
Electing a leader among anonymous mobile agents in

anonymous networks with sense-of-direction∗

Lali Barrière† Paola Flocchini‡ Pierre Fraigniaud§ Nicola Santoro¶

Abstract

We consider a collection of r anonymous asynchronous mobile agents dispersed on an ar-
bitrary anonymous network of size n. Neither r nor n are known a priori by the agents. We
examine the problem of electing a leader among those agents and study the conditions for its
solvability. We show that, without sense of direction, the problem is unsolvable, even if restricted
to instances for which gcd(r, n) = 1. We also show that, with sense of direction, the problem
remains unsolvable, but it becomes solvable if restricted to instances for which gcd(r, n) = 1.
Since sense of direction can be given to any m-edge graph in O(m) time, our result shows that
one can easily label the edges of an anonymous network in order to significantly improve its
computational power.

Keywords: Anonymous Mobile Agents, Anonymous Networks, Sense of Direction, Election.

Submission to SIROCCO 2003
Corresponding author: Lali Barrière, lali@mat.upc.es

∗This research was carried out when the first and third authors were visiting Carleton University and the University
of Ottawa. This work has been partially supported by: the Natural Sciences and Engineering Research Council
(NSERC), Nortel Networks, and NATO.

†Dept. de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, lali@mat.upc.es.
‡School of Information Technology and Engineering, University of Ottawa, flocchin@site.uottawa.ca.
§CNRS, Laboratoire de Recherche en Informatique, Univ. Paris-Sud, pierre@lri.fr.
¶School of Computer Science, Carleton University, santoro@scs.carleton.ca.

1 Introduction

We are interested in the computational issues arising in networked environments which support
autonomous asynchronous mobile agents. At an abstract level, these environments, which we shall
call distributed mobile systems, can be described as a collection E of autonomous mobile entities
located in a graph G. The entities have the same processing capabilities, execute the same protocol,
and move in G from node to neighboring node. Depending on the context, they are sometime
called robots or agents. The research concern is on determining what tasks can be performed by
such entities, under what conditions, and at what cost. In particular, a central question is to
determine what minimal hypotheses allow a given problem P to be solved. Example of this type of
investigations are the studies on topology-reconstruction: E is typically a single entity, sometimes
two, G is unknown to the entity, and P is the construction of a map of the graph (e.g., see [2, 6, 7]).
Other examples are graph-exploration [8, 9, 12], wake-up [1, 16], black-hole search [10, 11], searching
for a mobile intruder [18], etc. In this paper, we focus on a fundamental problem in distributed
mobile computing: election, that is the process by which a group of autonomous asynchronous
mobile entities initially in the same state and scattered in G selects one of them as a leader.

1.1 Statement of the problem

We focus on the computational problem of electing a leader in fully anonymous systems, that is,
when both the agents and the nodes are unlabeled, but when edges incident to each node of the
network are given distinct labels. (In absence of such edge-labeling, an agent would be unable
to explore even the star with three leaves since, coming back from the second explored leaf, it
would be unable to recognize the already explored edge from the unexplored one.) The agents have
computing capabilities and bounded storage, execute the same protocol, and can move from node
to neighboring node in the network. The agents are asynchronous, in the sense that every action
they perform, like computing, moving, etc., takes a finite but otherwise unpredictable amount of
time. Initially, the agents are placed at r distinct nodes, called homebases. Each node is provided
with a whiteboard, i.e., a local storage where agents can write and read (and erase) information.
This capability is motivated by the ability of software agents to let messages in a network. Access
to a whiteboard is done in mutual exclusion.

Initially, all agents have a predefined state variable set to available. The election problem consists
in having the agents unanimously select one of them which will set its state variable to leader,
while all the others will set their state variable to follower. The behavior of an agent will be the
following. The agent will compute based on (1) its current state, (2) the content of the witheboard
of the node currently visited, and (3) the label of the edge from which it arrived. The computation
is indivisible and, upon completion, the agent will change its state and then depart through an exit
port determined during the computation. A null port can be added to describe a decision by the
agent not to move.

We are interested in generic solutions, that is, solutions which work independently of the structure
of G and of the number of agents. Thus, we assume that the network G, its size n, as well as
the number r of agents are not known a priori. In this context, the relationship between n and
r plays an important role, and the feasibility of the election is directly related to gcd(r, n). If
gcd(r, n) = d > 1, and if the network is symmetric, then one can identify several inputs of the
election problem for which a set of d agents will perpetually perform the same movements, and
remain in identical states. One of our first results shows that, in fully anonymous systems with

1

arbitrary edge labeling, the election problem remains unsolvable even if gcd(r, n) = 1. That is no
deterministic solution exists which allows the agents to always correctly terminate in finite time
for every input such that gcd(r, n) = 1. We therefore slightly strengthen the characteristics of the
system, by assuming the existence of a sense of direction.

1.2 Sense of direction

Roughly speaking, sense of direction is an edge-labeling which provides to graphs similar properties
as the usual notion of North, South, East, West in plane maps (see [13]). More precisely, let
G = (V,E) be a simple undirected graph. Let E(u) denote the set of edges incident to node u ∈ V ,
and let λu : E(u) → L be an injective function which associates to each incident edge a distinct
label from the set of labels L. Note that for each edge e = {u, v} there are two associated labels,
λu(e) and λv(e), which are possibly different. The set λ = {λu : u ∈ V } constitutes the labeling of
G, and by (G,λ) we shall denote the corresponding edge-labeled graph. Let P [u] denote the set of
all the non empty walks starting from u ∈ V . Similarly, let P [u, v] denote the set of walks starting
from u ∈ V and ending in v ∈ V . Let Λu : P [u] → L+ and Λ = {Λu : u ∈ V } denote the extension
of λu and λ, respectively, from edges to walks (L+ is L∗ but non including the empty string).

Given (G,λ), a coding function c for λ is any function with domain L+ such that walks originating
from the same node are mapped to the same value if and only if they end in the same node. More
precisely, ∀u, v, w ∈ V , ∀π1 ∈ P [u, v], π2 ∈ P [u, w], c(Λu(π1)) = c(Λu(π2)) if and only if v = w.
A decoding function d for c is a function which, given the label λu(u, v) of an edge (u, v) and the
coding of a walk π from v to another node w, returns the coding of the overall walk from u to w.
More precisely, ∀{u, v} ∈ E, ∀α = Λv(π), d(λu({u, v}), c(α)) = c(λu({u, v}) ◦ α), where ◦ denotes
concatenation of strings. Given a coding function c of (G,λ) and a decoding function d for c, the
couple (c,d) is called a sense of direction for (G,λ).

An example of a common sense of direction is the dimensional labeling in the hypercube, where an
edge is labeled according to the corresponding dimension.

Remark. Any graph can be endowed with a sense of direction. Therefore, sense of direction
restricts the class of labelings, not the class of graphs.

For example, consider an arbitrary graph G = (V, E), V = {v0, . . . , vn−1}, where the edge {vi, vj}
is labeled at vi by the label (j − i) mod n. With this labeling there is a simple coding func-
tion: two paths from the same node terminate in the same node iff the sum modulo n of the
corresponding labels is the same, that is ∀u, v ∈ V , ∀π ∈ P [u, v], if [l0, . . . , lk] = Λu(π) then
c(Λu(π)) =

∑k
i=0 li mod n. The decoding function is defined as follows: ∀{u, v} ∈ E, ∀π ∈

P [v], d(λu({u, v}), c(α)) = λu({u, v}) + c(α) mod n, where α = Λv(π). It is easy to verify that
λu({u, v}) + c(α) = c(λu({u, v}) ◦ α). This sense of direction is called chordal and is one of many
that can be constructed in an arbitrary graph.

1.3 Our results

We already mentioned our first result about the unsolvability of election with arbitrary labelings,
i.e., in fully anonymous systems with arbitrary edge labelings, the election problem remains un-
solvable even restricted to the class of inputs for which gcd(r, n) = 1.

We then consider fully anonymous systems where there is however sense of direction. We first show
another negative result: the problem is unsolvable for arbitrary instances. On the other hand, we
prove that, if gcd(r, n) = 1, then the election problem is solvable, and the result holds for any sense

2

of direction. In other words, we show that sense of direction overcomes anonymity if gcd(r, n) = 1.
This is the first evidence that sense of direction has a positive impact also in distributed mobile
computing. The proof of our positive result is constructive. The number of movements of the
agents is at most O(rn).

2 Unsolvability of election with arbitrary labelings

In this section we will prove that, with arbitrary labelings (thus, without sense of direction), the
election problem is unsovable, even if gcd(n, r) = 1.

Theorem 2.1 In a fully anonymous system with arbitrary labelings, the election problem is deter-
ministically unsolvable, even if restricted to the class of inputs for which gcd(n, r) = 1.

Proof. Assume, for the purpose of contradiction, that there exists a correct election protocol P .
We will consider synchronous executions of P simultaneously started by all agents, i.e., we will
assume (1) all computations to be instantaneous, (2) movements to require a unit of time, and (3)
agents to start simultaneously. We will consider oriented rings (i.e., consistently labeled with “left”
and “right”). Note that orientation does not imply sense of direction. In fact, without knowledge
of n, an oriented ring does not have any consistent coding and, thus, there is no sense of direction
(cf. [13]). Further, we will assume that a node is visited by only one agent per time unit. Let

s(a, t) = state of agent a at time t;
p(a, t) = location of agent a at time t;
w(v, t) = content of the whiteboard of node v at time t;
e(a, t) = label of the entry port by which a arrives at p(a, t) at time t.

Then, the system will evolve according to the following three facts.

Fact 1. The content of a whiteboard can change only when the corresponding node is visited by
an agent. The new content is a function f solely of the current information, and the state and
the entry port of the visiting agent (if any). In other words, if no agent is at v at time t + 1,
w(v, t + 1) = w(v, t); otherwise, w(v, t + 1) = f(w(v, t), s(a, t), e(a, t)) where p(a, t) = v.

Fact 2. The choice by an agent of a link to traverse is a function g solely of the current state of
the agent, the label of the incoming edge, and the content of the whiteboard. In other words, if
p(a, t) = v, then `(v, t + 1) = g(w(v, t), s(a, t), e(a, t)).

Fact 3. The new state of an agent is a function γ solely of the content of the whiteboard,
the entry port number, and the current state. In other words, if p(a, t) = v, s(a, t + 1) =
γ(w(v, t), s(a, t), e(a, t)).

Consider now the system A composed of an oriented ring of three nodes (y0, y1, y2), with a single
agent located in y0 (see Figure 1). Consider a synchronous execution of P by the agent. After
a finite number of moves, the execution must terminate with the agent becoming the leader. Let
T (A) be the time elapsed in this execution. Consider then a system B composed of an oriented
ring of n = 3q nodes, (x0, x1, . . . , xn−1), with q ≥ 4

3(T (A) + 1), and an agent placed in each of
locations x3j , 0 ≤ j ≤ q − 1 (see Figure 2). We have gcd(n, r) = q 6= 1. Clearly the initial system
symmetry in B is total: the views [19] of all agents are identical at any distance. Furthermore this
view is undistinguishable from that of the only agent in A. In a traditional distributed setting,
i.e., with static entities, this would be enough to guarantee that the relationship between the
two systems is time-invariant under a synchronous scheduler (e.g., see [19]), and hence to yield

3

the desired contradiction. We prove that, even in our mobile setting, the initial correspondence
between the two systems can be preserved through time. Consider a synchronous execution of P
in B simultaneously started by all agents. This execution has several important properties. Denote
by aj the agent with homebase xj , and, for simplicity of notation, denote x(t) = p(a0, t) and
x(t) + h = p(ah, t) the location of a0 and of ah at time t, respectively.

Lemma 2.1 At any time instant t ≥ 0
(1) for each i = 0, 1, 2 the contents w(xi+3j , t) are identical for all j, 0 ≤ j ≤ q − 1,
(2) the states s(a3j , t), are identical for all j, 0 ≤ j ≤ q,
(3) the entry ports e(a3j , t), are identical for all j, 0 ≤ j ≤ q, and
(4) p(a3j , t) = x(t) + 3j, for all j, 1 ≤ j ≤ q − 1, where operations are modulo n.

Proof. The lemma trivially holds at time t = 0. Assume that it holds at time t ≥ 0. Thus,
each agent is still at distance three from its neighboring agents on each side, the whitheboards
of the nodes where the agents are currently located have the same content, and the state of all
agents is the same. Consider first the port through which agent a0 will exit the current node. By
definition, `(x(t), t+1) = g(w(x(t), t), s(a0, t), e(a0, t)). Since, by induction hypothesis, w(x(t), t) =
w(x(t)+3j, t), e(a0, t) = e(a3j , t), and s(a0, t) = s(a3j , t), then `(x(t), t+1) = `(x(t)+3j, t+1), for
0 ≤ j ≤ q− 1. In other words, the agents will all choose the same edge label l (say ”left”), and exit
their current location through the port with label l. Thus, since the ring is oriented, they will all
enter the new node at time t+1 from the port labeled ”right”, i.e., e(x(t), t+1) = e(x(t)+3j, t+1),
for 0 ≤ j ≤ q − 1 proving thesis (3) of the lemma. Furthermore, p(a3j , t + 1) = x(t + 1) + 3j, for
1 ≤ j ≤ q − 1, proving thesis (4).

Let us now consider for 0 ≤ j ≤ q−1 and 0 ≤ i ≤ 3, the whiteboards of nodes xi+3j at time t. Since
nodes x(t) + 3j + 1 will not be visited by an agent at time t, their whiteboard will be unchanged.
That is, w(x(t) + 3j + 1, t + 1) = w(x(t) + 3j + 1, t) and, by induction hypothesis, their contents
will remain equal. A similar situation occurs for the nodes x(t + 1) + 3j + 2. The node x(t) is
visited by agent a0 at time t, so we have that w(x(t), t + 1) = f(w(x(t), t), s(a0, t), e(a0, t)). But,
by induction hypothesis, p(a3j , t) = x(t) + 3j, w(x(t), t) = w(x(t) + 3j, t), e(a0, t) = e(a3j , t), and
s(a0, t) = s(a3j , t). Thus, w(x(t), t+1) = w(x(t)+3j, t+1). This completes the proof of thesis (1).

Let us finally consider the state of agent a0. By definition, s(a0, t+1) = γ(w(x(t), t), s(a0, t), e(a0, t)).
But, by induction hypothesis, p(a3j , t) = x(t) + 3j, w(x(t), t) = w(x(t) + 3j, t), e(a0, t) = e(a3j , t),
and s(a0, t) = s(a3j , t), for 0 ≤ j ≤ q − 1. Thus, also thesis (2) holds.

Let us now compare the execution of P in A with the execution in B. Let a be the sole agent in A.

Lemma 2.2 At any time instant t,
(1) w(xi+3j , t) = w(yi, t) for all i, j, 0 ≤ j ≤ q − 1 and 0 ≤ i ≤ 3,
(2) s(a0, t) = s(a, t),
(3) e(a0, t) = e(a, t), and
(4) if p(a0, t) = u and p(a, t) = v, then `(u, t + 1) = `(v, t + 1).

Proof. Thesis (1) (2) and (3) clearly hold for t = 0. Assume that they hold up to t ≥ 0. Again,
we denote x(t) = p(a0, t), x(t) + h = p(ah, t), and y(t) = p(a, t). By definition of ` and induction
hypothesis, we have `(x(t), t + 1) = g(w(x(t), t), s(a0, t), e(a0, t)) = g(w(y(t), t), s(a, t), e(a, t)) =
`(y(t), t + 1); hence (4) holds. Because of orientation, e(a0, t + 1) = e(a, t + 1), and (3) holds.
Now, by definition of w, w(x(t), t + 1) = f(w(x(t), t), s(a0, t), e(a0, t)). By induction hypothesis,

4

w(x(t), t) = w(y(t), t), e(a0, t) = e(a, t) and s(a0, t) = s(a, t). Thus, w(x(t), t + 1) = w(y(t), t + 1).
Lemma 2.1 implies that w(x(t) + 3j, t + 1) = w(y(t), t + 1). Since all other nodes in both systems
are not visited by any agent at time t, the content of their whiteboards there stays unchanged.
Thus, by induction hypothesis, thesis (1) holds. Finally, the state of a0 at time t + 1 satisfies
s(a0, t + 1) = γ(w(x(t), t), s(a0, t), e(a0, t)). By induction hypothesis, e(a0, t) = e(a, t), s(a0, t) =
s(a, t), and w(x(t), t) = w(y(t), t); thus, s(a0, t + 1) = s(a, t + 1) and (2) holds.

Without loss of generality, let k = T (A) be a multiple of 3, i.e., k = 3d (otherwise, in the following
discussion, use k′ = 3dk/3e instead of k). Consider now a system C composed of an oriented
ring (z0, z1, . . . , zm−1) of size m = 4k + 2, where there is an agent in node z0 and in each of
locations z3j and z−3j , 1 ≤ j ≤ 2d with all operations on the indices are modulo m (see Figure 3).
Thus r = 4d + 1, and clearly gcd(m, r) = 1. Denote by bj the agent with homebase zj . Start a
synchronous simultaneous execution of P by all agents in C. Let us now compare the first k steps
of the execution of P in C with the ones in B.

Lemma 2.3 At any time instant t ≤ k,
(1) for each i = 0, 1, 2, w(z±(i+3j), t) = w(xi, t), 0 ≤ j ≤ d, and
(2) s(b0, t) = s(b3, t) = s(b−3, t) = s(a0, t).

Proof. Initially all witheboards of nodes which are not homebase are identical, and so are the
witheboards of the homebases. Similarly, all agents are in the same initial state. In particular,
there is no possibility, initially, for the agents to distinguish between system B and system C. The
agents b2k, b−2k have a different 2-neighborhood from all other agents. One of these two agents, say
b2k, will be the first to have a different state from all others agents. This will happen either at time
t = 2, in which case b2k will be at z−2k, or at time t = 3, in which case b2k will be at z2k+1. In either
case, the distance between the location of b2k when it becomes different and the closest of xk+1 and
x−(k+1) is at least k. This implies that, at time t = k, at most the segment 〈zk+1, . . . , z3k+2〉 will
be affected by the change. Thus, for the first k steps, the segment Z = 〈z−k, z−k+1 . . . , z0 . . . zk〉
in system C will be undistinguishable from the segment X = 〈x−k, x−k+1, . . . , x0 . . . xk〉 in system
B. Furthermore, all the agents that, in all this time, do not leave Z will all have the same state at
each time step, which will equal to that of a0 at that time. Since, for t ≤ k, the three agents b0, b3

and b−3 are always within Z, the lemma follows.

From Lemma 2.2 it follows that at time T (A), agent a0 becomes leader in B. Then, by Lemma
2.1, all agents will become leader in B at time T (A), contradicting the correctness of protocol P
for the case gcd(n, r) 6= 1. Also, by Lemma 2.3, at time T (A), agents b0, b3 and b−3 become leader
in C, contradicting the correctness of P for the case gcd(n, r) = 1. This completes the proof of
Theorem 2.1.

3 Election with sense of direction

In this section, we consider a fully anonymous systems, where both nodes and agents are anonymous,
where however there is a sense of direction (c,d) available to the agents.

Theorem 3.1 In a fully anonymous system with sense of direction, the election problem is deter-
ministically unsolvable.

5

Proof. Consider a ring network (x0, x1, . . . , xn−1) with the classical “left/right” sense of direction
(i.e., the ring is oriented and n is known to the agents). Let gcd(r, n) = d 6= 1. Consider an
initial equidistant, i.e., separated by d − 1 empty nodes, placement of the agents in the ring, and
a synchronous scheduler. The initial system symmetry is total: the system is homonymous and
the views of all agents are identical at any distance. The synchronous scheduler will maintain
the symmetry at every step: at each time unit, the agents will be in the same state, react to
the same event, and perform the same action, reading and writing the same information on the
whiteboard, and selecting the same port label for the next move. If an agent becomes leader, they
all simultaneously will.

Note that systems A and B, used in the impossibility result Theorem 2.1, are no longer undistin-
guishable by the agents. Indeed, because of sense of direction, an agent reaching a homebase can
determine whether it is its own homebase or not (this will appear clear in the next section). In
fact, we prove the following.

Theorem 3.2 In a fully anonymous system with sense of direction, the election problem is deter-
ministically solvable if gcd(n, r) = 1.

The description of an election protocol for every instance with gcd(n, r) = 1 requires some pre-
liminaries. We first prove that, even in a totally anonymous system, an agent can locally (i.e.,
privately) assign a unique “name” to itself and to the other agents, as well as to the nodes of the
graph. However, since all agents are behaviorally identical and start with the same initial values,
there is no guarantee that such a name would be unique. In fact it is possible that they all choose
the same name for themselves, creating an homonymous universe. We now present a mechanism,
called DNM for dynamic name mutation, which, exploiting the presence of sense of direction, allows
us to operate in spite of these limitations, including homonimity.

In our mechanism, initially every agent chooses its private name based on the labels of the edges
incident to its homebase. The private name is then modified whenever the agent moves on the
graph. The name will be always relative to the current position of the agent. The main difficulty
is to modify the names in such a way that, at any location v, two names will be different if and
only if they refer to different agents. This will ensure that messages written on v’s whiteboard by
different agents will have different signatures. An other related difficulty is to ensure that an agent
is capable of recognizing, as its own, any message it has written in previous visits. These difficulties
are overcome by the use of the existing sense of direction (c,d) by the mobile agents.

Strategy DNM
(1) To determine its initial name, an agent a with homebase p(a) = u, chooses an arbitrary
neighboring node v ∈ E(u) and determines the label λv({u, v}) (e.g., by moving to v and coming
back). Then, its name is Myname := c(λu({u, v}) ◦ λv({u, v})).
(2) When an agent with name Myname at node u moves to the neighboring node v, it modifies its
name as follows: Myname := d(λv({v, u}),Myname).

Note that u and v are used for notation purposes only and are not available to the agents. Further
note that if G is regular of degree d and λ is minimal (i.e., it uses only d labels), all agents will
choose the same name for themselves.

Lemma 3.1 At any location v two names will be different if and only if they refer to different
agents.

6

Proof. To prove the lemma, we first prove the following claim: The name of a at v is c(α) where
α is the sequence of labels corresponding to an arbitrary path from v to the homebase ha of agent
a. We prove that claim by induction. Consider the walk π = (v0 = ha, v1, v2 . . . , vk = v) traversed
by a to reach a node vk. The property is true at node ha. Assume it holds at vi and that the name
is M . Consider now vi+1. The name of a at vi+1 is d(λvi+1(vi+1, vi),M) = d(λvi+1(vi+1, vi), c(δ)),
where δ is an arbitrary path from vi to ha. In particular such a path could be (vi, . . . v1, ha), then it
follows that the name of a at vi+1 is c(Λ(vi+1, vi, . . . v1, ha)), which, by definition of coding function,
is equal to c(α), where α is the sequence of labels corresponding to any walk from vi+1 to ha. This
completes the proof of the claim.

In the remaining part of the proof, we show that if an agent a arriving at a node v ”sees” two
names, it can tell whether they refer to the same agent or not (and whether they refer to itself).
In other words, we have to prove that (i) an agent at v always has the same name regardless the
walk it traversed to arrive there, (ii) different agents arriving at node v have different names. Point
(i) follows from the claim. Let us consider point (ii). Let a1 and a2 be two different agents with
respective homebases ha1 and ha2 . At node v the name of a1 is c(α) and the name of a2 is c(β)
where α corresponds to an arbitrary path from v to ha1 and β corresponds to an arbitrary path
from v to ha2 . By definition of coding function c(α) 6= c(β) because ha1 6= ha2 .

Because of Lemma 3.1, we are guaranteed that whenever an agent writes some information on
a whiteboard and signs it, it will be able in subsequent visits to the same node to identify that
information as its own. Moreover, it will correctly recognize signatures written by other agents as
not its own. There is an additional extremely useful consequence. Let an agent a find a signature
of another agent b in the whiteboard of a visited site. If the agent carries with itself that signature
and applies to it the dynamic name mutation, a will be able to detect if any of the information
written on the whiteboard of another node has been written by b.

We now present a protocol which will elect one of the agents as the leader, provided gcd(r, n) = 1.
It is based on roughly the same techniques as in [4] but “colors” are replaced here by the signature.
The proposed protocol operates in a sequence of electoral phases. Each phase is composed of two
operations that the agents active in that phase must perform: (1) territory acquisition, and (2) a
sequence of partitioning and pairing rounds. At the end of a phase, as we will show, at least half
of the active agents which entered the phase become passive, and the number of those which will
start the next phase is still co-prime with n. In the following we will denote by ri the number of
active agents in Phase i (initially r1 = r). We describe now the actions of the ri agents entering
Phase i. The first operation an active agent performs is to “acquire” as many nodes as possible.
Assume that, at the beginning of the phase, all nodes, except the homebases of the agents active
in this phase, are available. So, an active agent will start a depth-first traversal of G marking as
taken any available node it visits. Note that the marking is done by writing the appropriate signed
information on the whiteboard. Similarly, the whiteboard is used to write the relevant signed
information (e.g., already traversed links, . . .) used for the traversal. During the traversal, the
agent will keep track of how many nodes are taken and by what other agents. The names of this
list of occurrences will be decoded at each move, so they are always consistent.

Operation Territory Acquisition
(1) Active agent a in Phase i records in its homebase p(a) the current phase number and starts a
(depth-first) traversal of the nodes of G.
(2) During the traversal, when a enters node u from link {v, u} carrying the list L = m1, . . . , ms:

• a updates its name: Myname := d(λv({v, u}),Myname), and all the names in its list L:

7

∀mi ∈ L, mi := d(λv({v, u}),mi);
• if u has been already marked in this phase, a updates L and the associated counter;
• otherwise (i.e., u has not been marked in this phase)

(a) if u = p(b) is the homebase of a non-passive agent b, and the current phase number is not
recorded, a waits until the phase is recorded by b; it updates L and the associated counter;
it then proceeds with the traversal;
(b) otherwise, a marks u with Myname and phase and proceeds with the traversal.

The other operation in a phase is a sequence of partition and pairing rounds. In each Round j, the
active agents will partition themselves into two sets, W (j) and S(j) and, executing different rules
depending on the set they are in, they perform a pairing between the two sets. At the end of the
pairing, some active agents will become passive. Depending on the result of the pairing either a
new round is started, or the current phase terminates. In the latter case, if there is only one active
agent left, that agent becomes the leader and starts the termination of the protocol, otherwise a
new phase is started. Let us now describe each round. We distinguish the first round from the
subsequent ones.

First Round (j = 1): Partition. When an agent has completed its territory acquisition, and
returned to its homebase p(a), it knows a sequence of integers n1, . . . , nk, and a partition S1, . . . , Sk

of the set of agents, such that, for every `, S` is the set of agents which have a territory of size n`.
These two sequences satisfy

(1) |S`| 6= 0 and 1 ≤ n` < n, for all `,
(2) n` 6= n`′ for all ` 6= `′, and
(3)

∑k
`=1 |S`| · n` = n.

Based on this knowledge, every agent determines the two following sets: A = set of the agents
whose territory is of size > n/ri, and B = set of the agents whose territory is of size < n/ri. Note
that since gcd(ri, n) = 1, n/ri is not integral. Let W (1) be the largest of these two sets, and S(1)

be the smallest of these two sets. In case of a tie, the agents set W (1) = A. The agents in W will
be called waiting, while those in S will be called searching. All other agents (if any) are passive.

First Round (j = 1): Pairing. We consider separately waiting and searching agents.

Waiting agents.
(1) Active agent a ∈ W (1) is initially single, writes the current round number in its homebase p(a),
and waits for the arrival of all the agents in S(1).
(2) When a searching agent s arrives to the homebase p(a):

• a stores the local name of s
• if s has paired with a, a becomes paired

(3) When a is paired and has been visited by all the searching agents, it becomes passive.

Searching agents.
(1) Active agent s ∈ S(1) performs again a (depth-first) traversal of the nodes of G looking for the
agents in W (1).(The traversal can be performed by using the spanning tree constructed during the
first traversal in the first phase.)
(2) During the traversal, when s enters the homebase p(a) of a waiting agent a ∈ W (1), s checks
whether or not a has already returned to its homebase.

• If a is not in its homebase, s will wait for its return.

8

• If (when) a is in its homebase,
(a) s will notify a of its visit;
(b) if both s and a are single then s will pair with a;
(c) s will continue its traversal.

If several single searching agents were waiting for a, only one of them will pair with it (since pairing
is done by writing on the board, and access to witheboard is in mutual exclusion).

Passive agents.
A passive agent, i.e., a paired waiting agent, remains at its homebase, waiting to be notified of
termination. We denote by P (1) the set of agents becoming passive during Round 1.

Subsequent Rounds (j ≥ 2): Partition. We denote by P (j−1) the set of agents becoming
passive during Round j − 1. We define the new set of searching agents S(j), and the new set of
waiting agents W (j), as follows.

• If |W (j−1)| − |S(j−1)| ≥ |S(j−1)| then S(j) = S(j−1) and W (j) = W (j−1) \ P (j−1). In other
words, the set of searching agents does not change, and passive agents are removed from the
set of waiting agents.

• If |W (j−1)| − |S(j−1)| < |S(j−1)| then W (j) = S(j−1) and S(j) = W (j−1) \ P (j−1). In other
words, we remove the passive agents from the set of waiting agents, and then the role of the
two sets is switched.

Operation Partition. Each active waiting agent that has been visited by all the searching
agents, and every searching agent that has completed its traversal, computes the cardinalities of
S(j) and W (j), as well as which of these two sets it belongs to. Let a be such an agent.
(1) If |S(j)| 6= 0, a enters Round j + 1.
(2) Otherwise, let ri+1 = |W (j)| be the number of still active agents.

• If ri+1 = 1, a becomes leader and starts the termination of the protocol;
• Otherwise (ri+1 > 1), a enters Phase i + 1.

Subsequent Rounds (j ≥ 2): Pairing. Round j involves two sets of agents, S(j) and W (j),
constructed during Round j − 1. By construction, one of them is equal to S(j−1), and the other is
the set of agents in W (j−1) which remain active at the end of Round j − 1.

Waiting agents.
(1) Active agent a ∈ W (j) is initially single, writes the current round number in its homebase p(a),
and waits for the arrival of all the agents in S(j).
(2) When a searching agent s arrives to the homebase p(a):

• a stores the local name of s;
• if s has paired with a, a becomes paired.

(3) When a is paired and has been visited by all the searching agents, it becomes passive.

Searching agents. Each active agent s ∈ S(j) performs again a (depth-first) traversal of the nodes
of G looking for the agents in W (j). (The traversal can be performed by using the spanning tree
constructed during the first traversal in the first phase.) There are two cases according to the set
up of the sets S(j) and W (j).

9

Case 1: S(j) = S(j−1) and W (j) = W (j−1) \ P (j−1). In this case, the current waiting agents were
already waiting agents in the previous round, and therefore they are currently waiting at their
homebases. If a searching agent visits an active waiting agent still in the previous round, then
the searching agent stays in the homebase of the waiting agent until the latter updates its
round number, or becomes passive.

Case 2: S(j) = W (j−1) \ P (j−1) and W (j) = S(j−1). Since the current searching agents were wait-
ing agents at the previous round, they have been visited by all the current waiting agents
during Round j − 1. Therefore, every agent in S(j) knows the local name of the agents in
W (j). This is useful because a searching agent may enter a homebase of a waiting agent which
has not yet finished the previous round. As in Round 1, when a searching agent enters the
homebase of an active agent, it checks whether it is the homebase of a searching agent, or the
homebase of a waiting agent which has not yet finished the previous round. If a searching
agent is currently in the homebase of a waiting agent which has not yet finished the previous
round, then the searching agent waits until the latter updates its round number.

As in Round 1, the first time that a searching agent meets a single waiting agent, it pairs with
it, and then completes the traversal in order to visit all the waiting agents. This completes the
description of the election protocol.

The details of the proof of correctness of the protocol can be found in [5]. We just mention
the following lemma, whose statement and proof contains the elements justifying the condition
gcd(n, r) = 1.

Lemma 3.2 If gcd(r, n) = 1, then for any i, gcd(n, ri) = 1 and and ri+1 ≤ ri/2, where ri is the
number of active agents at the ith phase.

Proof. Consider Phase i with gcd(ri, n) = 1. One can easily show that |S(1)| + |W (1)| = ri

and that every round of Phase i completes. Thus, by construction of the sets S(j) and W (j), the
sequence of pairs {|S(j)|, |W (j)|}, j ≥ 1, is the sequence of pairs of integers obtained by computing
gcd(|S(1)|, |W (1)|) using Euclid’s algorithm. From the property of the Euclid’s algorithm, ri+1 =
gcd(|S(1)|, |W (1)|). This implies that gcd(ri+1, n) = 1, and ri+1 ≤ ri/2.

From Lemma 3.2, if gcd(r1, n) = 1, then, after at most log2 r phases, only one agent will remain
active: the leader. Note that our protocol is also quite efficient in terms of the traditional cost
measure for mobile agents: the number of agent moves. In fact one can prove (see [5]) that the
total number of edge-traversal in the protocol is O(rn) in the worst case.

4 Concluding Remarks

It is known that the presence of sense of direction has a positive impact in distributed computations
(for a survey, see [14]). The results presented here provide the first evidence that sense of direction
has a positive influence on computability also in systems of mobile agents. An interesting open
problem is to determine how to exploit, in addition to sense of direction, any existing asymmetry
of the network or of the placement of the agents, so to sidestep the unsolvability result established
here, extending the work of [19] to the mobile setting.

10

References

[1] E. Arkin, M. Bender, S. Fekete, and J. Mitchell. The freeze-tag problem: how to wake up a swarm of
robots. In 13th ACM-SIAM Symposium on Discrete Algorithms (SODA ’02), pages 568–577, 2002.

[2] B. Awerbuch, M. Betke, and M. Singh. Piecemeal graph learning by a mobile robot. Information and
Computation, 152:155–172, 1999.

[3] L. Barrière and S. Dobrev. Leader election in abelian Cayley graphs. In 8th Colloquium on Structural
Information and Communication Complexity (SIROCCO ’01), Carleton Scientific, pages 5–20, 2001.

[4] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Distributed Mobile Computing with Incom-
parable Labels. Technical Report LRI-1309, Université Paris-Sud, France, 2002.

[5] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Electing a leader among anonymous mobile
agents in anonymous networks with sense-of-direction. Technical Report LRI-1310, Université Paris-
Sud, France, 2002.

[6] M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble: Exploring and
mapping directed graphs. In 30th ACM Symp. on Theory of Computing (STOC ’98), pages 269–278,
1998.

[7] X. Deng, T. Kameda and C. H. Papadimitriou. How to learn an unknown environment I: the rectilinear
case. Journal of the ACM, 45:215-245, 1998.

[8] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal of Graph Theory, 32:265-297,
1999.

[9] K. Diks, P. Fraigniaud, E. Kranakis and A. Pelc. Tree exploration with little memory. In 13th ACM-
SIAM Symposium on Discrete Algorithms (SODA ’02), pages 588–597, 2002.

[10] S. Dobrev, P. Flocchini, G. Prencipe and N. Santoro. Mobile agents searching for a black hole in an
anonymous ring. In 15th Int. Symposium on Distributed Computing (DISC 2001), pages 166–179, 2001.

[11] S. Dobrev, P. Flocchini, G. Prencipe and N. Santoro. Searching for a black hole in arbitrary networks.
In 21st ACM Symposium on Principles of Distributed Computing (PODC 2002), to appear.

[12] C. Duncan, S. Kobourov and V. Kumar. Optimal constrained graph exploration. In 12th ACM-SIAM
Symp. on Discrete Algorithms (SODA ’01) pages 807-814, 2001.

[13] P. Flocchini, B. Mans and N. Santoro. Sense of direction: definition, properties and classes, Networks
32: 165-180, 1998.

[14] P. Flocchini, B. Mans and N. Santoro. Sense of direction in distributed computing, In 12th International
Symposium on Distributed Computing (DISC 98), pages 1-15, 1998. To appear in Theoretical Computer
Science.

[15] P. Fraigniaud, C. Gavoille and B. Mans. Interval routing schemes allow broadcasting with linear message-
complexity. In 19th ACM Symposium on Principles of Distributed Computing (PODC ’00), pages 11-20,
2000.

[16] P. Fraigniaud, A. Pelc, D. Peleg and S. Pérennes. Assigning labels in unknown anonymous networks In
19th ACM Symposium on Principles of Distributed Computing (PODC ’00), pages 101-112, 2000.

[17] N. Lynch. Distributed Algorithms. Morgan Kaufmann, Inc. San Francisco, California, 1996.

[18] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region. SIAM Journal on
Computing, 21(5):863–888, 1992.

[19] M. Yamashita and T. Kameda. Computing on anonymous networks, part I: characterizing the solvable
cases. IEEE Transaction on Parallel and Distributed Computing, 7(1):69–89, 1996.

y0

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

r l

rl

r l

yy2 1

Figure 1: System A.

x 1

x 3

x 2

n-2x

x
n-3

x
5x4

x
n-1

x 0

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

	�	
	�	
	�	
	�	

�

�

�

���
���
���
���

���
���
���
���

�
�
�
�

���
���
���
���

Figure 2: System B (the orientation of the edge labeling is not shown).

z
-2k

z 0

z
-1

z
-2

z
-3

z
-(k+1)

k+1
zz

k

z
-k

2k
z

z
2k+1

z
1

z
2

z
3

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���

	�	�	
	�	�	
	�	�	
	�	�	

�

�

�

�

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

�����
�����
�����
�����

���
���
���
���

���
���
���

�����
�����
�����
�����

���
���
���
���

Figure 3: System C (the orientation of the edge labeling is not shown).

