + b). Whenever we talk about fuzzification, we are referring to the
DNF-fuzzification defined above. The resulting local transition rule f : [0, 1]2r+1 → [0, 1]
becomes a real function that generalizes the canonical representation of the corresponding
Boolean CA:

f(v−r, · · · , vr) =
∑

i<22r+1

b̂i
∏

j=−r:r

l(vj, di,j+r)

where l(a, 0) = 1 − a and l(a, 1) = a, and b̂i = 0 if bi is false and b̂i = 1 if bi is true.
Notice that b̂i = g(di), so we can also write f as:

f(v−r, · · · , vr) =
∑

i<22r+1

g(di)
∏

j=−r:r

l(vj, di,j+r) (1)

Note that the resulting function, f(v−r, · · · , vr), is affine in each of its variables. Fur-
thermore, it agrees with the Boolean function g(v−r, · · · , vr) at the 2n points in {0, 1}n. It
is therefore the only affine extension of g.
Example. Consider again elementary rule 18 whose local transition rule in DNF form is
g(v−1, v0, v1) = (¬v−1∧¬v0∧v1)∨ (v−1∧¬v0∧¬v1), then the corresponding fuzzy local
transition rule becomes:

f(v−1, v0, v1) = (1− v−1)(1− v0)v1 + v−1(1− v0)(1− v1).

Throughout this paper, we will denote local rules of Boolean CA by g and their fuzzifi-
cations for the corresponding FCA by f . For ease of notation, we will denote g(yi−r, · · · , yi,
· · · , yi+r) by g[yi] and f(xi−r, · · · , xi, · · · , xi+r) by f [xi]. The corresponding global rules
are denoted by G and F .

3 Density Conservation in Boolean and Fuzzy CA
In this section, we begin exploring the link between Boolean and fuzzy CA proving that
there are density conservation properties that are preserved through the fuzzification pro-
cess. Since such properties are defined only for finite or circular CA, throughout this
section we will consider circular CA (the finite case is analogous).

3.1 Preliminaries
To begin with, we show that the function obtained through DNF-fuzzification is the only
continuous extension of the Boolean function which is affine in every variable. Recall that
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a function f is affine if it has the form f(x) = ax + b for constants a and b. (An affine
function is linear if b = 0.) The function f(x0, · · · , xn−1) is affine in x0, for example, if it
can be written as a0(x1, · · · , xn−1)x0 + b0(x1, · · · , xn−1).

Lemma 1. A local fuzzy rule f obtained from a Boolean rule is affine in each variable.

Proof. This follows from the construction of f as the sum of terms which are affine in each
variable.

Lemma 2. The local fuzzy rule f obtained from a Boolean rule is the only continuous
extension of the Boolean rule which is affine in each variable.

Proof. We can think of a function f(x0, · · · , xn−1) which is affine in each variable xi as
nested affine equations in each variable:

f(x0, · · · , xn−1) = an−1(· · · (a1(a0x0 + b0)x1 + b1) · · · )xn−1 + bn−1.

Since there are 2n parameters, ai and bi, such an equation is completely defined by 2n

points. As an extension of the Boolean, the function f is defined on the 2n points in
{0, 1}n, and is thus the unique affine extension.

The lemmas above imply that the global rule F obtained from such local rules are affine
in each variable at each position.

3.2 Number Conservation
Number conservation is a global property that has been extensively investigated (e.g., see
[5, 6, 11, 12, 15, 23, 24]) since its introduction in [25], a main focus being the study
of linear time decision algorithms for the property of number conservation for finite or
periodic configurations.

A Boolean CA is number conserving if the number of ones in the initial configuration is
preserved at each subsequent iteration (we will also say that a rule is number conserving).
The analogous property in fuzzy CA is that the sum of values of the initial configuration is
preserved.

In this section, we wish to show that using DNF-fuzzification, a Boolean CA with local
rule g is number conserving if and only if the local rule f of the corresponding FCA is sum
conserving (Theorem 3). We will actually first prove a more general result that holds for
any linear function (Theorem 2). Before starting the proofs of the lemmas leading to the
main theorems, we introduce an extension of the fuzzy rule, and some notation necessary
for the proofs.

Let us extend the fuzzification process to any function g : {0, 1}2r+1 → R by defining

C(g)(v−r, · · · , vr) =
∑

i<22r+1

g(di)
∏

j=−r:r

l(vj, di,j+r)
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where di and l(vj, di,j+r) are defined as for the fuzzification of g. The function C(g) :
R2r+1 → R is once again affine in each variable. Similarly, we can define C(G) to be the
continuous extension of any global function G. Notice that when g is a local Boolean rule,
C(g) = f .

Let σ(x0, · · · , xn−1) denote
∑n−1

i=0 xi. Then any linear function Ψ =
∑n−1

i=0 αixi can
be written as the composition of σ and a scaling function, that is, a function of the form
ψ(x0, · · · , xn−1) = (α0x0, · · · , αn−1xn−1) where the αi are constants. Let us further define
C(ψ ◦ G)(x0, · · · , xn−1) to be (C(α0g)[x0], · · · , C(αn−1g)[xn−1]). We will now prove a
few lemmas regarding the composition of C(g) with linear functions that will be needed
for the proof of the main Theorem.

Lemma 3. Given any linear function Ψ = σ ◦ ψ and a local function g with associated
global function G, then Ψ ◦ C(G) = σ ◦ C(ψ ◦G) and is affine in each variable.

Proof. We prove the slightly stronger statement, ψ ◦ C(G) = C(ψ ◦ G) by first showing
that αC(g) = C(αg):

C(αg)(v−r, · · · , vr) =
∑

i<22r+1

αg(di)
∏

j=−r:r

l(vj, di,j+r)

= α
∑

i<22r+1

g(di)
∏

j=−r:r

l(vj, di,j+r)

= αC(g).

Then

C(ψ ◦G)(x0, · · · , xn−1) = (C(α0g)[x0], · · · , C(αn−1g)[xn−1])

= (α0C(g)[x0], · · · , αn−1C(g)[xn−1])

= ψ ◦ C(G)(x0, · · · , xn−1).

Hence Ψ ◦ C(G) = σ ◦ ψ ◦ C(G) = σ ◦ C(ψ ◦G).
As a sum of functions which are affine in each variable, Ψ ◦ C(G) is affine in each

variable also.

Lemma 4. Let Ψ = σ ◦ψ and Φ = σ ◦φ be linear functions and let G be a global function
such that Ψ ◦G = Φ̃ on {0, 1}n, then σ ◦ C(ψ ◦G) = σ ◦ C(φ) on Rn.

Proof. We prove this by induction on the number of entries in the configuration that can
be in (0, 1), all other variables being in {0, 1}. The theorem is clearly true when all xi are
in {0, 1}. Now assume it is true when m variables xi can range over [0, 1], the rest being
strictly in {0, 1} and prove for m + 1. For ease of notation and without loss of generality
let x0 be allowed to range over [0, 1]. Then from Lemma 3, σ ◦C(ψ ◦G) and σ ◦C(φ) are
affine as functions in x0. By the induction hypothesis, these affine functions must agree
with Φ when x0 is equal to 0 or 1. Since two points uniquely determine an affine function,
we must have σ ◦ C(ψ ◦G) = σ ◦ C(φ).
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We are now ready to prove our main results.

Theorem 1. Given linear functions Ψ and Φ from Rn to R and any function g : {0, 1}2r+1 →
R, then

Ψ ◦ C(G) = Φ

if and only if
Ψ ◦G = Φ̃

where Φ̃ is the restriction of Φ to {0, 1}n, and G is the global function associated with g.

Proof. ⇒: Since the property applies to all values in [0, 1], it must apply to {0, 1} as well
and the implication follows from the construction of f .
⇐:

Ψ ◦G = σ ◦ C(ψ ◦G) by Lemma 3
= σ ◦ C(φ̃) by Lemma 4
= Φ by Lemma 2 since C(φ̃) is affine.

Theorem 2. Let Ψ be a real linear function and g a local Boolean CA rule. Then:

∀(y0, . . . , yn−1) ∈ {0, 1}n Ψ(g[y0], · · · , g[yn−1]) = Ψ(y0, · · · , yn−1)

if and only if

∀(x0, . . . , xn−1) ∈ [0, 1]n Ψ(f [x0], · · · , f [xn−1]) = Ψ(x0, · · · , xn−1)

Proof. This follows from Theorem 1 by letting Ψ = Φ and the fact that f = C(g).

Note that, when Ψ is the summation of all values, we have:
∑n−1

i=0 g[yi] =
∑n−1

i=0 yi
∀(y0, . . . , yn−1) if and only if

∑n−1
i=0 f [xi] =

∑n−1
i=0 xi ∀(x0, . . . , xn−1), that is:

Theorem 3. A Boolean CA is number conserving if and only if its corresponding FCA is
sum conserving.

Example: Rule 184 is an example of a number conserving rule.

Theorem 4. Let f184 be fuzzy local rule 184. We have:

∀(x0, . . . , xn) ∈ [0, 1]n
n−1∑
i=0

f184[xi] =
n−1∑
i=0

xi
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Proof. Fuzzy rule 184 has the following form: xt+1
i xti−1−xti−1xti +xtix

t
i+1. Then we have:

n−1∑
i=0

xt+1
i =

n−1∑
i=0

xti−1 −
n−1∑
i=0

xtix
t
i−1 +

n−1∑
i=0

xtix
t
i+1.

Since we are using a circular FCA,
∑n−1

i=0 x
t
i−1 =

∑n−1
i=0 x

t
i and

∑n−1
i=0 x

t
ix
t
i−1 =

∑n−1
i=0 x

t
ix
t
i+1,

which implies:
n−1∑
i=0

xt+1
i =

n−1∑
i=0

xti.

The result for the Boolean case (which is already known) follows as a corollary of Theorem
2.

Corollary 1. Let g184 be elementary Boolean local rule 184. We have:
∀(y0, . . . , yn) ∈ {0, 1}n

∑n−1
i=0 g184[yi] =

∑n−1
i=0 yi.

3.3 Spatial Number Conservation
We now describe another global property that is preserved by fuzzification. This property
also deals with the density of configurations. Following an approach similar to the one of
Theorem 2, we can show that in a CA, linear properties hold for the Boolean rule if and
only if they hold for the corresponding fuzzy rule.

Theorem 5. Let g : {0, 1}2r+1 → {0, 1} be the local rule of a Boolean CA and let f :
[0, 1]2r+1 → [0, 1] be its fuzzification. Let Ψ be a real linear function.

∀(y0, . . . , yn−1) ∈ {0, 1}n Ψ(g[y0], · · · , g[yn−1]) = 0

if and only if

∀(x0, . . . , xn−1) ∈ [0, 1]n Ψ(f [x0], · · · , f [xn−1]) = 0.

Proof. This follows from Theorem 1 by letting Φ = 0.

Note that, when Ψ(x0, . . . , xn−1) =
∑n−1

i=0 (−1)ixi and n is even, we obtain the preser-
vation through fuzzyfication of a spatial conservation property where the sum of the even
numbered cells (x2i) is equal to the sum of the odd numbered cells (x2i+1) at any time after
the initial configuration:

Corollary 2. Let n be even. ∀(y0, . . . , yn−1) ∈ {0, 1}n
∑n−1

i=0 (−1)ig[yi] = 0
if and only if

∀(x0, . . . , xn−1) ∈ [0, 1]n
∑n−1

i=0 (−1)if [xi] = 0 .
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Example: Rule 46 is an example of a spatially number conserving rule where the sum
of the even numbered cells (x2i) is equal to the sum of the odd numbered cells (x2i+1) at
any time after the initial configuration.

Theorem 6. Let f46 be fuzzy local rule 46 in a FCA of even size. We have: ∀(x0, . . . , xn−1) ∈
[0, 1]n

∑n−1
i=0 (−1)if46[xi] = 0.

Proof. Rule 46 is given by: xt+1
i = xti + xti+1 − xti−1xti − xtixti+1, so:

n−1∑
i=0

(−1)ixt+1
i =

n−1∑
i=0

(−1)ixti +
n−1∑
i=0

(−1)ixti+1 −
n−1∑
i=0

(−1)ixti−1x
t
i −

n−1∑
i=0

(−1)ixtix
t
i+1.

By a change of variables, due to circularity we have:
∑n−1

i=0 (−1)ixti+1 = −(
∑n−1

i=0 (−1)ixti),
and

∑n−1
i=0 (−1)ixtix

t
i+1 = −(

∑n−1
i=0 (−1)ixti−1x

t
i). So we can conclude:

n−1∑
i=0

(−1)ixt+1
i =

n−1∑
i=0

(−1)ixti −
n−1∑
i=0

(−1)ixti −
n−1∑
i=0

(−1)ixti−1x
t
i +

n−1∑
i=0

(−1)ixti−1x
t
i = 0.

The result for the Boolean case now follows as a corollary of Theorem 2.

Corollary 3. Let g46 be elementary Boolean local rule 46. When n is even, we have:
∀(y0, . . . , yn−1) ∈ {0, 1}n

∑n−1
i=0 (−1)ig46[yi] = 0.

4 Self-Oscillation and Additivity
In this section, we consider another property of Boolean cellular automata extensively
studied in the literature: additivity (e.g., see [8, 18, 28]). We continue the investigation of
the link between Boolean and fuzzy CA showing a connection between additivity and a new
fuzzy property that we call self-oscillation. In doing so, we characterize the class of self-
oscillating fuzzy CA. Although for simplicity we take our examples from one dimensional
CA, the results of this section hold for any dimension.

4.1 Preliminaries
A common definition of additivity is that a Boolean rule g is additive if g(y0, · · · , yn−1)⊕
g(z0, · · · , zn−1) = g(y0 ⊕ z0 , · · · , yn−1 ⊕ zn−1). These additive rules can be expressed
as the XOR of some of their variables. An example is elementary rule 90, which can be
expressed as: g90(x, y, z) = (x̄ ∧ z) ∨ (x ∧ z̄) = x⊕ z. We will use a broader definition of
additivity which includes rules that are additive by the definition above and their negations:
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Definition 1. A Boolean rule g is additive if

g(y0, · · · , yn−1)⊕ g(z0, · · · , zn−1) = g(y0 ⊕ z0, · · · , yn−1 ⊕ zn−1),

or
g(y0, · · · , yn−1)⊕ g(z0, · · · , zn−1) = g(y0 ⊕ z0, · · · , yn−1 ⊕ zn−1).

An example of a rule which is additive in this broader sense but not by the strict math-
ematical definition is rule g105(x, y, z) = xyz̄ + xȳz + x̄yz + x̄ȳz̄ = x⊕ y ⊕ z, which is
equal to x⊕ y ⊕ z̄ = x⊕ ȳ ⊕ z = x̄⊕ y ⊕ z.

g105(x1, y1, z1)⊕ g105(x2, y2, z2) = x1 ⊕ y1 ⊕ z̄1 ⊕ x2 ⊕ y2 ⊕ z̄2
= x1 ⊕ x2 ⊕ y1 ⊕ y2 ⊕ z1 ⊕ z2

while

g105(x1 ⊕ x2, y1 ⊕ y2, z1 ⊕ z2) = x1 ⊕ x2 ⊕ y1 ⊕ y2 ⊕ z1 ⊕ z2
= x1 ⊕ x2 ⊕ y1 ⊕ y2 ⊕ z1 ⊕ z2.

In general, when g is additive, g(y0, · · · , yn−1) can be expressed as the XOR of some
of its variables yi and at most one negation ȳi, which implies the following property:

Property 1. An additive Boolean rule has the form: g(x0, · · · , xn−1) =
⊕

i∈S xi or
g(x0, · · · , xn−1) =

⊕
i∈S xi, where i ranges over S, a subset of the numbers from 0 to

n− 1.

We extend the definition of the XOR operator to fuzzy rules by defining x ⊕ y =
xȳ + x̄y = x(1 − y) + (1 − x)y. (In this section, to simplify notation we will often use
x̄ to denote (1 − x) in a fuzzy rule.) If a Boolean rule is additive, its fuzzification is also
additive and Property 1 holds for fuzzy rules as well.

A fixed point P for a FCA with global transition rule F is a configuration P such that
F (P) = P. A configuration P = (. . . , pi−1, pi, pi+1, . . .) is homogeneous if pi = pj,∀i, j;
in such a case, we obviously also have f(p, · · · , p) = p. A global rule is said to converge
to an homogeneous configuration P = (. . . p, p, p, . . .) if, for all initial configurations X0 =
(. . . , x0i−1, x

0
i , x

0
i+1 . . .) with x0i ∈ (0, 1) for all i, then ∀ε > 0, ∃T such that ∀t > T and ∀i,

|xti − p| < ε. In this case, we will also say that the local rule f converges to p. Note that if
a rule converges to a homogeneous configuration it must be a fixed point.

We can now introduce the notion of self-oscillation for fuzzy CA. Informally, a fuzzy
rule f is self-oscillating if while converging towards an homogeneous fixed point, it be-
haves like the corresponding Boolean rule g; in other words, when the dynamics of f
around a fixed point coincides with the dynamics of g. In fact, the rule table of a fuzzy
self-oscillating CA, written around its fixed point, coincides with the Boolean rule table.
This is the case, for example, of elementary fuzzy rule 90 which has been shown in [14] to
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x y z f90(x, y, z) x y z g90(x, y, z)
< < < < 0 0 0 0
< < > > 0 0 1 1
< > < < 0 1 0 0
< > > > 0 1 1 1
> < < > 1 0 0 1
> < > < 1 0 1 0
> > < > 1 1 0 1
> > > < 1 1 1 0

Table 1: Rule 90: fuzzy behaviour around 1
2

(< indicates "<1
2
", > indicates ">1

2
" ) (left);

Boolean rule (right).

behave like its Boolean counter-part around 1
2
. (See Table 1 where > and < respectively

indicate values greater than or smaller than 1
2
.)

We now introduce the formal definition of self-oscillation. Let p be a fixed point for f .
Let (x1, . . . , xn−1) be an arbitrary fuzzy configuration, let xn = f(x0, · · · , xn−1), and let
us define yi, for i = 0, . . . n, as follows:

yi =

{
0 if xi < p
1 if xi > p

Definition 2. Rule f is self-oscillating around p if it converges to p and if f(x0, · · · , xn−1) =
xn implies that g(y0, · · · , yn−1) = yn.

Elementary rule 90 has been shown to have this type of behaviour in [14]. The other
self-oscillating elementary rules have been identified using a case by case analysis in [2].
However, the general implications of this behaviour were left unexplained. What was clear
was that self-oscillation did not occur for all fuzzy rules with an homogeneous fixed point,
but a characterization of the class of rules displaying self-oscillation was lacking until now.

4.2 Equivalence between Self-Oscillation and Additivity
In this section, we characterize the class of self-oscillating FCA proving the following re-
sult: a non-trivial fuzzy CA rule is self-oscillating if and only if the corresponding Boolean
CA rule is additive.

We begin with some lemmas. We first describe the behaviour of the fuzzification of
the XOR operator (x ⊕ y = xȳ + x̄y) around 1

2
, and then prove that convergence to 1

2
is

necessary for self-oscillation.

Lemma 5. xy+ x̄ȳ is greater than 1
2

if and only if both x and y are greater than 1
2

or both
are smaller.
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Lemma 6. A necessary condition for a convergent non-trivial rule to be self-oscillating is
for it to converge to one half.

Proof. To begin we note that functions converging to either zero or one can never be self-
oscillating since values are, respectively, either always greater than or always less than the
point of convergence. We will now prove this lemma by induction on n, the number of
variables in f , i.e., on the size of the neighbourhood.

It is easy (but tedious) to show that when f is a non-trivial function on two variables
only the following converge to homogeneous fixed points on (0, 1): f1(x0, x1) = x0x̄1 +
x̄0x1 and f2(x0, x1) = x0x1 + x̄0x̄1 which converge to 1

2
and are self-oscillating, and

f3(x0, x1) = x̄0x̄1 which converges to p = 3−
√
5

2
and is not self-oscillating. For f3 to be

self-oscillating, it would have to be greater than p only when both x0 and x1 were less than
p. A counterexample occurs when x0 = 0 and x1 = 1

2
, then f3(x0, x1) = 1

2
> p.

Now assume that the lemma holds for all functions in n or fewer variables and con-
sider the function f with global rule F which converges to a fixed point p. We re-write it
as: f+(x0, · · · , xn−1)xn + f−(x0, · · · , xn−1)x̄n. We wish to show that if f is convergent
and non-trivial, then at least one of f+ and f− must take on values greater than and less
than p. If both f+ and f− are always greater than p, then f > pxn + p(1 − xn) = p.
Self-oscillation implies that f = 1. Similarly, if f+ and f− are both less than p, then
f must be trivially 0. Now consider f+ always greater than p and f− always less than
p. When xn = 1, f(x0, · · · , xn−1, 1) = f+(x0, · · · , xn−1) > p. Self-oscillation im-
plies that f(x0, · · · , xn) > p whenever xn > p. When xn = 0, f(x0, · · · , xn−1, 0) =
f−(x0, · · · , xn−1) < p. Again, self-oscillation implies f < p whenever xn < p. Taking
the two together, we must have f(x0, · · · , xn) = xn which is not a convergent function.
Similarly, if f+ < p and f− > p, we obtain f = x̄n. We conclude that at least one of f+
and f− must have some values greater than p and some smaller. Assume, without loss of
generality since the proofs are analogous, that f+ is sometimes greater than p and some-
times smaller, and again consider xn = 1 so that f(x0, · · · , xn−1, 1) = f+(x0, · · · , xn−1).
The function f+ is completely determined by f and so must be self-oscillating around p.
By the inductive hypothesis, p = 1

2
.

As we know, given a Boolean rule g, we can derive its fuzzification f as the sum of
the fuzzifications of each of its transitions to 1. In the following, we refer to each of the
products in this sum as a term of f .

Lemma 7. If f(x0, · · · , xn−1) converges to 1
2
, f is the sum of 2n−1 terms.

Proof. The terms of any function evaluated at (1
2
, · · · , 1

2
) are all equal to (1

2
)n. For f(1

2
, · · · , 1

2
) =

1
2
, we must have 2n−1 such terms summed together.

We now prove that for a fuzzy rule on n variables to be self-oscillating, it must be
balanced in xi and x̄i. That is, it must be the sum of the same number of terms in xi as in
x̄i for all i.
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Lemma 8. Let f(x0, · · · , xn−1) be self-oscillating. Then for all i, there are as many terms
in the sum of f in xi as there are terms in x̄i.

Proof. We will show by contradiction that there are as many terms in the sum of f in xi as
there are terms in x̄i. We begin by writing f as:

f(x0, · · · , xn−1) =

fi+(x0, · · · , xi−1, xi+1, · · · , xn−1)xi + fi−(x0, · · · , xi−1, xi+1, · · · , xn−1)x̄i
Assume without loss of generality that more than half the terms are in f+. Let there be
m > 2n−2 terms in fi+. Then, by Lemma 7 there must be 2n−1 −m terms in fi−. Then as
xj → 1

2
for all j 6= i, each term of fi+ tends to 1

2

n−1 and thus fi+ → m
2n−1 , which is > 1

2

because we assumedm > 2n−2. Moreover, fi− → 2n−1−m
2n−1 < 1

2
. Note that this convergence

happens as the xj approach 1
2

from both directions. Choosing xj close enough to 1
2
, we can

assume that fi+ > 1
2

and fi− < 1
2

. Now: f(x0, · · · , xn−1) = fi+xi + fi−(1 − xi) =
(fi+ − fi−)xi + fi−. At xi = 1, f(x0, · · · , xn−1) = fi+ > 1

2
. That is for all values

of x0, · · · , xi−1, xi+1, · · · , xn−1 close enough to 1
2
, whether greater than or less than 1

2
,

f(x0, · · · , xn−1) = fi+ > 1
2
. Similarly, when xi = 0, f(x0, · · · , xn−1) = fi+ < 1

2
. Self-

oscillation then implies that f(x0, · · · , xn−1) = xi which is not a convergent function.

We are finally able to characterize the form of a self-oscillating rule. We will see that
these rules are fuzzifications of Boolean rules which are the XOR of single variables or
their negations.

Theorem 7. A rule f(x0, · · · , xn−1) is self-oscillating if and only if its corresponding
Boolean rule is additive.

Proof. ⇒:
We will prove that if a self-oscillating rule is additive, f(x0, · · · , xn−1) =

⊕
i∈S xi or

f(x0, · · · , xn−1) =
⊕

i∈S xi, (and thus the corresponding Boolean rule is additive) by in-
duction on n.

For n = 2, from Lemma 8, we must have one term in xi and one term in x̄i for i ∈ {0, 1}
giving us only two possibilities: f(x0, x1) = x0x̄1 + x̄0x1 = x0 ⊕ x1 or f(x0, x1) =
x̄0x̄1 + x0x1 = x̄0 ⊕ x1 as required.

Now assume the hypothesis for all self-oscillating rules in less than or equal to n vari-
ables. Given a self-oscillating rule f(x0, · · · , xn), if f is not dependent on all n + 1 vari-
ables, then it can be rewritten as a self-oscillating rule on n or fewer variables and the
inductive hypothesis holds. So we may continue on the assumption that f is dependent on
all n+ 1 variables. We can write:

f(x0, · · · , xn) = [f1−(x0, · · · , xn−2)x̄n−1 + f1+(x0, · · · , xn−2)xn−1]x̄n
+ [f2−(x0, · · · , xn−2)x̄n−1 + f2+(x0, · · · , xn−2)xn−1]xn
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Letting xn = 0, f(x0, · · · , xn−1, 0) is a self-oscillating rule on n variables so the in-
ductive hypothesis applies and

f1−(x0, · · · , xn−2)x̄n−1 + f1+(x0, · · · , xn−2)xn−1 = x0 ⊕ · · · ⊕ xn−1

or
f1−(x0, · · · , xn−2)x̄n−1 + f1+(x0, · · · , xn−2)xn−1 = x̄0 ⊕ x1 ⊕ · · · ⊕ xn−1.

Specifically, we must have f1−(x0, · · · , xn−2) = x0⊕x1⊕· · ·⊕xn−2, f1+(x0, · · · , xn−2) =
x̄0⊕ x1⊕ · · · ⊕ xn−2 or the opposite. Setting xn to 1, we can say the same thing about f2−
and f2+.

Using the same argument, if we let xn−1 = 0, we see that f2− = f̄1−. Thus we have
only two possibilities for f :

f(x0, · · · , xn) = [(x0 ⊕ · · · ⊕ xn−2)x̄n−1 + (x̄0 ⊕ · · · ⊕ xn−2)xn−1]x̄n
+ [(x̄0 ⊕ · · · ⊕ xn−2)x̄n−1 + (x0 ⊕ · · · ⊕ xn−2)xn−1]xn
= x0 ⊕ · · · ⊕ xn

or

f(x0, · · · , xn) = [(x̄0 ⊕ · · · ⊕ xn−2)x̄n−1 + (x0 ⊕ · · · ⊕ xn−2)xn−1]x̄n
+ [(x0 ⊕ · · · ⊕ xn−2)x̄n−1 + (x̄0 ⊕ · · · ⊕ xn−2)xn−1]xn
= x̄0 ⊕ x1 ⊕ · · · ⊕ xn.

⇐: We will assume that the Boolean rule corresponding to f is additive (and thus
f(x0, · · · , xn−1) is also additive) and proceed by induction on n to show that it is self-
oscillating. When n = 2, f(x0, x1) is equal to x0⊕x1 or x0⊕ x̄1. In either case, by Lemma
5 f is self-oscillating.

Now assume that for n or fewer variables, additivity implies self-oscillation and con-
sider f(x0, · · · , xn). Without loss of generality, assume that f is not independent of xn,
then we can write it as f(x0, · · · , xn) = f1(x0, · · · , xn−1) ⊕ xn for an additive rule f1
which is self-oscillating by the induction hypothesis. Again applying Lemma 5, f must be
self-oscillating.

If we restrict our examination to elementary rules, we obtain the following corollary.

Corollary 4. Up to equivalence, all and only rules f60, f90, f105, and f150 are elementary
self-oscillating rules.

5 Probabilistic Interpretation of Fuzzification
An interesting property of the DNF fuzzification is how it relates to the probability of a one
occuring at a given time in a given cell. Since the fuzzy values are in the range [0, 1], we can
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interpret them as probabilities, i.e., we can let a fuzzy value xti denote the probability that
a cell yi of a Boolean CA assumes value 1 at time t. Then, if the values were independent,
the fuzzy rule applied to a neighbourhood would return the probability of having value 1
at the next time step:

f(xti−r, · · · , xti, · · · , xti+r) = xt+1
i = P (yt+1

i = 1).

In the next section we will establish some basic probabilistic results resulting from this
interpretation.

5.1 Preliminaries
We introduce a property that will be needed later, relating the expectation of a Boolean
local function to the fuzzy rule applied to expectations.

We will first need some notation. Given a random variable Z, let E(Z) denote its
expected value. Note that when Z is a binary random variable, thenE(Z) is the probability
P (Z = 1). Essentially, we show that applying the fuzzification f of g to the expected
values of a cell Yi and its 2r neighbouring cells, we obtain the expected value of g[Yi], the
cell at the next time step.

Theorem 8. Let (Y0, . . . , Yn−1) be independent binary random variables. Then:
∀i = 0, . . . n− 1, f [E(Yi)] = E(g[Yi]).

Proof. By definition, f [E(Yi)] =
∑22r+1−1

j=0 bj
∏r

k=−r l(E(Yi+k), dj,k+r).
If dj,k+r = 1, then

l(E(Yi+k), dj,k+r) = E(Yi+k) = P (Yi+k = dj,k+r).

Similarly, if dj,k+r = 0, then

l(E(Yi+k), dj,k+r) = 1−E(Yi+k) = 1−P (Yi+k = 1) = P (Yi+k = 0) = P (Yi+k = dj,k+r).

So we have:

f [E(Yi)] =
22r+1−1∑
j=0

bj

+r∏
k=−r

P (Yi+k = dj,k+r)

Since the variables are independent,

+r∏
k=−r

P (Yi+k = dj,k+r) = P ((Yi−r, . . . , Yi+r) = dj)

thus:

f [E(Yi)] =
22r+1−1∑
j=0

bj · P ((Yi−r, . . . , Yi+r) = dj).
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Recall that bj = 1 if dj ∈ T1, the set of Boolean tuples mapping to one, otherwise
bj = 0, thus:

f [E(Yi)] =
∑
dj∈τ1

P ((Yi−r, . . . , Yi+r) = dj)

= P ((Yi−r, · · · , Yi+r) ∈ T1)
= P (g[Yi] = 1)

= E(g[Yi]).

As a consequence of Theorem 8, we can intuitively see that the asymptotic behaviour
of a FCA represents a rough approximation of the asymptotic density of the corresponding
Boolean CA. In the next section, we show that such an intuition is in fact correct.

5.2 Mean Field Approximation
In this section, we will show the connection between the asymptotic behaviour of fuzzy
CA and of one descriptor of the asymptotic behaviour of Boolean CA.

The mean field approximation is an estimate of the asymptotic density of Boolean cel-
lular automata when no spatial correlation among cells is taken into account. Thought
of another way, it is again an estimate of the probability of a one occurring in a random
place in a configuration once its density has stabilized [16, 30], not considering spatial
correlations. Although in cellular automata spatial correlations play an important role and
greatly influence their dynamics, the mean field approximation can give a rough indication,
although sometimes quite far from the exact value, of the asymptotic density. The approx-
imation is derived by assuming that when the asymptotic probability is reached, then the
likelihood of increasing in density is equal to the likelihood of decreasing in density. More
formally, we assume that for all i, P (yi = 1) = p and that the yi are independent. Then we
can denote the probability of a transition from 0 to 1 as a function of p by P0→1(p). This is
equal to the probability that g[yi] = 1 given that yi = 0 or P (g[yi] = 1|yi = 0). Similarly,
we denote the probability of a transition from 1 to 0 by P1→0(p). A stable density of the
mean field approximation is any p such that P0→1(p) − P1→0(p) = 0. We show in the
following lemma that these probabilities can be evaluated as the sum of fuzzifications of
the transitions from 0 to 1 evaluated at p which we denote by R0→1(p), in the first instance,
and as R1→0(p) the sum of fuzzifications of the transitions from 1 to 0 also evaluated at p,
in the second.

Lemma 9. P0→1(p) = R0→1(p) and P1→0(p) = R1→0(p).

Proof. We prove that P0→1(p) = R0→1(p), the analogous proof holds for P1→0(p) =
R1→0(p). First note that since in the calculation of the mean field approximation we are
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assuming that the yi are independent, the probability of any given neighbourhood combina-
tion [yi] is the fuzzification of that neighbourhood evaluated at p. That is, let (v−r, · · · , vr)
be a binary vector, then P ((yi−r, · · · , yi+r) = (v−r, · · · , vr)) =

∏
j=−r:r l(p, vj) where

as before l(p, 1) = p and l(p, 0) = 1 − p. By definition, P0→1(p) is the probability that
g[yi] ∈ τ1 given that yi = 0, so it is equal to the sum of the fuzzifications of the transitions
from 0 to 1, or R0→1(p).

Theorem 9. Given a global fuzzy rule F , if there exists an homogeneous configuration
X = (p, · · · , p) such that F (X) = X , then p is a stable density of the mean field approxi-
mation of the Boolean rule G associated with F .

Proof. Let f be the local rule associated with F and g its Boolean rule. Let R0→1(p)
denote the sum of the fuzzifications of the transitions from 0 to 1 for g, evaluated at X =
(p, · · · , p). Similarly, R0→0(p), R1→0(p), and R1→1(p) denote sums of fuzzifications of
transitions from 0 to 0, 1 to 0, and 1 to 1 evaluated at (p, · · · , p), respectively. The sum of
all these transition must be one. SinceX is fixed by F , and since f(p, · · · , p) = R0→1(p)+
R1→1(p) by definition, then R0→1(p) +R1→1(p) = p. Also, R1→0(p) +R1→1(p) = p since
this is the sum of all terms in xi (as opposed to terms in x̄i), and the result is independent
of f . Combining these two results, we have

(R1→0(p) +R1→1(p))− (R0→1(p) +R1→1(p)) = p− p
R1→0(p)−R0→1(p) = 0.

Thus at p, P1→0(p) = P0→1(p) by Lemma 9 . Hence p is a stable density of the mean
field approximation, as required.

Note that if p is not unique, then the mean field approximation has several stable den-
sities.

It is easy to see that the reverse also holds.

Theorem 10. If p is a stable density of the mean field approximation for a Boolean rule G,
then the homogeneous configuration at that point is a fixed point for the fuzzification F of
G.

In the next section, we show further connections between the density of Boolean CA
and their corresponding fuzzy CA.

6 Concluding Remarks
In this paper, we have provided the first evidence of a link between Boolean and fuzzy
cellular automata by focusing on density conservation and additivity. We have formally
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proven that density conservation is preserved through fuzzification and that additivity in
Boolean CA is equivalent to self-oscillation in FCA.

Now that there is a formal proof of strong links between the discrete and the continu-
ous models, the next natural question is how to exploit these links to derive properties of
Boolean cellular automata through their fuzzification. As a consequence of our results, we
have started the investigation in this direction showing that density conservation in Boolean
CA could indeed be easily derived from fuzzy sum preservation and, in addition, we have
uncovered a spatial density conservation in Boolean CA through the study of the continu-
ous version. Furthermore, we have shown a link between additivity in Boolean CA and the
asymptotic behaviour of fuzzy CA. An interesting research direction would be to examine
the link between surjectivity and injectivity in Boolean CA and the asymptotic behaviour
of fuzzy CA.

Finally, the link between DNF fuzzification and mean field approximation opens in-
triguing research directions: when a fuzzy CA converges to an homogeneous fixed point,
this is also a stable density of the mean field apploximation (i.e., a rough estimate of the
asymptotic density) of the corresponding Boolean CA. What is the relationship of non-
homogeneous asymptotic configurations with density? The implications of the link be-
tween mean field approximation and asymptotic behaviour of FCA on Boolean CA is now
under investigation.

Acknowledgments. We would like to thank the referees for their careful review of this
paper and for the very helpful suggestions which made Section 3 more elegant and com-
plete.
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