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Abstract

Mobile sensors can self-deploy in a purely decentralized and distributed fashion, so
to reach in finite time a state of static equilibrium in which they cover uniformly
the environment. We consider the self-deployment problem in a ring (e.g., a circular
rim); in particular we investigate under what conditions the problem is solvable
by a collection of identical sensors without a global coordinate system, however
capable of determining the location (in their local coordinate system) of the other
sensors within a fixed distance (called visibility radius). A self-deployment is ezact
if within finite time the distance between any two consecutive sensors along the
ring is the same, d; it is e-approximate if within finite time the distance between
two consecutive sensors is between d — € and d + €.

We prove that exact self-deployment is impossible if the sensors do not share a
common orientation of the ring. This impossibility result holds even if the sensors
have unlimited memory of the past, their visibility radius is unlimited, and all their
actions, when active, are instantaneous.

We thus consider the problem in an oriented ring. We prove that if the sensors
know the desired final distance d, then ezact self-deployment is possible. If the
desired final distance d is not known, we prove that e-approrimate self-deployment
is possible for any chosen € > 0. The proofs of these results are constructive. In each
case we present a simple protocol that allows the sensors to achieve the claimed level
of self-deployment. These positive results hold even if sensors are oblivious (i.e., have
no memory of past actions and computations), asynchronous (i.e., a sensor becomes
active at unpredictable times and the duration of its actions is unpredictable), and
have limited visibility radius. Our protocols can be employed, without modifications,
on the perimeter of any convex region.
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1 Introduction

1.1 The Framework

We consider a collection of micro-robots or sensors, each capable of limited
(sensing, computational) activities, to be deployed in a region ensuring that
the area is covered uniformly, so to satisfy some optimization criteria (e.g., to
maximize sensing coverage). If the sensors are mobile, i.e., capable of moving
in the region, they can self-deploy without external (e.g., human) assistance.

Some of the initial proposals on the deployment of mobile sensors were still
based on centralized approaches, e.g. employing a powerful cluster head to
collect the initial location of the mobile sensors and determine their target
location [33]. The current research efforts are on the development of local pro-
tocols that allow the sensors to move from an initial random configuration
to a uniform one acting in a purely local, decentralized, distributed fashion.
An essential requirement is clearly that the sensors will reach a state of static
equilibrium, that is the self-deployment will be completed within finite time.
How this task can be efficiently accomplished continues to be the subject of ex-
tensive research (e.g., see [12-15,19,20,24,31,32]). Similar questions have been
posed in terms of scattering or coverage in cooperative mobile robotics and
swarm robotics (e.g., [2,16]), as well as in terms of the formation problem for
those entities (e.g. [3,5,7,9,10,18,26,28-30]). The two key differences are that
(1) usually these robots are more powerful (both memory-wise and computa-
tionally) than sensors, and (2) typically there is no requirement for the robots
to reach a state of static equilibrium (e.g., in most cases the swarm just con-
verges towards a desired formation or pattern). The existing self-deployment
protocols differ greatly from each other depending on the assumptions they
make; for example some require the sensors to be deployed one at a time
[14,16], while others requires prespecified destinations for the sensors [20].
However, sensors are usually dispersed in the environment all together, more
or less at the same time, with no a-priori knowledge of where their final loca-
tion should be. Actually, unlike the case of ad-hoc networks, for small sensors
localization is very hard, so it can not be generally assumed that the sensors
know where they are.

The micro-robots we consider here are autonomous (i.e., without a central
control), anonymous (i.e., indistinguishable by their appearance), randomly
dispersed in the environment, and without a common coordinate system. They
are however capable of determining the location (in their local coordinate
system) of the other sensors within a fixed radius (called visibility radius).
Under these general conditions, none of the existing self-deployment proposals
is capable of providing a complete uniform coverage. This impossibility is



hardly surprising since those protocols are generic, that is they must work in
any environment regardless of its topology or structure.

This fact opens a series of interesting questions, first of all whether it is possible
for the sensors to self-deploy achieving uniform coverage in specific environ-
ments (e.g., corridors, grids, rims). The next important question is on the
capabilities and a priori knowledge needed by the sensors to achieve this goal;
in other words, how "weak” the sensors can be and still be able to uniformly
self-deploy.

Some partial answers have been recently found. In particular, a self-deployment
algorithm has recently been developed for the line (e.g., a rectilinear corridor)
[5], and several have been designed for the ring as part of more complex proto-
cols for uniform circle formation [3,7,18,26,30]. All these protocols yield how-
ever only approrimate solutions; interestingly, they operate even with very
weak sensors: anonymous, oblivious, asynchronous, and without a common
coordinate system. To date, no exact solution exists for these types of sensors.

In this paper we consider precisely these questions and provide a complete an-
swer for these types of sensors in the case of ring, that is when the environment
where the sensors must be deployed is a circular rim. This situation occurs
for example when the the sensors have to surround a dangerous (convex) area
and can only move along its outer perimeter.

1.2  Our Results

We study the uniform self-deployment problem in a ring: starting from an ini-
tial random placement on the ring, the sensors must within finite time position
themselves along the ring at (approximately) equal distance; see Figure 1. The
sensors are autonomous (i.e., without a central control) and anonymous (i.e.,
indistinguishable by their appearance). Furthermore, they do not necessarily
have a common coordinate system. We assume that each sensor is capable of
determining, in its own coordinate system, the position of the sensors within
a fixed limited radius, called wvisibility radius.

a. b.

Fig. 1. Starting from an initial arbitrary placement (a), the sensors must move to a
uniform cover of the ring (b).



A self-deployment algorithm, the same for all sensors, will specify which op-
erations a sensor must perform whenever it is active. We say that a self-
deployment algorithm is exact if within finite time the sensors reach a uniform
configuration: the distance between any two consecutive sensors along the ring
is the same, d. We say that a self-deployment algorithm is e-approzimate if
the distance between two consecutive sensors is between d — € and d + €.

We first of all establish a strong negative result. In fact, we prove that ezact
self-deployment is actually impossible if the sensors do not share a common
orientation of the ring; notice that this is much less a requirement than having
global coordinates or sharing a common coordinate system. This impossibility
result holds even if the sensors (1) have unlimited memory of the past compu-
tations and actions, (2) all their actions, when active, are instantaneous and
(3) their visibility radius is unlimited.

Faced with this strong negative result, the interesting question becomes under
what restrictions the self-deployment problem can be solved with an exact al-
gorithm. Since the impossibility result holds in absence of common orientation
of the ring, we consider the problem in oriented rings.

We prove that, in an oriented ring, if the sensors know the desired final distance
d, then ezxact self-deployment is possible. In fact we present a simple protocol
and prove that it allows the sensors to deploy themselves uniformly along the
ring in finite time. This positive result holds even for very weak sensors: (1)
oblivious (i.e., each sensor has no memory of past actions and computations),
(2) asynchronous (i.e., each sensor becomes active at unpredictable times and
the duration of its actions is finite but unpredictable), and (3) every sensor
has only a fixed visibility radius v > 2d.

Finally we turn to the case of an oriented ring when the desired final distance
d is unknown. We present another protocol based on a very simple strategy
and prove that it is e-approximate for any fixed € > 0. As in [4,5], the difficulty
is not in the protocol but in the proof of its correctness. Also in this case, the
protocol works even for the weakest sensors:, oblivious, asynchronous, with
only a fixed visibility radius v > 2d.

Our protocols can be employed not only on a circular rim but also, without
modifications, on the perimeter of any convex region.

1.3 Related work

The self-deployment problem has been investigated with the goal to cover the
area so to satisfy some optimization criteria, typically to maximize the cov-
erage (e.g., [12,14,15,20,32]). Typically, distributed self-deployment protocols



first discover the existence of coverage holes (the area not covered by any
sensor) in the target area based on the sensing service required by the appli-
cation. After discovering a coverage hole, the protocols calculate the target
positions of these sensors, that is the positions where they should move. Loo
et al. [20] consider a system consisting of a number of cooperating mobile
nodes that move toward a set of prioritized destinations under sensing and
communication constraints; unlike them, we do not require prespecified desti-
nations for the sensors. Howard et al. [14] address the problem of incremental
deployment, where sensors are deployed one-at-a-time into an unknown envi-
ronment, and each sensor uses information gathered by previously deployed
sensors to determine its deployment location.

The self-deployment problem is related to a well studied problem in the field
of swarm robotics: that of the pattern formation (e.g., [9,29]); in particular to
the one of uniform circle formation [3,7,18,26,30]. In this problem, very simple
robots are required to uniformly place themselves on the circumference of a
circle not determined in advance (i.e., the sensors do not know the location of
the circle to form). The main difference between these robotics investigations
and our self-deployment problem in the ring is that in those problems, the
robots can freely move on a two dimensional plane in which they have to form
a ring; in contrast, our sensors can move only on the ring, which is the entire
environment.

A standard assumption in swarm robotics, and used in this paper, is that a
sensor is capable of determining the location of its neighbours within its visibil-
ity radius. In most investigations on micro-robots, the determination of one’s
neighbours is done by sensing capabilities (e.g., vision); in this case, any sen-
sor in the sensing radius is detected even if inactive (e.g. [3,5,7,9,11,18,26,29]),
and thus no other mechanisms are needed. In most investigations on wireless
sensor networks, determination of the neighbours within the sensing radius
is assumed to be achieved by radio communication (e.g., [27]); in this case,
since an inactive sensor does not participate in any communication, the simple
activity of determining one’s neighbours, to be completed, requires the use of
randomization or the presence of sophisticated synchronization and scheduling
mechanisms, such as the Virtual Node Layer (e.g., [21,22,25]).

In our protocol for unknown d, the strategy we use is go-to-half. Interestingly
it was shown by Dijkstra [8] that in an unoriented ring go-to-half does not
converge, and hence can not be used even for approximate self-deployment.
It does however converge in a line as recently proved [5]. Convergence in the
unoriented ring has been recently announced for the go-to-half-half strategy
[7,26].



2 Terminology and Model

We use the model commonly employed for micro-robots (e.g., [3-7,9,11,18,26,29,30]).
In particular, a sensor (or micro-robot) is viewed as a point and modeled as

a computational unit capable of determining the positions of other sensors in

its surrounding (within a fixed radius), performing local computations on the
determined data, and moving towards the computed destination.

Each sensor has its own local coordinate system and there is no a priori agree-
ment among them; there is however agreement on the unit of distance. The
sensors are autonomous (i.e., without a central control) and anonymous, mean-
ing that they are a priori indistinguishable by their appearance, and they might
not have identifiers that can be used during the computation.

Each sensor operates in a Look - Compute - Move - Wait cycle: At any point
in time, a sensor is either active or inactive. When active, a sensor performs
the following operations:

(1) (Locate) It determines, in its own coordinate system, the positions of the
other sensors within its radius of visibility; this constitutes its view of the
world.

(2) (Compute) It performs a local computation, according to an algorithm
(the same for all sensors) that takes in input its view of the world and
returns a destination point.

(3) (Mowe) It moves towards the computed destination point; if the destina-
tion point is the current location, the sensor stays still.

A move may stop before the robot reaches its destination, e.g. because
of limits to the sensor’s motion energy. When inactive a sensor

(4) (Waat) It is idle and does not perform any operation.

There are two limiting assumptions in the model:

(A1) The amount of time required by a sensor to complete a cycle is not
infinite, nor infinitesimally small. Note that, as a consequence, each sensor
will become active infinitely often.

(A2) The distance traveled by a sensor in a cycle is not infinite, nor in-
finitesimally small (unless it brings the sensor to the destination point).

Different settings arise from different assumptions that are made on the sen-
sors’ capabilities, and on the amount of synchronization among the cycles of
the sensors. In particular,

e Synchronization. Depending on the amount of synchronization existing
among the cycles of the different sensors, two main sub-models are de-



fined, the semi-synchronous model (SSYNC), and the asynchronous model
(ASYNC).

In the semi-synchronous model (SSYNC), the cycles of all sensors are fully
synchronized: there is a global clock tick reaching all sensors simultaneously,
and a sensor’s cycle is an instantaneous event that starts at a clock tick and
ends by the next; the only unpredictability is given by the fact that at each
clock tick, every sensor is either active or inactive, and only active sensors
perform their cycle. The unpredictability is restricted by the fact that at
least one sensor is active at every time instant, and every sensor becomes
active at infinitely many unpredictable time instants. This model is used
e.g. in [1,3-5,7,29].

In the asynchronous model (ASYNC), no assumptions on time exist: the
amount of time spent in each state of a cycle is finite but otherwise unpre-
dictable. In particular, the sensors do not have a common notion of time. As
a result, sensors can be seen by other sensors while moving, and thus com-
putations can be made based on obsolete observations. This (more realistic
but more difficult) model is used e.g. in [3,9-11,17,18,23].

Visibility. Depending on the location capabilities, two main submodels

can be identified, the limited visibility model, and the unnlimited visibility

model.
In the wnlimited visibility model, the sensors are capable of determin-

ing the location of all sensors regardless of their position in the region. This

model is the most commonly used for micro-robots, e.g. in [1,3,4,7,9,17,18,23,26,28,29].
In the limited visibility model, each sensor can only determine the location

of sensors only up to a fixed distance v > 0 from it. This (more realistic but

more difficult) model is used less often for micro-robots, e.g. in [5,11,16],

while is most common for wireless sensor networks e.g. in [19,22,27].

Memory. In addition to its programs, each sensor has a local memory, or
workspace, used for computations and to store different amount of infor-
mation (e.g., regarding the location of its neighbours) obtained during the
cycles. Two submodels have been identified, depending on whether or not
this workspace is persistent.

In the persistent memory model, all the information contained in the
workspace is legacy: unless explicitly erased by the sensor, it will persist
thoughout the sensor’s cycles. This model is commonly used for both wire-
less sensor networks and micro-robots. A particular case of persistent mem-
ory, sometimes employed for micro-robots, is the unbounded memory, where
no information is ever erased; hence sensors can remember all past compu-
tations and actions (e.g., see [28,29]).

In the oblivious model, model, all the information contained in the workspace
is cleared at the end of each cycle. In other words, the sensors have no mem-
ory of past actions and computations, and the computation is based solely
on what determined in the current cycle. The importance of obliviousness
comes from its link to self-stabilization and fault-tolerance. This model is



used e.g. in [3-5,7,9,11,18].

Let S = {s1,...,s,} be the n sensors initially randomly placed on the ring
C (see Figure 1). We assume that initially no two sensors are placed at the
same location; all our algorithms will avoid having two sensors simultaneously
occupying the same point.

Let d;(t) be the distance between sensor s; and sensor s;,1 at time ¢; when no
ambiguity arises, we will omit the time and simply indicate the distance as d;.

Let d = L/n, where L denotes the length of the ring C. We say that the sensors
have reached an ezact self-deployment at time ¢ if d;(t) = d for all 1 <i < n.
Given € > 0, we say that the sensors have reached an e-approximate self-
deployment at time ¢ if d — e < d;(t) < d+eforall 1 <i <n.

We say that an algorithm A correctly solves the exact (resp. e-approzimate)
self-deployment problem if, in any execution of A by the sensors in C, regard-
less of their initial position in C, there exists a time ¢’ such that for all ¢ > ¢/,
the sensors have reached an ezact (resp. e-approzimate) self-deployment at
time t.

As mentioned in the introduction, we both prove impossibility results and
present correct solution protocols. The impossibility results are established
even if the sensors are very strong and powerful: they have unlimited memory
and unlimited visibility, a situation we denote as UNLIM, and their cycles are
semi-synchronous. Our self-deployment protocols are designed and proven to
work correctly even with very simple weak sensors: they are oblivious and
with limited visibility, a situation we denote as LIMT, and the cycles are fully
asynchronous.

3 Impossibility Without Orientation

In this section, we show that, if the sensors do not share a common orientation
of the ring, the exact self-deployment problem is unsolvable; that is, if the
ring is not oriented, there is no deterministic protocol that always allows
the sensors to place themselves uniformly on the ring in a finite number of
cycles. This result holds even if the sensors are very powerful and they are
fully synchronized: the sensors’ capabilities are unlimited and the scheduling
is semi-synchronous.

Theorem 1 Let s1,...,5, be all on a ring C. In absence of common orien-
tation of C, there is no deterministic exact self-deployment algorithm even if
the sensors have unlimited and persistent memory and unlimited visibility.



Fig. 2. (a) An example of starting configuration for the proof of Theorem 1. The
black sensors are in Sp, while the white ones in Ss. (b) Theorem 1: the adversary
moves only sensors in Sj.

Proof. By contradiction, let us assume there exists a deterministic algorithm
A that always solves the problem in a finite number of cycles, regardless of
the initial position of the sensors in C, and of their individual orientation of
the ring. Since the scheduling is SSYNC, we can consider each execution as
occurring at discrete time steps tg,%1,..., and it is fully specified once the
(non-empty) set of sensors active at each time step is specified.

Let n be even, and let the sensors be partitioned in two sets, S1 = {s1,...,5,/2}
and Sy = S\ Si. The sensors in S; and S, are placed on the vertices of two
regular n/2-gons, and the two polygons are rotated of an angle o < 360°/n.
Furthermore, all sensors have their local coordinate axes rotated so that they
all have the same view of the world (refer to Figure 2.a for an example). In
other words, the sensors in S; share the same orientation, while those in Sy
share the opposite orientation of C. Let us the denote a configuration with such
properties by Y(«). A key property of a Y(«) configuration is the following.

Claim 1 Let the system be in a configuration Y(«) at time step t;.

(1) If activating only the sensors in Sy, no exact self-deployment on C is
reached at time step t; 11, then also activating only the ones in Sy no exact
self-deployment on C would be reached at time step t;.1; furthermore,
in either case the system would be in a configuration V(<) for some
o’ < 360°/n

(2) If activating only the sensors in Sy an exact self-deployment on C is
reached at time step t; i1, then also activating only the sensors in Sy an
exact self-deployment on C would be reached at time step t; 1.

(8) If activating only the sensors in Sy an exact self-deployment on C 1is
reached at time step t;.1, then activating both sets no exact self-deployment
on C would be reached at time step t; 11, and the system would be in a con-
figuration Y (') for some o/ < 360°/n.

10



Fig. 3. Theorem 1. (a) If only the sensors in S; are activated at ¢, all sensors would
be uniformly placed at time ¢ + 1, with 5 + v = 45°. (b) If only the sensors in
Sy are activated at t, all sensors would be uniformly placed at time ¢t + 1, with
B+~ = 45°. (c¢) Therefore, if all sensors would be activated at ¢, they would not be
in an exact self-deployment on C, having 4 2y # 27 /n = 45°. In all figures, the
squares represent the destination of the active sensors.

Algorithm 1 The Adversary
(a) If activating only the sensors in S7 no exact self-deployment on C is reached:
then activate all sensors in Sy, while all sensors in Sy are inactive; otherwise,
activate all sensors. Go to (b).
(b) If activating only the sensors in Sy no exact self-deployment on C is reached:
then activate all sensors in S,, while all sensors in S; are inactive; otherwise,
activate all sensors. Goto (a).

Proof. Cases 1. and 2. immediately follow from the fact that all sensors in S;
have the same view of the world and the same placement in C as those in S5,
but with the opposite orientation. Consider now Case 3. Let s; be an arbitrary

11



sensor in S (refer to Figure 3). By construction, s; has two neighbors on C, s},
and sj, and both of them are in Sy. Let § = min(s;¢sh, s1¢s4) (clearly, s,¢s)
cannot be equal to s;¢s}, otherwise the sensors would be uniformly placed on
C). By hypothesis, by activating only the sensors in Sy, the sensors would reach
an exact self-deployment on C. In other words, they would all rotate of an angle
7 so that, at time ¢;1, 6+ v = 360°/n. Symmetrically, if only the sensors in
Sy would be activated, they would rotate of an angle v so that, at time ¢;,4,
B+ v = 360°/n. Therefore, since 5 + 27 # 360°/n, by activating all sensors,
an uniform placement on C will not be reached at time ¢;,;. Furthermore, by
activating all sensors, at time t;; the sensors in S; and S, would be placed
on the vertices of two regular n/2-gons, the two polygons are rotated of an
angle o/ < 360°/n, and all sensors still have the same view of the world. O

Let now continue the proof of the theorem. In the following, we define an
Adversary that will force A to never succeed in solving the problem. Algo-
rithm 1 describes the protocol followed by the Adversary. The adversary will
choose Y(«) as the initial configuration. By Claim 1, if the configuration at
time t; > ty is Y(«a) for some o < 360°/n, then regardless of whether the
Adversary executes step (a) or (b), the resulting configuration is Y(«/) for
some o/ < 360°/n, and hence no exact self-deployment on C is reached at time
step t;11. Hence, there exists an infinite execution of A in which no exact self-
deployment will ever be reached. The alternating between steps (a) and (b)
by the Adversary ensures the feasibility of this execution: every sensor will in
fact become active infinitely often. Hence, a contradiction with the correctness
of A is obtained. O

Since the impossibility result of Theorem 1 holds in absence of common ori-
entation of the ring, we will now focus on oriented rings; we will then consider
two cases, depending on whether or not the desired final distance d is known
to the sensors.

4 Oriented Ring with Interdistance Known

Let the sensors share a common orientation of the ring. In this section we
examine the case when the desired final distance d is known or computable
(e.g., both the number or sensors and the length of the ring are known). We
prove that, in this case, ezxact self-deployment is indeed possible. This positive
result holds even with weak asynchronous sensors, provided their visibility
radius is at least 2d.

Theorem 2 Let sq,...,8, share a common orientation of the ring C, and
be able to locate to distance 2d. If they know d, then exact self-deployment is

12



possible even if the sensors’ capabilities are LIMT and the scheduling is ASYNC.

The proof of Theorem 2 is constructive: we present a simple protocol and prove
that, under the theorem hypothesis, allows asynchronous sensors with limited
capabilities to deploy themselves uniformly along the ring in finite time.

4.1 The Algorithm

The algorithm is very simple: sensors asynchronously and independently ob-
serve clockwise at distance 2d, then they position themselves at distance d
from the closest observed sensor (if any).

Protocol UNIFORM KNOWN (for sensor s;)

e Locate clockwise at distance 2d. Let d; be the
distance to s;41 (if visible, else d; = 2d).

o If d; < d do not move.

e If d; > d move clockwise and place yourself at
distance d from s;,1 (if visible, else at distance
d from current location).

4.2 Correctness

We say that a sensor is white if its distance to the clockwise neighbor is
greater than or equal to d. We say that a sensor is gray if such a distance is
smaller than d. Moreover we say that a white sensor is good if its distance to
the clockwise neighbor is exactly d, it is large if its distance is strictly greater
than d.

To prove that the algorithm is correct, we must prove that, within finite time,
all sensors become good.

We call a white bubble a sequence of consecutive white sensors delimited by
grey sensors. Let W = s;,8;41,...,S;i+m be a white bubble. Sensor s;_; is said
to be the predecessor of the bubble, sensor s;,,,11 is the successor. Clearly
predecessors and successors of a white bubble are gray, unless the ring contains
white sensors only; notice that in this case all sensors are good. The size of
W | indicated as |W| is the number of white sensors composing the bubble
(in this example m), its length, indicated by [(1/), is the length of the ring
between the predecessor and the successor of the white bubble (assuming
not all sensors are white); i.e., (W) = Y7 d;y;. Similarly, we define a
gray bubble G = s;,58;41,...,S+m as a sequence of consecutive gray sensors

13



delimited by white sensors. Its size |G| is the number of gray sensors in G; the
length [(G) is defined as the length of the ring between the first and the last
gray sensor in G (note that this definition is different from ((11)).

The next two lemmas contain some simple facts.

Lemma 1 At each point in time, if there are gray sensors, then the number
of white bubbles equals the number of gray bubbles.

Lemma 2 At each point in time, if there are grey sensors there must be at
least a bubble (i.e., a large sensor).

Lemma 3 A white sensor cannot become gray.

Proof. In order for a white sensor s; to become gray, its distance to the
next sensor s;;1 should become smaller than d. By definition, sensors move
clockwise and move according to the algorithm; so sensor s;;; will never get
closer to s;. On the other hand, by definition of our algorithm, sensor s; will
never move at a distance smaller than d to s;4;. O

Lemma 4 Let G = Si11,...Sivm-1 be a (possibly empty) set of consecutive
good sensors in the ring at time t; let s; be large, and s;,,, be grey. Then there
exists a time t' >t when one of the following conditions holds:

(1) Sivm(t') is white

(2) s;(t')...Sitm_1(t") are good and s;i,(t") is gray.

Proof. Let ¢ be the first time when s;,, becomes white (notice that ¢ could
be infinite if s;,,, never becomes white). In the time between ¢t and ¢ sensors
Six1 - .- Sizm—1 Will not be able to move. Let ¢, ...¢; be the activation times
of s; with t; <t (1 <j < k). If t = oo then during some time ¢; (j < k) s;
must become good by definition of the algorithm, and the Lemma is proven.
Let t # oo; then either s; becomes good before ¢, or s;,,,_1 becomes white at
time ¢ and the Lemma is proven. O

Lemma 5 Let W = s;11,...5;4m be a white bubble in the ring at time t. If
I(W)>d-(|W|+1), in finite time the size of the bubble increases.

Proof. We want to prove that there exists a time when all sensors in the
white bubble W are good, and the predecessor s; is white (which means that
the bubble has become bigger).

Consider the first large sensors s; from the end of the bubble (i.e., s; is large,
while sj41...S;1m are good). By Lemma 4 applied to s;i1,. .. Sitm we have
that at some time ¢ > t either s;;,,41 becomes white or s;(t') ... s, (t') are
good and s;1,,41(t') is gray. In the first case the bubble has increased and the

14



lemma, is true at time t; in the second case we have that at t" one more sensor
is good. Repeating this argument for sensors s;_1,s;_2...s;11 we either verify
the Lemma or we get that at some time ¢ > ¢ all sensors in W have become
good. If this is the case, it means that the distance between sensor s; and sensor
Sitm+1 18 equal to d-m = d-s(W). Since, by hypothesis, (W) > d-(s(W)+1),it
follows that the distance between s;_; and s; is greater than or equal to d,
that is s;,_; is white and the size of the bubble has increased. O

Lemma 6 Let Wy, ... W, be the white bubbles present in the ring at time t.
At least one of these bubble Wy, is such that (W) > d - |Wy| + 1.

Proof. By contradiction, let [(W;) < d - (|W;| + 1), for all W;. The length
L of the ring is the sum of the lengths of all white bubbles and all gray
bubbles. That is, from Lemma 1, L = >7_,({(W;) + l[(G;)). By hypothesis,
W) < dX7, Wil + d - z. Moreover, by definition of gray bubble,
UG < dYi(|Gil = 1) = dY7,|Gi| — d - z. Summing up, we have
L <d>7 ((|Gi|+ |[Wi]) = d - n, a contradiction. O

By Lemmas 5 and 6, we have that:

Lemma 7 The number of grey sensors decreases.

Finally, by Lemmas 3 and 7 the correctness of the algorithm follows.
Theorem 3 In finite time all sensors are good.

In other words, within finite time, the sensors have performed an exact self-

deployment; thus, observing that the algorithm operates within LiMT and
AsynNc, the claim of Theorem 2 holds.

5 Oriented Ring with Interdistance Unknown

In this section we examine the case when the sensors share a common orienta-
tion of the ring, but the desired final distance d is not known nor computable.
We prove that, in this case, e-approzrimate self-deployment is indeed possible
for any e. This positive result holds even with weak asynchronous sensors,
provided their visibility radius is greater than 2d.

Theorem 4 Let sq,...,s, share a common orientation of the ring C, and

be able to locate to distance v > 2d. Then e-approximate self-deployment is
possible even if the sensors’ capabilities are LIMT and the scheduling is ASYNC.
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Also in this case the proof is constructive: we present a simple protocol and
prove that, under the theorem hypothesis, allows asynchronous sensors with
limited capabilities to deploy themselves uniformly along the ring in finite
time.

5.1 The Algorithm

The algorithm is very simple: sensors asynchronously and independently locate
in both directions at distance v, then they position themselves in the middle
between the closest observed sensor (if any).

Protocol UNIFORM UNKNOWN (for sensor s;)

e Locate around at distance v. Let d; be the distance to next
sensor, d;_; the distance to the previous (if no sensor is
visible clockwise, d; = v, analogously for counterclockwise).

o If d; <d;,_; do not move.

e If d; > d;_; move to ditdi-1

— d;_; clockwise.
2

5.2  Correctness

Let dpin(t) = Min{d;(t)} and d,a.(t) = Max{d;(t)}. Let C be the length of
the ring. First observe the following simple fact:

Lemma 8 We have that: Vt, dn(t) < d and dpe.(t) > d.

Proof. By contradiction. Let the minimum distance be greater than d. We
would have that C' > k - d, which is impossible since by definition C' = k - d.
Same argument holds for d,,.,. O

The next lemma shows that if, at some point there is a unique minimum (resp.
maximum) interval, it will become bigger (resp. smaller).

Lemma 9 If at time t there is a unique minimum interval, we have that:
Vi, 3t >t dipin(t') > dimin(t). If at time t there is a unique maximum interval,
we have that: Vt,3t" >t 1 dyae(t') < dmaz(t).

Proof. Let s;_; and s; be the sensors that delimit the minimum interval
[s;_1, 5], whose length is d;_1(t) = dynin(t) at time ¢. First observe that, since
dj_o(t) > dj_1(t), by the algorithm we know that sensor s;_; does not move at
time ¢; actually, it will not be able to move as long as d;_, remains greater than
d;j_; (i.e., as long as s; does not move). Consider now the first time ¢’ when s;
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is activated. Since s;_; has not moved from time ¢ to time ', we have that, at
time t/, d;_o(t') is still greater than d;_1(¢'). At time ¢/, s; then moves following
the rule of the algorithm and d;_;(t') = dj*l(t);dj(t/) > dj*l(tydj(t) > dj_q(t).
Similar argument holds for d,,,q,. O

We now show that if at some point there are several minimum (resp. maxi-
mum) intervals of a certain length, their number will decrease.

Lemma 10 If at time t there are r > 1 minimum intervals of length d,(t),
either all intervals have length d and the sensors are deployed, or there exists a
time t' > t when the number of minimum intervals of length d:,(t) is " < r.

Proof. First notice that, if at time ¢ a sensor s; delimiting a minimum interval
[sj—1,s;] is activated, it will not move if d,in(t) = d;—1(t) = d;(t) (ie., if
[s;,8;+1] is another minimum interval), it will instead move if d;_;(t) < d;(¢).

Consider the first time ¢ when a sensor s; delimiting a minimum interval
[sj_1, 8], which is not followed by another minimum interval, is activated.
Notice that such a sensor must exist otherwise we would be in a situation when
all sensors are deployed at distance d from each other. In this case we know that
at time ¢’ there are still at most s minimum intervals and that d;_; (t') < d;(t').

Sensor s; then moves and d;_;(t') = dj*l(t);dj(tl) > dj*l(t?dj(t) > d;j_1(t), thus

it is not minimum anymore and the number of minimum intervals is now
strictly smaller than r. O

Analogously,

Lemma 11 If at timet there arer > 1 mazimum intervals, either all intervals
have length d and the sensors are deployed, or there exists a time t' when the
number of maximum intervals is v’ < r.

We now show that the minimum intervals converge to a value A = d — Yin,
with 7,,i, > 0, and the maximum intervals converge to a value B = d + Yin,
with Yaee > 0.

Lemma 12 Let d,,(t) (resp dimar(t)) be the distance of a minimum (resp.
mazimum) interval at time t. We have that, for any arbitrary small € > 0
there exists a time t' >t such that, Vt" > t': |dpin(t") — Al <€, and, V" > t':
|d ez (t") — B| < e.

Proof. From Lemmas 9 and 10 the intervals must converge; from Lemma 8
the minimum must converge to a value smaller than (or equal to) d, and the
maximum must converge to a value greater than (or equal to) d. O
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Let us call A-regular at time ¢ an interval that, at time ¢ is e-close to A; that
is an interval whose length d;(¢) is such that |d;(t) — A|] < e. Analogously, we
call B-reqular an interval that is e-close to B. We call A-irreqular at time ¢ an
interval that, at time ¢, is smaller than d, but not e-close to A; B-irregular one
that is greater than d, but not e-close to B.

The following lemma shows that there exists a time ¢, after the time when the
previous Lemma 12 holds, when any interval greater than the minimum (and
smaller than d) is A-regular, and any interval smaller than the maximum (and
greater than d) is B-regular. In other words, each interval is either e-close to
A or to B. Notice that this property is not obvious; in fact, the only thing we
know up to now is the convergence to A and B of the minimum/maximum
intervals over time, while nothing is known about the other intervals.

Lemma 13 Lete > 0 be arbitrarily small, and let t. be a time when Lemma 12
holds. There ezists a time t! > t. when: for all intervals [s;, sj+1] with d;(t") <
d, |d;(t!) — Al < e; for all intervals [s;, s;41] with d;(t!) > d, |d;(t") — B| <.

Proof. By contradiction, assume such a situation never happens. Then, there
must exist a time ¢ when there are both A-irreqular and B-irreqular intervals.

Consider the following execution: 1) if there are A-regular intervals followed by
B-regular intervals, let the sensors between them move. Notice that whenever
a sensor between a A-reqular and a B-regular intervals move, both intervals
become irregular. Further notice that, after this activation rule, we are guar-
anteed that a sequence of regular intervals delimited by irregular intervals con-
tains only intervals of the same type (A-reqular or B-regular only). 2) Consider
any A-irregular interval [s;, s;+1]. Let it be preceded by k > 0 A-regular inter-
vals (delimited by sensors s;_; ...s;_;) and followed by h > 0 B-regular inter-
val (delimited by sensors s;4o...s;j415-1). Activate sensors ;41,842 .. Sj+h—1,
Sj_1...5j_k, in this order. It is easy to see that their movement transforms
all those interval in irregular intervals. 3) Apply the same schedule to all B-
irregular intervals (preceded by A-regular intervals and followed by B-regular
intervals).

Notice that, by the above activation rules, a sequence of A-regular intervals
becomes irregular if it is followed by B-irreqular intervals or if it is preceded
by A-regular intervals. Thus, after the activation rules of 2) and 3) we are in
a situation where all intervals (included the minimum) are irregular and thus
Lemma 12 is violated. O

Lemma 14 Let t be a time when Lemma 13 holds. If at some time t' >t at
least an interval becomes irreqular, then there exists a time t” > t' when all
intervals are irreqular.
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Proof. The argument is very similar to the one of Lemma 13. O

We now show that, after a time when Lemma 13 holds, all intervals actually
converge to d (i.e., A = B = d).

Lemma 15 Lete > 0 be arbitrarily small, and let t. be a time when Lemma 13
holds. If B — A > 2¢, at least an interval becomes irreqular.

Proof. Let t; = t.. We will show that, under the conditions of the statement
there exists a movement of a sensor at time ¢; that create an irregular interval.

Consider two consecutive intervals [s;, S;11] and [$;41, s;+2] such that d;(t;) < d
and d;11(t1) > d. Such intervals must exist because otherwise all the sensors
would be deployed at precisely distance d from each other. By Lemma 13, we
have that:

|di(t1) — Al <€ (1)
|diz1(t1) — Bl < e (2)

Let sensor s;;; move at time ¢;. As a result of the movement, at any time
ty > t; before any other movement of the sensors, we have that:

i) = MO ) ®)

We now consider several different cases.

Case 1. A+¢e>di(t1) > Aand B+¢€ > d;1(t1) > B. From Equation 3 and

for the assumption, we have that:
A+ B A+ B+ 2¢

< difty) = dipa(te) < ———— (4)
We now consider the two case d;(t2) > d and d;(t3) < d and in both we will
derive a contradiction.

1.1) Let d;(t2) > d. In this case we would have that 4+22¢ > ¢;(t,) > d. We
now consider the two cases: d;(t2) > B, and d;(t2) < B. If d;(t2) > B
it must be that 4+2+2 > B which would imply A + 2¢ > B, which
is a contradiction with the assumption that B — A > 2e¢. It follows
that d < d;(t2) < B. However, from Equation 2, we must have that
B —d;(t3) < e, which would imply B — % <, that is B— A <,
which is a contradiction.

1.2) Let d;(t2) < d. In this case we would have to show that, by Equation 1,
di(ts) — A < e. However, d;(t;) — A > £ — 4 which is clearly greater
than e. Contradiction.

Case 2. d;(t;) < A and d;11(t1) < B. From Equation 3 and for the assump-
tion, we have that: d;(t2) = di1(t2) < AJFTB.
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By Equations 1 and 2 we must have that A—d;(t;) < e and B—d;;1(t1) <
e. In other words, d;(t1) > A — €, and d;41(t;) > B — €. By Equation 3 and
by the above, we have that d;(ty) > W (notice that, since B > A, this

implies that d;(t5) > A). Thus we have:
A+ B Qegdi(t2)<A+B (5)

Consider now the two possibilities A < d;(t2) < d and d;(t2) > d: in both

cases, we will show a contradiction.

2.1) If A < d;(ty) < d, Equation 1 must hold, that is d;(t2) — A < e. However,
di(ts) —A > Z —4 ¢ which is clearly greater than €, since B—A > 2e.

2.2) Consider now the case d;(t2) > d, in this case, by Equation 2, we must
have |d;(t;) — B| < e. Since A < B, and thus 252 < B, we have
that d;(t2) < B, so, by Equation 2 it must be: B — d;(t2) < ¢, or, in
other words, d;(t3) > B — €. However from Equation 5, we know that
d;i(ts) < 4+ 2 which is clearly smaller than B—e (because B—A > 2e).
Contradiction.

Case 3. A+ ¢ > di(t;) > A and d;1(t;) < B. We have d;(t;) > A, and
by definition we have B — d;11(t1) < ¢; thus, from Equation 3 we obtain:
di(ty) = dip1(ta) > %. Moreover, by the assumptions we get d;(tz) =
d < A28t Thus

A+ B Egdi(t2)<A+f+€ (6)
3.1) If d;(t2) < d we should have (by Equation 1) that d;(ts) — A < e.
However, by Equation 6, we have d;(t5)—A > B_TA_E > e. Contradiction.
3.2) Let d;(t2) > d. First observe that d;(t2) cannot be greater than B
because we have d;(t,) < 22+ < B); thus d;(t2) < B. We should have
(by Equation 2) that B—d;(t3) < e. However, from Equation 6 we know
that d;(t,) — B < 42+ < ¢ Contradiction.

Case 4. d;(t1) < A and B+ € > d;11(t1) > B. We have d;(t;) < A and

div1(t1) < B+ € thus, from Equation 3 we obtain: d;(ts) = di1(t2) <

A+Bie Moreover, by assumption d;i1(t;) < B + ¢ >, and by definition
A —di1(ty) < e, so we get: d;(ty) > —A+2B_E. Thus

A+ B — A+ B

g < di(t2) < % (7)

The rest of the proof proceeds like for Case 3. O

Theorem 5 For any arbitrary small € > 0 there exists a time t, such that
Vit > t,Vi: |di(t') — d] < e.

Proof. By contradiction. Let A # B. From Lemma 13, there is a time ¢t when
all intervals are e-close to A and B. From Lemma 15, at least one interval will
become irregular at some time t' > ¢. However, by Lemma 14 there is a time
t” > t" when all intervals become irregular (including the minimum and the
maximum). This contradicts Lemma 12. O
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In other words, within finite time, the sensors have performed a e-approximate
self-deployment; thus, observing that the algorithm operates within LiMT and
AsvyNC, the claim of Theorem 4 holds.

6 Conclusions

In this paper we have provided a strong characterization of the self-deployment
problem of a mobile sensor network in a ring. In particular, we have shown
that exact self-deployment of powerful sensor is unsolvable even under a SSYNC
scheduler if the sensors do not share a common orientation of the ring; and
we have presented the first provably correct exact self-deployment solution
that works also when the sensors are limited and asynchronous, provided the
final distance d is known. In the case when the ring is oriented but d is not
known, we have presented a simple protocol that achieves e-approximate self
deployment for any € > 0.

From a theoretical point of view, the results of this paper, together with the
existing ones for the line [5], are the first steps in understanding the computa-
tional nature (i.e., limitations and properties) of the self-deployment problem
for mobile sensor networks in constrained environments. From a practical point
of view, we have provided protocols that are simple, provably correct, and eas-
ily implementable; they can be executed by very weak sensors; and they can
be employed along the border of any convex region.

Several research questions are still open. The foremost open problem is the
determination of whether knowledge of d is indeed necessary for exact self-
deployment in an oriented ring. Should this be the case, the natural open
problem is to determine which is the “weakest” additional assumption (e.g., a
priori knowledge, capability) that would make exact self-deployment possible.

A more general and challenging open problem is to find additional sensors’
capabilities that would enable the existence of an asynchronous exact self-
deployment protocol in unoriented rings. Another important research direction
is to identify meaningful efficiency parameters and study the complexity as
well the computability of the problem.
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