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Consider n identical relocatable sensors, with sensing range r and visibility range 2r, 
initially placed at arbitrary positions on a line segment barrier; each sensor can detect the 
presence of an intruder in its sensing range, and is said to cover the portion of the barrier 
that intersects with its sensing range. Sensors operate in Look-Compute-Move cycles: in a 
cycle a sensor determines the positions of sensors in its visibility range, it computes its 
next position (within its visibility range), and then moves to the calculated position. The 
barrier coverage problem we consider is for the sensors to independently make decisions 
and movements so to reach final positions whereby they collectively cover the barrier; in 
particular we are interested in oblivious (or memoryless) sensors, and focus on the impact 
that the level of synchrony and the presence/absence of orientation (i.e., global notion of 
“left-right”) have on the solvability of the problem.
It is known that without orientation, oblivious sensors can solve the problem if they 
are fully synchronous (i.e., they operate in synchronous rounds and are all active at every 
round). In this paper, we prove that orientation is critical to being able to solve the problem 
if we relax the assumption of full synchronization.
We first show that if sensors are unoriented, then barrier coverage is unsolvable even in 
the semi-synchronous setting. In contrast, if sensors agree on a global orientation, then we 
give an algorithm for barrier coverage, even in the completely asynchronous setting. Finally, 
we extend the existing result of Cohen and Peleg and show that convergence to barrier 
coverage by unoriented sensors in the semi-synchronous model is possible with bounded 
visibility range 2r + ρ (for arbitrarily small ρ > 0) and bounded mobility range r.
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1. Introduction

1.1. The problem

A wireless sensor network consists of several sensors, each equipped with a sensing module. Among the many applica-
tions of sensor networks (e.g., [15]), the establishment of barrier coverage has an important place, and it has been studied 
intensively in the literature; it guarantees that any intruder attempting to cross the perimeter of a region in the plane (e.g., 
crossing an international border) is detected by one or more of the sensors (e.g., see [1,2,5,6,11,16,18,19]). By protecting the 
access to the region, barrier coverage provides a less expensive alternative to a complete coverage of the region (e.g., [18]). 
A barrier of a two dimensional region can be modeled as a line segment of length L ∈Z, covering the interval [0, L] on the 
x-axis; sensors are deployed along the barrier. Sensors are assumed to have an identical sensing range r. Any point on the 
line segment outside the sensing range r of any sensor would be a weak point on the barrier. Thus the barrier is covered if 
every point of the line segment is within the sensing range of at least one sensor. Clearly, at least n̄ = � L

2r � sensors of range 
r are needed to achieve a coverage.

Barrier coverage, in the case of static sensors, can be achieved by careful (i.e., non ad hoc) deterministic deployment of 
n̄ sensors, but this could be unfeasible when the access to the barrier is difficult. Alternatively, a large number N � n̄ of 
sensors can be randomly deployed, but barrier coverage can only be probabilistically guaranteed [11–13].

In sensor networks composed of relocatable sensors, every sensor has a movement module that enables the sensor to 
move along the barrier. Hence, although initially sensors are located at arbitrary positions on the line without providing 
barrier coverage, they may move to new points on the line so that the entire barrier is covered (e.g., [3,5–7,17]). In this 
paper we study the problem of barrier coverage with relocatable sensors.

The centralized version of the problem, in which the initial locations of all sensors are known, has been studied and 
solutions proposed, focusing on minimizing some cost measures (e.g., traveled distances) [3,5,6,14]. In these centralized 
solutions, given the initial position of sensors, the algorithm determines the final positions that the sensors should occupy; 
notice that n̄ sensors suffice for a centrally directed relocation of sensors. However, in the context of sensor networks 
deployed in an ad hoc manner, typically there is no central control or authority, and no global knowledge of the locations 
of the sensors is available. Indeed, the sensors might not even know the total number of sensors deployed, or the length of 
the barrier. Thus every sensor must make decisions on whether and where to move, based only on local information in an 
autonomous and decentralized way.

In order to develop a solution protocol for a distributed setting, it is first of all necessary to model such a setting. 
Following the approach used in the research on autonomous mobile robots (e.g., [10]), sensors are modeled as mobile 
computational entities. The entities are anonymous and identical, have no centralized coordination, have a sensing range as 
well as a visibility1 range: their decisions are made solely based on their observations of their surroundings. Each entity 
alternates activity with inactivity. When becoming active, it executes a Look-Compute-Move operational cycle and then 
becomes inactive. In a cycle, an entity determines the positions of the other entities in its visibility range (Look); then 
it computes its own next position (Compute); and finally it moves to this new position (Move). In the cases of sensor 
networks, the visibility range v is limited [9]; we assume v = 2r, which is the minimum visibility radius necessary for 
sensors to determine local gaps in coverage. The movements of the sensors are said to be bounded if there is a maximum 
distance they can move in each cycle, and rigid if they are not interrupted (e.g., by an adversary).

Depending on the assumptions on the activation schedule and the duration of the cycles, three main settings are iden-
tified. In the fully-synchronous setting (Fsync), all sensors are activated at each time step, and each cycle is executed 
simultaneously. The semi-synchronous setting (Ssync) is like the fully synchronous one except that each activation might 
involve only a subset of the sensors; activations are fair: each sensor will be activated infinitely often. In the asynchronous
setting (Async), no assumption is made on timing of activation, other than fairness, nor on the duration of each computation 
and movement, other than it is finite.

The first distributed algorithmic investigation of the barrier coverage problem has been recently presented for the discrete 
line [7], solving the problem in the fully synchronous setting, Fsync. Interestingly, it is shown that the sensors can be totally 
oblivious, that is, at the beginning of a cycle, a sensor does not (need to) have any recollection of previous operations 
and computations. Furthermore, the sensors are completely unoriented; they have no concept of left and right. Finally the 
algorithm terminates (i.e., there is no further movement of sensors) for any n ≥ n̄, hence even with the minimal number 
used by centralized solutions.

Notice that when L/2r is an integer and n = L/2r = n̄, the barrier coverage problem is equivalent to the uniform deploy-
ment problem (studied for lines and circles, see [4,8,9]) on a line segment, which requires the oblivious sensors to move 
to equidistant positions between the borders of the segment. This problem has been studied on a line [4] assuming that a 
sensor can always see the sensors that are closest to it, regardless of their distance, and it always reaches its destination, 
regardless of its distance; in other words, both visibility and movements are a priori unbounded. Under these assumptions, 
an Ssync distributed protocol that converges with rigid movements to uniform covering (and thus to barrier coverage) was 
given in [4]. However, equidistant positions are not required for barrier coverage when n > L/2r.

1 Combined with mobility, it provides stigmergic communication between sensors within range.
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1.2. Main contributions

In this paper we first of all investigate under what conditions n̄ oblivious sensors can actually achieve barrier coverage 
in the complex semi-synchronous and asynchronous settings, without requiring unbounded visibility or mobility range.

We prove that a crucial factor for solvability of the barrier coverage problem is whether the network is oriented or 
unoriented. In an oriented network each sensor has a notion of “left-right”, and this notion is globally consistent. In an 
unoriented network, sensors have no sense of “left-right” direction.

In particular, we prove that the problem is unsolvable by n̄ oblivious sensors in Ssync (and thus Async) if the network is 
unoriented. The result holds even if all movements are rigid. On the other hand, we prove that, if the network is oriented, 
the problem is solvable even in Async and even if movements are not rigid (i.e., they can be interrupted by an adversary). 
The proof is constructive: we present an Async protocol that allows any n ≥ n̄ oblivious sensors to achieve barrier coverage 
within finite time and terminate, even if movements are non-rigid. In other words, we show that, with orientation, it is 
possible to achieve barrier coverage in a totally local and decentralized way, asynchronously, obliviously, and with move-
ments interruptible by an adversary; furthermore, this is achievable with the same number of sensors of the optimal totally 
centralized solution with global knowledge of all parameters.

For an unoriented network we also show that allowing a slightly larger visibility range, (e.g., v = 2r + ρ for an arbitrary 
small ρ), n̄ oblivious sensors can converge with rigid movements to barrier coverage in Ssync, extending the result of [4] to 
fixed limited visibility and bounded movements.

2. Model and notation

We model the barrier with a line segment of length L ∈ Z covering the interval [0, L] on the x-axis. A sensor network 
consists of a set of n sensors {s1, s2, . . . , sn} located on the segment.

A sensor is modeled as a computational entity capable of moving along the segment; it is equipped with a sensing 
module and a visibility module. A sensor can sense an intruder if and only if it lies within the sensor’s sensing range; it can 
see another sensor if and only if it lies within the sensor’s visibility range. In this paper, we assume that all sensors have 
the same sensing range r and the same visibility range v .

Sensors are autonomous, anonymous and identical (i.e., without central authority, distinct markers or identifiers); they 
all execute the same algorithm. Sensors are said to be oriented if and only if all sensors agree on a global left and right 
directions; they are called unoriented if they do not have a sense of left and right.

Let xt
i denote the position of ith sensor si from the left at time t . We assume that for every sensor r ≤ x0

i ≤ L − r, and 
that for i 	= j, we have x0

i 	= x0
j . For convenience, we assume that x0

1 < x0
2 · · · < x0

n . We emphasize that while these names 
and positions of sensors facilitate our proofs, they are not known to any of the sensors. Sensors should not move outside 
of the barrier. Thus, in addition, we assume to have two special sensors s0 and sn+1 that are used to mark the ends of the 
interval [0, L]. They are immobile, and are always located at −r and L + r and they do not require any sensing capabilities 
or visibility. However, the other sensors in the network cannot distinguish these special sensors from any other sensors. 
Thus the entire set of sensors is S = {s0, s1, . . . , sn, sn+1}.

The sensors can be active or inactive. When active, a sensor performs a Look-Compute-Move cycle of operations: 
the sensor first observes the portion of the segment within its visibility range obtaining a snapshot of the positions of 
the sensors in its range at that time (Look); using the snapshot as an input, the sensor then executes the algorithm to 
determine a destination point (Compute); finally, the sensor moves towards the computed destination, if different from the 
current location (Move). After that, it becomes inactive and stays idle until the next activation. Sensors are oblivious: when 
a sensor becomes active, it does not remember any information from previous cycles.

A move is said to be non-rigid if it may stop before the sensor reaches its destination, e.g. because of limits to the 
sensor’s motion energy, or being stopped by an adversary before the sensor reaches its destination. The only constraint on 
the adversary is that, if it interrupts a movement of a sensor before reaching its destination, a sensor moves at least a 
minimum distance δ > 0 (otherwise, no destination can ever be reached). If no such an adversary exists, the moves are said 
to be rigid.

Depending on the amount of synchronization existing among the cycles of the different sensors, three main sub-models 
are defined: fully synchronous, semi-synchronous, and asynchronous. In both the fully-synchronous (Fsync) and the semi-
synchronous (Ssync) models there is a common clock, the sensors operate in synchronous rounds, and all sensors active in 
a round execute and terminate their cycle by the next round. The only difference is that in Fsync all sensors are activated 
in every round, while in Ssync a possibly different subset is activated in each round; the choice of the subset is adversarial 
but subject to the basic fairness assumption that every sensor will be activated infinitely often. In the asynchronous model 
(Async), there is no global clock and there is no common notion of time; each sensor is activated infinitely often at arbitrary 
instants of time, and in any cycle the duration of each activity is finite but otherwise unpredictable.

A sensor with sensing range r covers the portion of the segment within its sensing range; therefore the coverage length of 
a sensor is 2r. Barrier coverage is achieved if every point on the segment is covered by some sensor. An overlap is a maximal 
interval on [0, L] such that every point in the interval is within the sensing range of more than one sensor. A coverage gap is 
any maximal interval of the segment where no point is within the sensing range of any sensor. We say that ε-approximate 
barrier coverage is achieved if the length of any coverage gap is at most ε.
3
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Fig. 1. The three types of sensors under consideration.

Fig. 2. Arrangement for proof of Lemma 3.1; n = 1.

The goal of an algorithm for barrier coverage is to move sensors to final positions so that the entire barrier is covered, 
i.e., there are no coverage gaps. Observe that if 2rn > L, then the final consecutive positions are not necessarily equidistant.

We say an algorithm A for barrier coverage terminates on input S at time t if and only if when running A on S , no 
sensor in S moves at any time t′ ≥ t . We say that algorithm A solves the barrier coverage problem if there is a time t at 
which the algorithm terminates on any input S and barrier coverage is achieved. We say an algorithm A converges to barrier 
coverage on input S if and only if for any ε > 0 there is a time t such that at any time t′ ≥ t the size of any coverage gap is 
at most ε. We say that algorithm A solves the ε-approximate barrier coverage problem for ε > 0 if and only if it converges 
on any input S .

Unless otherwise specified, we assume v = 2r, which is the minimum visibility radius necessary for sensors to determine 
local coverage gaps. More precisely, sensor st

i is able to see all other sensors located in [xt
i − 2r, xt

i + 2r]. For convenience, 
we say st

i sees st
j on its right if and only if 0 < xt

j − xt
i ≤ 2r and st

i sees st
k on its left if and only if 0 < xt

i − xt
k ≤ 2r. Observe 

that a sensor is able to detect when its sensing area overlaps with another sensor’s sensing area.
Note that in our figures, each sensor is represented by a rectangle which shows the interval that the sensor covers on 

the line barrier. Also for convenience, two sensors whose coverage lengths overlap are placed at different levels in the 
illustration; however in our assumptions, all sensors have circular sensing area and are initially placed on the barrier and 
can only move on the barrier.

3. Impossibility without orientation

In this section we consider the case where sensors are unoriented. We show that there is no algorithm solving the 
barrier coverage in the Ssync model with n̄ sensors; since an adversary in the Async model has at least the power it has in 
the Ssync model, obviously this impossibility result also holds for the Async model.

We give an adversary argument, by creating input arrangements and activation schedules that force any algorithm in 
the Ssync model to either not terminate, or terminate without coverage. This result is obtained even assuming that the 
movements are rigid; i.e., a sensor can always reach the destination it has computed.

We focus on three types of sensors (see Fig. 1): (a) sensors that have an overlap on one side, and a coverage gap (or a 
gap for short) on the other side, (b) sensors that are attached to the next sensor on one side and a gap on the other side and 
(c) sensors that have an overlap on one side and are attached to the next sensor on the other side. Any algorithm for barrier 
coverage must specify rules for movement in each of these situations. Note that, with 2r visibility range, sensors can only 
determine whether there exists a gap with a neighboring sensor but cannot determine anything about the length of such 
a gap. Thus, the magnitude of the movement of a sensor can only be a function of an overlap, if any, with a neighboring 
sensor, and cannot be a function of the length of an adjacent gap. We show that there exist arrangements and activation 
schedules for the sensors that defeat all possible combinations of these rules.

First we study the behavior of a sensor si with 1 ≤ i ≤ n that has an overlap of e with the sensor on its left, and has a 
gap on its right, as in Fig. 1(a). We show that such a sensor must move right; if the gap is at least as big as the overlap, 
the sensor must eventually move so as to exactly remove the overlap, and if the gap is smaller than the overlap, the sensor 
must move at least enough distance to remove the gap.

Lemma 3.1. Consider an algorithm A for barrier coverage in the Ssync model and assume that at time t we have sensor si with 
xt

i − xt
i−1 = 2r − e and xt

i+1 − xt
i = 2r + g, with e, g > 0. If si−1 and si+1 are deactivated and only si is activated, there exists a time 

step t′ > t such that:

(a) xt′
i = xt

i + e if g ≥ e and

(b) xt
i + g ≤ xt′

i ≤ xt
i + e if g < e.

Proof. First we observe that xt′
i ≥ xt

i + min(g, e); i.e., the sensor si must eventually move at least distance min(g, e) to the 
right. If not, the algorithm A would not terminate with barrier coverage on the arrangement shown in Fig. 2 for n = 1, 
since s1 is the only sensor that can move in the arrangement.
4
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Fig. 3. Arrangement for proof of Lemma 3.1; n = �a/e�.

Fig. 4. Arrangement for proof of Lemma 3.3; n = 2.

Next we show that xt′
i ≤ xt

i + e for some t′ > t . For the sake of contradiction, assume that there is a value of overlap 
e such that, according to A, sensor si moves more than e; that is, si moves e + a to the right, with a > 0. Then we can 
construct an activation schedule such that A never terminates on the input shown in Fig. 3. Choose n = �a/e�. A single 
sensor is activated in each step. Starting with configuration C1, the sensors sn to s1 are activated in consecutive steps, 
yielding configurations C2, C3, . . . Cn+1 in turn, and then the sequence of activations is reversed. It is easy to verify that at 
the end of the activation schedule, the initial arrangement C1 is obtained again. The schedule can be repeated ad infinitum, 
forcing non-termination of the algorithm.

Summarizing, xt
i + e ≥ xt′

i ≥ xt
i + min(g, e) and the claim follows. �

Next we consider the behavior of a sensor si that is attached to its neighbor on its left, and has a gap on its right 
as in Fig. 1(b). We activate si and keep si−1 and si+1 deactivated. If si moves left, it creates an overlap with si−1 and by 
Lemma 3.1(a), it will eventually move to the right to remove that overlap, and return to the same position. Alternatively, si
may not move at all, or may move to the right. If it moves to the right, since it does not know the distance of the gap with 
si+1 and has no overlap with si−1, it can only move a fixed constant distance, say b, calculated at the compute cycle. The 
lemma below is a consequence of the preceding discussion.

Lemma 3.2. Let A be an algorithm for barrier coverage and si be a sensor with xt
i − xt

i−1 = 2r and xt
i+1 − xt

i > 2r at time t. If si−1

and si+1 are both kept deactivated and si is activated, there exists a time t′ > t such that xt′
i = xt

i + h with h ≥ 0.

Finally, we consider the behavior of a sensor si that has an overlap e with si−1 and is attached to sensor si+1, as shown 
in Fig. 1(c). As before, we activate only si and keep both si−1 and si+1 deactivated. If si moves left, it creates a gap with 
si+1. By Lemma 3.1(b), si must eventually move right, either returning to its initial position, or moving further right. If it 
moves right by more than the value of the overlap, then it creates a gap to its left, and once again by Lemma 3.1(b), it must 
move back left until the gap is removed. If for all values of the overlap, si makes a move to the right that does not eliminate 
the overlap, then we show below that the algorithm cannot achieve barrier coverage, leading to the conclusion that there 
must exist some value of overlap such that such a sensor will either not move, or move to exactly eliminate the overlap.

Lemma 3.3. Consider an algorithm A for barrier coverage. There exists an overlap c with 0 < c < 2r such that for any sensor si with 
xt

i − xt
i−1 = 2r − c and xt

i+1 − xt
i ) = 2r, if si is the only one of {si, si−1, si+1} to be activated, there exists a time step t′ > t such that 

either xt′
i = xt

i + c (si moves right to exactly eliminate the overlap) or xt′
i = xt

i (si returns to the same position).

Proof. Assume the contrary. By the discussion preceding the lemma, we can conclude that for any overlap e, there exists 
a time step t′ such that xt′

i = xt
i + d with 0 < d < e. Consider the arrangement of sensors shown in Fig. 4. We first activate 

s1 until it moves distance d to the right. By assumption, there remains an overlap of e − d between s0 and s1, and now 
there is an overlap of d between s1 and s2. We now keep s1 deactivated, and activate s2. Lemma 3.1 implies that sensor s2
eventually moves exactly d to the right and eliminates the overlap completely. Observe that at this point, the arrangement 
repeats with only a different value of overlap. The new value of the overlap between s0 and s1 is strictly greater than zero, 
and the distance between s1 and s2 is exactly 2r. Since this activation schedule can be repeated ad infinitum, algorithm A
can never terminate with barrier coverage. �

We proceed to prove our main result:
5
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Fig. 5. Arrangement for proof of Theorem 3.1; n = 1 + 2�b/c�.

Theorem 3.1. Let s1, s2, . . . , sn be n sensors with sensing range r initially placed at arbitrary positions on a line segment. If the sensors 
are unoriented and have visibility radius 2r, there is no algorithm for barrier coverage in the Ssync model.

Proof. Consider the arrangement of sensors shown in Fig. 5 with c chosen as in Lemma 3.3. If the value of h as specified 
in Lemma 3.2 is zero, then choose b = c, otherwise, choose b = h, and fix n = 1 + 2�b/c�. We create an activation schedule 
with three phases with a different set of sensors being activated in each phase, such that the sensors return to arrangement 
C1 at the end of each phase. At each phase we only activate a subset of sensors and all other sensors are kept deactivated. 
We first activate only the sensor s1. By Lemma 3.2, there is a future time step when either s1 is in the same position (if 
h = 0), or it moves distance b to the left to yield arrangement C2. In the second case, since sensors are unoriented, it will 
subsequently return to arrangement C1. In the second phase, we activate only the sensors {s3, s5, . . . , sn}. By Lemma 3.3, 
there is a future time when either these sensors return to arrangement C1, or they have moved right by a distance c to 
reach arrangement C3. In the second case, they will eventually return to arrangement C1. In the third phase, we activate 
only the set of sensors {s2, s4, . . . , sn−1}. Using the same logic, they will return to arrangement C1, possibly via arrangement 
C4. Observe that all sensors have been activated at least once during the schedule. By repeating the above schedule ad 
infinitum, we can force sensors to repeatedly return to the arrangement C1, thus completing the proof. �
4. Possibility with orientation

In this section, we present and analyze an algorithm, Oriented Sensors, for barrier coverage by any n ≥ n̄ oblivious 
oriented sensors in the Async model; that is, all sensors agree on left and right, but are completely asynchronous.

Algorithm 1: Oriented Sensors.
Algorithm for sensor si ∈ S
ε ≤ r is a fixed positive (arbitrarily small) constant
if si−1 is not visible to si (there is a gap to its left) then

si moves distance r to the left.
else

a := 2r − dist(si−1, si) (amount of overlap with previous sensor’s range)
if dist(si , si+1) ≥ 2r (no overlap from right) and a > 0 then

si moves distance min(r − ε, a) to its right.
else

do nothing
end if

end if

We proceed to prove the correctness of algorithm Oriented Sensors. A collision occurs if two distinct sensors move to 
exactly the same position. Since sensors are identical and anonymous, from the time a collision of two sensors happens, they 
cannot be distinguished and will behave exactly the same if they have the same activation schedule. Therefore a collision is 
fatal for a barrier coverage algorithm if n = n̄, and must be avoided by the algorithm designer. This is precisely the reason 
that we restrict the distance of a move to the right to r − ε, while sensors move distance r when moving to the left. We 
show below that the algorithm above is collision-free and order-preserving.
6
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Lemma 4.1. Algorithm Oriented Sensors is a collision-free and order-preserving protocol.

Proof. Consider a sensor s that is at position x and performs a Look at time t1 and the corresponding Move to the left at 
time t2. We claim that no sensor s′ that is at a position x′ < x (to the left of s) at time t1 can compute or perform a Move
resulting in a collision or an order reversal with s at any time between t1 and t2. Since s computes a Move to the left at 
time t1, it must be that x′ < x − 2r, and furthermore, s will move to a position ≥ x − r at time t2. Now, consider the last
Move performed by s′ at a time ≤ t1. Observe that the sensor s′ must have been at position x′ as a result of this Move. 
Consider the subsequent Look performed by s′ at time t3. If the Move computed as a result of this Look is a move to 
the right, the next position of s′ is ≤ x′ + r − ε < x − r. Any subsequent Look performed by s′ will compute a move to the 
right if and only if the position of s′ is ≤ x − 2r and the computed destination must always be < x − r. Thus no collision or 
order reversal can result. Any moves to the left from the positions reachable by s′ can clearly not cause collisions or order 
reversals.

Next we show that no sensor s′ that is at a position x′ > x (to the right of s) at time t1 can compute or perform a Move
resulting in a collision or order reversal with s at any time between t1 and t2. Clearly, if x′ > x + r, any move to the left can 
only bring it to a position > x. Suppose x < x′ ≤ x + r. If s′ performs a Look after time t1, then it can see s in its visibility 
range and therefore would not perform a Move to the left. So s′ must have performed a Look at a time t3 < t1. For s′ to 
have computed a move to the left, the position of s at time t3 must have been < x′ − 2r. As argued above, s cannot have 
subsequently arrived at position x at time t1.

A similar argument shows that for a sensor s that is at position x and performs a Look at time t1 and the corresponding
Move to the right at time t2, neither a sensor on its left nor a sensor on its right can compute a move resulting in a collision 
or order reversal with s. �

Next we show that there is a time after which no sensors will move left, and after this time, the sensors provide 
contiguous coverage of some part of the barrier including the sensor s0.

Lemma 4.2. For every sensor si ∈ S − {sn+1} there is a time ti such that si never moves left at any time after ti . Furthermore, there is 
no coverage gap between s0 and si at any time after ti .

Proof. We prove the claim inductively. Clearly it is true for s0. Suppose there is a time ti such that si never moves left at 
any time after ti , and there is no gap between s0 and si at any time after ti . Consider any Look of si+1 after time ti . If 
there is a gap between si and si+1, then si+1 will move at least δ towards si . Let ti+1 be the time of the first Look of si+1
after time ti when there is no gap between si and si+1. If there is an overlap with si , then si+1 will move right, but observe 
that this Move can never create a gap between si and si+1 since si does not move left by the inductive assumption, and 
si+1 moves right by at most the amount of the overlap. It follows that after time ti+1 , the sensor si+1 will never move left, 
and furthermore, there is no gap in coverage between s0 and si+1. �

After time tn , then, none of the sensors moves left, and furthermore there is no coverage gap between s0 and sn . The 
next two lemmas show that after this time, a sensor moves right under some circumstances, but can only move a finite 
number of times.

Lemma 4.3. Assume si and si+1 have an overlap of e at some time after tn. Then for any j with i + 1 ≤ j ≤ n, if the sensors si+1 to 
s j are in attached position, and there is no overlap between s j and s j+1 , then sensor s j will eventually move at least min(δ, e) to the 
right.

Proof. Let t > tn be a time when si+1 performs a Look and si and si+1 have an overlap of e. Clearly si+1 will move right 
in the corresponding Move, creating an overlap between si+1 and si+2. Inductively it can be seen that when s j−1 moves to 
the right, it creates an overlap with s j , causing s j to move at least min(δ, e) to the right. �
Lemma 4.4. Every sensor makes a finite number of moves to the right after time tn, which is the time when sn never moves left anymore.

Proof. We give an inductive proof. Clearly this is true for sensor s0. Suppose sensor si has an overlap of e with sensor si−1
at time tn . Observe that si−1 cannot move until and unless this overlap is removed. Since every time si moves to the right, 
it reduces this overlap by at least min(e, δ), it is clear that si can make at most �e/δ� moves to the right. If these moves 
remove the overlap, then si may move again only if si−1 subsequently moves to the right and creates an overlap with si . 
Assuming inductively that si−1 makes a finite number of moves to the right, we conclude that sensor si moves to the right 
a finite number of times. �

The above lemmas lead to the following theorem:
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Theorem 4.1. Let s1, s2, . . . , sn be n ≥ n̄ sensors with sensing range r initially placed at arbitrary positions on a line segment. If the 
sensors have the same orientation and visibility radius of 2r, Algorithm Oriented Sensors always terminates with the barrier fully 
covered in the Async model.

Proof. Lemma 4.2 assures that after time tn , no sensor moves left, and there is no coverage gap between sensors s0 and 
sn . It follows from Lemma 4.4 that there is a time, say t′ > tn , after which no sensor will move right. However, if there is a 
gap between sn and sn+1 at time t′ , since there are enough sensors to cover the barrier, there must be an overlap between 
two sensors si and si+1 for some 0 ≤ i < n. But Lemma 4.3 implies that the sensor sn must eventually move to the right, a 
contradiction. It follows that after time t′ , there is no gap between sn and sn+1 and therefore no gap between any sensors 
in S , that is, Algorithm Oriented Sensors terminates with barrier coverage. �
5. On visibility and convergence

We have seen that, without orientation, barrier coverage with n̄ sensors is impossible even in Ssync (Theorem 3.1). 
Observe that the impossibility proof holds when the visibility range is precisely 2r. So the question naturally arises of what 
happens in Ssync if the visibility range is larger.

It is known that in Ssync it is possible for n̄ sensors to converge with rigid movements to equidistant positions if a 
sensor can always see the sensors that are closest to it, regardless of their distance (thus without a priori restrictions on 
the visibility range) and it can move to destination regardless of its distance (thus without a priori restrictions on the 
mobility range) [4]. In our setting these conditions do not hold. In this section, we show how that result can be extended 
to our setting. In fact, we prove that n̄ oblivious sensors can converge with rigid movements to barrier coverage in Ssync if 
v = 2r + ρ , where ρ is an arbitrarily small positive constant; furthermore they can do so with rigid movements of length 
at most r.

Consider Algorithm Convergent Coverage shown below; it operates by first removing all visibility gaps within finite 
time, and then behaving as the algorithm of [4].

Algorithm 2: Convergent Coverage.
Algorithm for sensor si ∈ S
if only one sensor s j ∈ {si+1, si−1} is visible to si and d = dist(si , s j) < 2r then

si moves distance 2r−d
2 + ρ

2 away from s j .
else

if both si+1, si−1 are visible. then
if d1 = dist(si−1, si) < d2 = dist(si+1, si)

(resp. d1 = dist(si+1, si) < d2 = dist(si−1, si)) then
si moves d2−d1

2 toward si+1 (resp. toward si−1).
end if

end if
end if

Lemma 5.1. If s j ∈ {si+1, si−1} is in the visibility range of si at time t, then for any time t′ > t, sensor s j remains in the visibility range 
of si .

Proof. According to the algorithm, a movement is performed by si in a cycle only in two situations:

Case 1: Only one sensor s j is visible to si and d = dist(si, s j) < 2r. The case we need to consider is when also s j is activated 
in this cycle and it sees only si . In this case, both sensors move at most 2r−d

2 + ρ
2 away from each other. After the movement 

we have that dist(si, s j) has become: dist(si, s j) = 2( 2r−d
2 + ρ

2 ) + d = 2r + ρ . So, sensors si and s j are still within visibility.

Case 2: Both si+1 and si−1 are visible to si . Let, without loss of generality, d1 = dist(s j, si) < d2 = dist(sk, si) where si, sk ∈
{si−1, si+1}. The case we need to consider is when s j is also activated and it does not see the other neighboring sensor. In 
this case si moves at most d2−d1

2 toward sk , and s j moves at most 2r−d
2 + ρ

2 away from si . After the movement, we have 
that dist(si, s j) has increased as follows:

dist(si, s j) = d2 − d1

2
+ d1 + 2r − d

2
+ ρ

2
= d2

2
+ r + ρ < 2r + ρ

So, sensors si and s j are still within visibility. �
Lemma 5.2. Within finite time there will be no visibility gaps.
8



M. Eftekhari, P. Flocchini, L. Narayanan et al. Theoretical Computer Science 887 (2021) 1–10
Proof. By Lemma 5.1, visibility is never lost once gained. Consider the visibility gaps. After each activation of a sensor next 
to a visibility gap, the size of that visibility gap is reduced by at least ρ

2 . As a consequence, within a finite number of 
activations, all visibility gaps will be eliminated and all sensors will be within visibility to their neighbors. �
Lemma 5.3. If at time t there are no visibility gaps, within finite time all coverage gaps will be of size at most ε, for any ε > 0.

Proof. If there are no visibility gaps at time t then, by Lemma 5.1, for all t′ ≥ t there will be no visibility gaps. Hence at 
all times t′ ≥ t each sensor si when active sees its two neighbors si−1 and si+1; furthermore, since the distance between 
two neighbors is at most 2r, the computed destination of a sensor is at most at distance r. Notice that at this point in the 
algorithm, sensors move exactly as in Algorithm Spread, p. 76 of [4] for the one-dimensional local spreading of robots. Since 
the conditions for its the correct behavior, visibility of neighbors and reaching destination are met, the lemma follows. �

By Lemmas 5.2 and 5.3, and by the definition of approximate barrier coverage, the claimed result immediately follows:

Theorem 5.1. Let s1, s2, . . . , sn be n sensors with sensing range r initially placed at arbitrary positions on a line segment. If the sen-
sors have no orientation and visibility radius 2r + ρ , there is an algorithm for ε-approximate barrier coverage in Ssync with rigid 
movements of length at most r.

6. Conclusions

The results of this paper provide a first insight into the nature of the complexity and computability of distributed barrier 
coverage problems. Not surprisingly, it poses many new research questions. Here are some of them.

We have shown that barrier coverage is unsolvable in Ssync with n̄ unoriented sensors, but solvable in Async with 
oriented sensors. Oriented sensors have a globally consistent sense of “left-right” while unoriented sensors have no sense of 
“left-right”. Hence the first immediate question is whether something weaker than global consistency would suffice. More 
precisely, if each sensor has a local orientation (i.e. a private sense of “left-right”) but there is no global consistency, is 
barrier coverage possible, at least in Ssync? Is it impossible, at least in Async?

Even in the presence of local orientation, solutions that work for unoriented sensors are desirable because they can 
tolerate the class of faults called dynamic compasses: a sensor is provided with a private sense of “left-right”, but this might 
change at each cycle (e.g., [20]). The open problem is to determine conditions which would make coverage possible under 
such conditions, at least in Ssync. In particular, observing that the impossibility is established for n̄ unoriented sensors, a 
relevant open question is what happens if n > n̄ sensors are available? Would barrier coverage become possible in Ssync?

For Ssync we have shown that ε-approximate coverage is possible if v > 2r: is it possible to achieve the same result 
with v = 2r? In the case of unoriented sensors, no positive result exists in Async. Is a higher visibility range sufficient for 
ε-approximate coverage in Async?

Another interesting problem is whether the barrier coverage can be solved with unoriented sensors if the sensors are 
allowed to make random choices.
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