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Problem Definition
The Model: A mobile robotic sensor (or simply sensor) is modelled as a computational
unit with sensorial capabilities: it can perceive the spatial environment within a fixed
distance V > 0, called visibility range, it has its own local working memory, and it is
capable of performing local computations [6; 7].

Each sensor is a point with its own local coordinate system, which might not be
consistent with the ones of the other sensors. The sensor can move in any direction, but
it may be stopped before reaching its destination, e.g. because of limits to its motion
energy; however, it is assumed that the distance traveled in a move by a sensor is not
infinitesimally small (unless it brings the sensor to its destination).

The sensors have no means of direct communication to other sensors. Thus, any
communication occurs in a totally implicit manner, by observing the other sensors’
positions. Moreover, they are autonomous (i.e., without a central control) identical
(i.e., they execute the same protocol), and anonymous (i.e., without identifiers that
can be used during the computation).

The sensors can be active or inactive. When active, a sensor performs a Look-
Compute-Move cycle of operations: it first observes the portion of the space within its
visibility range obtaining a snapshot of the positions of the sensors in its range at that
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time (Look); using the snapshot as an input, the sensor then executes the algorithm
to determine a destination point (Compute); finally, it moves towards the computed
destination, if different from the current location (Move). After that, it becomes inactive
and stays idle until the next activation. Sensors are oblivious: when a sensor becomes
active, it does not remember any information from previous cycles.

Depending on the degree of synchronization among the cycles of different sen-
sors, three sub-models are traditionally identified: synchronous, semi-synchronous, and
asynchronous. In the synchronous (Fsync) and in the semi-synchronous (Ssync) mod-
els, there is a global clock tick reaching all sensors simultaneously, and a sensor’s cycle
is an instantaneous event that starts at a clock tick and ends by the next. In Fsync,
at each clock tick all sensors become active, while in Ssync some sensors might not
be active in each cycle. In the asynchronous model (Async), there is no global clock
and the sensors do not have a common notion of time. Furthermore, the duration of
each activity (or inactivity) is finite but unpredictable. As a result, sensors can be seen
while moving, and computations can be made based on obsolete observations.

The Problem: The (distributed) uniform covering problem refers to sensors,
randomly dispersed in a bounded region of space, that must scatter themselves through-
out the region so to “cover” it satisfying some optimization criteria. Consider the case
of a circular rim R (i.e., a ring), and let S = {s0, . . . , sn−1} be the sensors initially
arbitrarily placed in different points on R, with si preceding si+1 clockwise (the index
operations are modulo n). We emphasize that these names are used for presentation
purposes only, and are not known to the sensors. If the sensors agree on the notion
of clockwise, we say that they have a common orientation. Let d = LR/n where LR
is the length of the ring. In the following, unless otherwise stated, the sensors are as-
sumed to have visibility range V ≥ 2d. Let di(t) be the distance between sensors si and
si+1 at time t; when no ambiguity arises, we shall omit the time and simply indicate
the distance as di. The sensors are said to have reached an Exact Uniform Covering
(Exact Covering for simplicity) at time t if di(t) = d for all 0 ≤ i ≤ n − 1. Given
ε > 0, the sensors are said to have reached an ε-Approximate Covering at time t if
d− ε ≤ di(t) ≤ d+ ε for all 0 ≤ i ≤ n− 1.

Key Results

The Ring

Exact Uniform Covering. There is a strong impossibility result that stresses the
importance of having common orientation. If the sensors have only a local notion of
left and right, but do not share a common orientation of the ring, the exact covering
problem is unsolvable. This result holds even if the sensors had unbounded memory
and visibility, and under a Ssync scheduler.

Theorem 1. [5] Let the sensors be on a ring R. In absence of common orientation,
there is no deterministic exact covering algorithm even if the sensors have unbounded
persistent memory, their visibility range is unlimited, and the scheduling is Ssync.

To see why this is the case, consider the following setting. Let n be even; par-
tition the sensors in two sets, S1 = {s1, . . . , sn/2} and S2 = S \ S1, and place the
sensors of S1 and S2 on the vertexes of two regular (n/2)-gons on R, rotated of an
angle α < 360◦/n. Furthermore, all sensors have their local coordinate axes rotated
so that they all have the same view of the world. In other words, the sensors in S1
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share the same orientation, while those in S2 share the opposite orientation of C. If
activating only the sensors in S1, an exact covering (resp. no exact covering) on R is
reached at time step ti+1, then the same is true also activating only the ones in S2.
Clearly, in such a case, activating both sets no exact covering would be reached at time
step ti+1, and the system would be an analogous configuration as the one of time step
ti, with different angles. Using this property, it is easy to design an adversary that will
force any algorithm to never succeed in solving the problem; its behaviour would be
as follows: (i) If activating only the sensors in S1 (resp. S2) no exact covering on R is
reached, then activate all sensors in S1 (resp. S2), while all sensors in S2 (resp. S1) are
inactive; (ii) otherwise, activate all sensors. Go to (i).

On the other hand, assuming common orientation and knowledge of the final
inter-distance d among sensors, a simple algorithm that solves the exact covering in
Async is for each sensor to move toward the point at distance d from its clockwise
successor (if visible). We remind that V ≥ 2d.

Protocol RingCoveringExact (for sensor si)
Assumptions: Orientation, knowledge of d.

1. If si+1 is not visible, move distance d clockwise.
2. else, if di > d move toward point x at distance d from si+1.

Theorem 2. [5] The exact covering of the ring problem is solvable in Async, with
common orientation and knowledge of the final inter-distance.

Approximate Covering. Assuming Common Orientation but no knowledge of the
final inter-distance among sensors, an ε-approximate covering is still possible for any
ε > 0, but no exact covering algorithm is known. Also this algorithm is very simple: the
sensors asynchronously and independently Look in both directions, then they position
themselves in the middle between the closest observed sensors (if any). Correctness is
shown by proving that the minimum distance between any two neighbouring sensors
eventually grows, while the maximum distance eventually shrinks in such a way that
there is a time when all sensors are within d± ε distance.

Theorem 3. [5] The approximate covering of the ring problem is solvable in Async
with common orientation.

Algorithm RingCoveringApprox (for sensor si)
Assumptions: Orientation

• If no sensor is visible clockwise (resp. counterclockwise),
let di = V (resp. di−1 = V ).

• If di ≤ di−1 do not move.
• If di > di−1 move distance di+di−1

2
− di−1 clockwise.

Note that the covering problem has been also studied in discrete rings [4].

The Line

The case of a line segment is quite different from the one of the ring and, perhaps
surprisingly, it is not easier. Let S = {s0, . . . , sn−1} be the sensors initially arbitrarily
placed in different points on a line L with s0 and sn−1 being two special immobile sensors
delimiting the segment to be covered, and with si preceding si+1 (0 < i < n− 2). Let
d = LL/(n − 1), where LL denotes the length of the segment. Exact Covering and
ε-Approximate Covering are defined analogously to the case of the ring.
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Exact Uniform Covering. With Common Orientation and known final inter-distance,
an algorithm has been recently shown for oriented sensors in Async [3]. The algorithm
works even if the visibility range is just enough to sense the final inter-distance (V = d).
Let δ ≤ d

2
be a fixed positive (arbitrarily small) constant the sensors agree upon.

Protocol CorridorCoveringExact (for sensor si)
Assumptions: Orientation, knowledge of d, V = d

• If si−1 is not visible, move distance d
2

to the left.
• else, let a := d− di−1

If di ≥ d and a > 0, move distance min(d
2
− δ, a) to the right.

Theorem 4. [3] The exact covering of the line problem is solvable in Async with
common orientation and knowledge of the final inter-distance.

With fixed visibility, a distributed algorithm has been proposed for Fsync in a
discrete setting, to solve the slightly different problem of barrier coverage [2].

Approximate Covering. Approximate covering has been studied in a slightly differ-
ent visibility model where each sensor is able to perceive up to the next sensor on the
line [1]. In other words, in each direction, a sensor sees the closest sensor (if it exists),
regardless of its distance, but its visibility is blocked by it (neighbour visibility). For
presentation purposes, a global linear coordinate system (not known to the sensors) is
used here with s0(t) = 0 and sn−1(t) = 1. For the sensors to be spread uniformly, sen-
sor si should then occupy position i

n−1 . The following is a simple approximate covering
algorithm.

Protocol CorridorSpread (for sensor si)
Assumptions: Ssync, neighbour visibility

• If no sensor is visible in either direction, do nothing.
• Otherwise, move toward point x = 1

2
(si+1 + si−1).

The idea of the convergence proof in Fsync is sketched below. Let µi[t] be the
shift of the si’s location at time t from its final position. According to the protocol, the
position of sensor si changes from si(t) to si(t + 1) = 1

2
(si−1(t) + si+1(t)) for 1 ≤ i ≤

n − 2, while sensors s0 and sn−1 never move. Therefore, the shifts changes with time
as µi[t+ 1] = 1

2
(µi+1[t] + µi−1[t]). Considering the progress measure: ψ[t] = Σi=n

i=1 µ
2[t],

it can be shown that ψ[t] is a decreasing function of t unless the sensors are already
equally spread; more precisely, it is shown that every O(n2) cycles, ψ[t] is at least
halved thus reaching approximate covering. More complex but analogous reasoning is
followed for Ssync.

Theorem 5. [1] The approximate covering of the line problem is solvable in Ssync
with neighbour visibility.

With a simple modification of the algorithm, the result above can be extended
to any fixed visibility V > d, provided that d is known, as described below [3].

Protocol CorridorSpread2 (for sensor si)
Assumptions: Ssync, d known, V > d

• If only one sensor sj ∈ {si+1, si−1} is visible to si and d′ =

dist(si, sj) < d: move distance d−d′
2

+ V−d
2

away from sj
• If both si+1, si−1 are visible and d1 = dist(si−1, si) < d2 =

dist(si+1, si) (resp. d1 = dist(si+1, si) < d2 = dist(si−1, si)):
move d2−d1

2
toward si+1 (resp. toward si−1)
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Applications
Uniform Covering problems are important in many applications; covering of a circular
rim occurs, for example, when the sensors have to surround a dangerous area and can
only move along its outer perimeter. On the other hand, coverings of the line (often
called barrier coverings) guarantee that any intruder attempting to cross the perimeter
of a protected region (e.g., crossing an international border) be detected by one or more
of the sensors. These problems are studied under a variety of assumption; the majority
of the studies uses sensors provided with memory, explicit communication devices,
global localization capabilities (eg GPS), and centralized approaches. The advantage
of memoryless sensors are self-stabilization and tolerance to loss of sensors, the use of
local coordinate systems has clear advantages over the full strength of a GPS; finally,
decentralized solutions offer better fault-tolerance.

Open Problems
It is known that the exact covering of the ring is impossible without orientation in
Ssync, but the impossibility does not extend to Fsync where, however, no algorithm
is known. Moreover, the only existing exact covering algorithm in Async assumes
orientation, which is needed, and knowledge of the inter distance d, which is possibly
not needed, so a tighter result might be possible. Finally, approximate covering is
achieved in the ring in Ssync assuming orientation, which is not shown to be necessary,
furthermore, no solution exists for Async.

In the case of the line: the only impossibility result for exact covering [3] holds
for fully disoriented sensors (not even able to locally distinguish between their two
directions), and with small visibility range V = d. As for approximate covering, the
only known result in this model is for Ssync, and it is not known whether an algorithm
exists for the Async model.
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