
Mobile Search for a Black Hole in an

Anonymous Ring ∗

Stefan Dobrev † Paola Flocchini‡ Giuseppe Prencipe§

Nicola Santoro¶

Abstract

In this paper we address the problem of mobile agents searching for a highly harmful

item (called black hole) in a ring network. The black hole is a stationary process that

destroys visiting agents upon their arrival without leaving any observable trace of such

a destruction. The task is to have at least one surviving agent able to unambiguously

report the location of the black hole.

We consider different scenarios and in each situation we answer some computational

as well as complexity questions. We first consider agents that start from the same

homebase (co-located). We prove that two such agents are necessary and sufficient to

locate the black hole; in our algorithm the agents perform O(nlogn) moves (where n

is the size of the ring) and we show that such a bound is optimal. We also consider

time complexity and we show how to achieve the optimal bound of 2n−4 units of time

using n − 1 agents. We generalize our technique to establish a trade-off between time

and number of agents. We then consider the case of agents that start from different

homebases (dispersed) and we show that, if the ring is oriented, two dispersed agents

∗A preliminary version of this paper appeared in the Proceedings of the 15th International Symposium

on Distributed Computing [8].
†University of Ottawa, email:sdobrev@site.uottawa.ca
‡University of Ottawa, email:flocchin@site.uottawa.ca
§contact author: Università di Pisa, Dipartimento di Informatica, Via Buonarroti, 2 – 56100, Pisa, tel.

+39 050 2213148, fax. +39 050 2212726, email:prencipe@di.unipi.it
¶Carleton University, email: santoro@scs.carleton.ca

1

are still necessary and sufficient. Also in this case our algorithm is optimal in terms

of number of moves (Θ(nlogn)). We finally show that, if the ring is unoriented, three

agents are necessary and sufficient; an optimal algorithm follows from the oriented

case.

Keywords: Mobile Agents, Distributed Computing, Ring Network, Hazardous Search.

1 Introduction

1.1 Mobile Agents and Black Hole

The most widespread use of autonomous mobile agents in network environments, from the

World-Wide-Web to the Data Grid, is clearly to search, i.e., to locate some required “item”

(e.g., information, resource, . . .) in the environment. This process is started with the

specification of what must be found and ends with the reporting of where it is located.

The proposed solutions integrate their algorithmic strategies with an exploitation of the

capabilities of the network environment; so, not surprising, they are varied in nature, style,

applicability and performance. They do however share the same assumption about the

“item” to be located by the agents: it poses no danger, it is harmless.

This assumption unfortunately does not always hold: the item could be a local program

which severely damages visiting agents. In fact, protecting an agent from “host attacks”

(i.e., harmful items stored at the visited site) has become a pressing security concern (e.g.,

see [5, 11, 13, 15, 17, 18, 20]). Still, this problem has not been taken into account so far by

any of the existing solutions.

In this paper we address the problem of searching for a highly harmful item whose

existence we are aware of, but whose whereabouts are unknown. The item is a stationary

process which disposes of visiting agents upon their arrival; no observable trace of such a

destruction will be evident. Because of its nature, we shall call such an item a black hole.

The task is to unambiguously determine and report the location of the black hole (fol-

lowing this phase, a “rescue” activity would conceivably be initiated to deal with such a

destructive process).

2

We are interested in understanding the basic algorithmic limitations and factors.

The setting we consider is the simplest symmetric topology: the anonymous ring (i.e.,

a loop network of identical nodes). In this setting operate mobile agents: the agents have

limited computing capabilities and bounded storage1, obey the same set of behavioral rules

(the “protocol”), and can move from node to neighboring node. We make no assumptions on

the amount of time required by an agent’s actions (e.g., computation, movement, etc) except

that it is finite; thus, the agents are asynchronous. Each node has a bounded amount of

storage, called whiteboard; O(log n) bits suffice for all our algorithms. Agents communicate

by reading from and writing on the whiteboards; access to a whiteboard is done in mutual

exclusion. The problem is solved if at least one agent survives, and all surviving agents know

the location of the black hole.

Some basic computational questions naturally and immediately arise, such as: How many

agents are needed to locate the black hole? How many suffice? What a-priori knowledge is

required? as well as complexity questions, such as: With how many moves can the agents do

it? How long does it take? How many agents will disappear in the black hole ?

In this paper, we provide definite answers to each of these questions. Some answers follow

from simple facts. For example, if the ring size n is not known, then the black-hole search

problem can not be solved2. Another fact is that at least one agent will disappear in the

black hole, and thus at least two agents are needed to solve the problem.

1.2 Major Contributions

We consider the problem in two settings: when the anonymous agents are co-located (i.e.,

start from the same node), and when they are dispersed(i.e., start from different nodes).

We first consider co-located agents. We establish a lower bound on the number of moves

required by any solution protocol: we prove that (n− 1) log(n− 1)+O(n) moves are needed

regardless of the number of co-located agents.

We then show that two agents are both necessary and sufficient to locate the black hole.

Sufficiency is proved constructively. We present a distributed algorithm that allows two

1O(log n) bits suffice for all our algorithms.
2i.e., no deterministic protocol exists which always correctly terminates.

3

agents to locate the black hole. This algorithm is optimal, within a factor of two, also in

terms of the amount of moves performed by the two agents.

These results show that the presence of more than two agents is not helpful in reducing

the number of moves. It can however be useful in reducing the time spent by co-located

agents to locate the black hole.

We prove that 2n − 4 ideal time units are needed, regardless of the number of agents;

we then describe how to achieve such a time bound using n − 1 agents. We generalize this

technique and establish a general trade-off between time and number of agents.

We then consider dispersed agents. We first establish a lower bound, proving that any

solution with k anonymous dispersed agents requires Ω(n log(n − k)) moves, provided k is

known; if k is unknown, Ω(n log n) moves are always required.

The number of dispersed agents required to solve the problem actually depends on

whether the ring is oriented or not.

If the ring is oriented, two anonymous dispersed agents are both necessary and sufficient

to locate the black hole. In fact, we present a protocol that allows two (or more) anonymous

dispersed agents to find the black hole; This distributed algorithm uses O(n log n) moves,

regardless of the number of agents; thus, it is optimal also in terms of number of moves.

On the other hand, if the ring is unoriented, three anonymous dispersed agents are both

necessary and sufficient. Sufficiency follows constructively from the result for oriented rings.

For the general setting, where the agents are neither all co-located nor fully dispersed,

simple modifications to the protocol for the dispersed agent settings provide a solution with

the same complexity.

1.3 Related Work

Recently, algorithmic questions have been raised on the use of autonomous mobile agents

to compute in networked environments. In particular, a central question is to determine

what minimal hypotheses allow a given problem P to be solved. Examples of this type of

investigations are the studies on topology-reconstruction (e.g., see [3, 4]), graph-exploration

[6, 16], wake-up [2, 9], rendez-vous[1, 19], etc.

4

The topic of hazardous search has been recently considered in [14, 12], where a single

agent searches a network in presence of probably incorrect “routing” information at each

node.

In the distributed computing literature (i.e., with static agents), there have been many

studies on computing in presence of undetectable faulty components (e.g., [7, 10]). The

problem studied here has never been investigated before.

2 Basic Results and Lower Bound

2.1 Notation

The network environment is ring R of n anonymous (i.e., identical nodes. Each node has

two ports, labelled left and right; if this labelling is globally consistent, the ring will be said

to be oriented, unoriented otherwise. Each node has a bounded amount of storage, called

whiteboard; O(log n) bits suffice for all our algorithms. Let 0, 1, . . . n− 1 be the nodes of the

ring in clockwise direction (0,−1, . . .− (n− 1)) in counter-clockwise direction) and, without

loss of generality, let us assume that node 0 is the home base.

In this network there is a set A of anonymous (i.e., identical) mobile agents. Let |A| = k

denote the number of agents. The agents can move from node to neighboring node in R,

have computing capabilities and bounded storage, obey the same set of behavioral rules

(the “protocol”), and all their actions (e.g., computation, movement, etc) take a finite but

otherwise unpredictable amount of time (i.e., they are asynchronous). Agents communicate

by reading from and writing on the whiteboards; access to a whiteboard is done in mutual

exclusion. We will consider two settings: co-located agents (i.e., starting from the same node

called the home base), and dispersed agents (i.e., each starting from a different home base).

A black hole (Bh) is a stationary process located at a node, which destroys any agent

arriving at that node; no observable trace of such a destruction will be evident to the other

agents. The location of the black hole is unknown to the agents. The Black Hole Search

(shortly Bhs) problem is to find the location of the black hole. More precisely, Bhs is solved

if at least one agent survives, and all surviving agents know the location of the black hole

within finite time (explicit termination). Our lower bounds are actually established requiring

5

only that at least one surviving agent knows the location of the black hole (the difference is

only O(n) moves/time).

Let us now introduce the cost measures. Our main measure of complexity is the number

of agents, called size, used by the protocol. The other important cost measure is the total

number of moves performed by the agents, which we shall call cost. We will also consider

the amount of time elapsed until termination. Since the agents are asynchronous, “real”

time cannot be measured. We will use the traditional measure of ideal time (i.e., assuming

synchronous execution where a move can be made in one time unit); sometimes we will also

consider bounded delay (i.e., assuming an execution where a move requires at most one time

unit), and causal time (i.e., the length of the longest, over all possible executions, chain of

causally related moves). In the following, unless otherwise specified, “time” complexity is

“ideal time” complexity.

2.2 Cautious Walk

Let us introduce a basic tool that we will employ in the protocols.

At any time during the search for the black hole, the ports (corresponding to the incident

links) of a node can be classified as (a) unexplored – if no agent has moved across this port,

(b) safe – if an agent arrived via this port or (c) active – if an agent departed via this port,

but no agent has arrived via it. Clearly, both unexplored and active links are dangerous in

that they might lead to the black hole; however, active links are being explored, so there is

no need for another agent to go there unless it is declared safe.

The technique we use, called cautious walk, is defined by the following two rules:

Cautious Walk

Rule 1. when an agent moves from node u to v via an unexplored port (turning it into

active), it immediately returns to u (making the port safe), and only then go back to v to

resume its execution;

Rule 2. no agent leaves via an active port.

In the following, unless otherwise specified, when an agent moves, it will move using

6

cautious walk.

2.3 Basic Limitations and Bounds

First of all notice that, if there is only one agent, the Bhs problem is obviously unsolvable

because the only agent would necessarily disappear in the black hole; that is

Lemma 1 At least two agents are needed to locate the black hole.

Thus, we assume that there are at least two agents.

Further observe that, the combined presence of asynchrony and undetectability of the

presence of black hole make it impossible to distinguish between a “slow” link and a link

leading to the black hole. As a consequence we have that:

Lemma 2 It is impossible to find the black hole if the size of the ring is not known.

Proof. By contradiction, assume A is a solution protocol not requiring knowledge of

the ring size. Consider a synchronous execution of A on a ring R = x0, . . . xn−1 where

k ≥ 2 agents are initially colocated in x0, and xb is the black hole. After a finite time

t all surviving agents know the location of the black hole xb. Consider now a ring R′ =

x0, . . . xb−1u, z, v, xb+1, . . . xn−1 where x0 is the home base and z is the black hole. Consider

now the same synchronous execution of A on R′ except that any movement from xb−1 to u

and from xb+1 to v will take more than t time units. All agents, which moved towards xb

from xb−1 or xb+1 and were destroyed there in the execution in R, will now move towards u

or v. However, they will not arrive there until after time t. Every other agent will experience

for the first t time units exactly the same execution in R′ as in R; hence, it will incorrectly

report that the links incident to the black hole are those from u and v. 2

We now consider the minimum number of moves required to solve the problem. We show

that, regardless of the setting (i.e., co-location or dispersal) and of the number of agents

employed, (n − 1) log(n − 1) + O(n) moves are required.

In the following, we will denote by Et and U t the sets of explored and unexplored nodes

at time t, respectively; clearly, each such set (which we will also call “area”) is a contiguous

section of the ring. Let xt and yt be the two border nodes in Et (i.e., the nodes that connect

7

Et to U t), and let zt be the central node of Et; that is, zt is the node in Et at distance

d|Et|/2e − 1 from xt.

We say that a causal chain from node vp to node vq has been executed at time t, if

∃d ∈ N, ∃u1, u2, . . . , ud ∈ V and times t < t1 < t′1 < t2 < t′2 < . . . < td < t′d such that

vp = u1, vq = ud, ui is a neighbor of ui+1, and an agent leaves ui at time ti and reaches ui+1

at time t′i (1 ≤ i ≤ d − 1).

Lemma 3 Let |U t| > 2 at a given time t ≥ 0.

1. Within finite time, at time t′ ≥ t, at least two agents will have left the explored area

Et in different directions.

2. A finite time after they have left Et, say at t′′ > t′, a causal chain is executed from one

of the two border nodes of Et′′ to zt.

Proof. Let P be a Bh solution protocol using k agents. Consider an execution of P in R.

1. If no agent ever leaves Et, then (since |U t| > 2) the black hole is never discovered,

contradicting the fact that P is a solution protocol.

If all the agents that leave Et, leave it in the same direction, let the black hole be on

the first node of U t explored by the agents that leave Et; in this case, all these agents

are destroyed by the Bh right after leaving E t, while the other agents keep moving

inside Et (they never leave Et by hypothesis); hence the black hole is never discovered.

Again a contradiction.

Therefore, there exists a time t′ ≥ t when at least two agents have left E t in different

directions, and the first part of the lemma follows.

2. Let us assume by contradiction that, for every t′′ > t′ there exists no causal chain from

any of the two border nodes of Et′′ to zt. Since no causal chain is ever executed after t′,

the agents on the right side of zt will not communicate with the agents on the left side

of zt through Et. Because of the presence of the black hole, they cannot communicate

through U t either. However, to terminate, an agent must have information about all

nodes in U t (but one, the black hole). Let us place the black hole on the central node

8

of U t. Since |U t| > 2, every agent will not have information about at least two nodes;

hence termination is impossible: a contradiction.

2

Theorem 1 At least (n − 1) log(n − 1) + O(n) moves are needed to find a black hole in a

ring, regardless of the number of agents.

Proof. We will describe an adversary (scheduler) Adv that, given an arbitrary solution

protocol P, will force an execution of P in which the agents will perform Ω(n log n) moves.

The adversary has the power to:

(i) block a port - the corresponding link becomes very slow, effectively blocking all the agents

traversing it;

(ii) unblock a blocked port - the agents in transit on the corresponding link will then arrive

to their destination;

(iii) choose which agents will move, if there is a choice;

(iv) decide where the black hole is located.

Any agent exiting through or in transit on a blocked port will be said to be blocked. The

Adversary can block any port at any time; however, within finite time, it will unblock any

blocked port not leading to the black hole.

The adversary works in stages.

By Lemma 3.(1), a finite time after the agents start the execution, at least two agents will

leave E0 (constituted only by the starting node h) in different directions; Adv blocks both

ports leaving the explored area until there is at least one agent blocked in each direction:

Stage 1 starts when this happens.

Adv will now choose one of the two blocked ports, and unblock it. If Adv unblocks a port

(e.g., the one on the left of h), by Lemma 3.(2), within finite time, a causal chain between

the border node on the left side of the explored area and z0 is executed. Let t′ > t be the

time when this happens. If |U t′ | ≤ 2, then Adv will allow the algorithm to locate the black

hole within O(n) moves and the protocol to terminate. Otherwise, Adv blocks both the

ports leaving Et′ until at least one agent is blocked on each link (by Lemma 3.(1), this must

happen within finite time); the next stage will then start.

9

In general, stage i starts when at least two agents leave the area explored in stage i − 1

in opposite directions after a causal chain between one border node of the explored area

and its central node has been executed. In the following, we will indicate the explored and

unexplored area at the beginning of stage i by Ei and Ui respectively, and by xi and yi the

leftmost and rightmost border node of Ei respectively.

At the beginning of each stage i, Adv performs two “virtual executions” of P, to decide

which port to unblock. By definition of beginning of a stage, at least one agent must be

on xi and at least one other on yi, heading towards the unexplored area; let l and r be the

port connecting xi to Ui, and yi to Ui, respectively. Let us indicate by xi+1 (resp., yi+1),

xi+2 (resp., yi+2), . . ., the nodes in the chain starting in xi (resp., yi) that belong to the

unexplored area. In the first virtual execution, Adv blocks l, unblocks r, and blocks the port

connecting yi+1 to yi+2; in other words, Adv allows at most one node, yi+1, to be explored.

At this point, if no causal chain between yi+1 and zt is executed, Adv unblocks the port

connecting yi+1 to yi+2, blocks the port connecting yi+2 to yi+3, and checks again if a causal

chain is executed. The adversary keeps unblocking one port at a time, until a causal chain is

executed between zt and the node at the right border between the explored and unexplored

area (by Lemma 3.(2), since l is blocked and P is a deterministic solution, this must happen

within finite time). Let Ri be the set of nodes explored after yi and before the causal chain

is executed. Analogously, in the second virtual execution, Adv blocks r and unblocks l, and

reiterates the process of unblocking the ports on the left side of the ring, one at a time; let

Li be the set of new nodes explored before the causal chain is executed. Adv decides which

virtual execution to actually perform, based on the sizes of Li and Ri. Namely, if |Li| ≤ |Ri|,

then l is unblocked, while r is kept blocked; otherwise, r is unblocked, and l is kept blocked.

Clearly

|Li| + |Ri| ≤ |Ui|, (1)

otherwise Li

⋂

Ri 6= ∅ and Adv can put the black hole on a node in the intersection of Li and

Ri. From the definition of Li and Ri it follows that, for a causal chain to be executed, one

of the agents must explore the whole Li (or Ri). If the black hole is in the intersection, no

causal chain would be executed from any border vertex, contradicting point (2) of Lemma

3.

10

If l is unblocked in stage i, at least |Li| moves to explore new nodes are executed; and at

least |Li|+ d|Ei|/2e− 1 moves are performed to reach the central node of Ei. Thus, at least

2|Li| + |Ei|/2 − 1 moves are executed. The same happens, if r is allowed to move instead.

Denote by W = w1, . . . , ws the sizes of the newly explored regions at each stage, where s is

the total number of stages performed by Adv until P terminates; we have that

Σs
i=1wi = n − 1, (2)

and |Ei| = Σi−1
j=0wj, where w0 = |E1| = 1; hence the number of movements performed in

stage i, 1 ≤ i ≤ s is at least

2wi + Σi−1
j=0wj/2 − 1 > wi + Σi

j=0wj/2 − 1. (3)

Since only the agents that explore less are allowed to move by Adv, from (1) we have that

wi ≤ |Ui|/2 = (Σj≥iwj)/2;

hence,

wi ≤ Σs
j=i+1wj. (4)

From (2) and (3), the total number Cost(P) of moves performed during the execution of P

is at least

Cost(P) ≥ Σs
i=1(wi +Σi

j=0wj/2− 1) = (n− 1− s)+Σs
i=1Σ

i
j=0wj/2 = (n− 1− s/2)+ c(W)/2

where c(W) = Σs
i=1iws−i+1.

Let us assume that Adv executed the first i − 1 stages. Clearly, from (1), at least

log(|Ui|) = log(Σj≥iwj) stages are still necessary to terminate the execution of P. Moreover,

since the number of stages still to come after stage i−1 is s−i+1, we have that log(Σj≥iwj) ≤

s − i + 1; hence,

Σs
j=iwj ≤ 2s−i+1. (5)

Therefore, ws ≤ 2; from (4), ws−1 ≤ ws ≤ 2, ws−2 ≤ ws−1 +ws ≤ 4; and in general ws−i ≤ 2i,

1 ≤ i ≤ s − 1. Hence, we have (from (2))

2 + Σs−1
i=12i ≥ ws + Σs−1

i=1ws−i = n − 1,

11

and we can conclude that there are at least s ≥ log(n − 1) stages.

Let s = log(n − 1) and let W = w1, . . . , ws where ws−i = 2i, 1 ≤ i ≤ s − 1, and ws = 2.

Informally, s represents the achievable minimum number of stages and ws−i is the maximum

size of the region explored in round i in the corresponding s-stage execution. That is, at

each stage (looking backwards from the last stage s), the algorithm lets the agents explore

as much as they are allowed to. We will prove that W gives the minimum number of moves;

that is, there exists no W such that c(W) < c(W).

We have

c(W) = ws + 2ws−1 + . . . + swi + (s + 1)wi−1 + . . . + sw1 =

Σs
i=1iws−i+1 + Σs

i=s+1iws−i+1,

and

c(W) = ws + 2ws−1 + . . . + s · w1.

Since equation (5) is valid for both W and W , and from the way we choose W , it follows

that ws−i+1 ≤ ws−i+1, for all 1 ≤ i ≤ s. Moreover, since from (2), Σs
i=1wi = Σs

i=1wi = n − 1,

it must be that

Σs
i=s+1ws−i+1 = Σs

i=1(ws−i+1 − ws−i+1).

Hence,

c(W) > Σs
i=1iws−i+1 + Σs

i=1i(ws−i+1 − ws−i+1) = c(W).

Therefore, W gives the solution with the minimum number of moves; that is

Cost(P) ≥ n − 1 −
1

2
log(n − 1) + c(W)/2 = n − 1 −

1

2
log(n − 1) +

1

2
Σs

i=1iws−i+1 =

= (n − 1) log(n − 1) + O(n)

2

12

3 Bh Search by Co-located Agents

In this section, we consider the case when the agents are co-located; i.e., they start at the

same node h (the home base). Since access to the whiteboard is done in mutual exclusion, the

anonymous agents can easily acquire distinct identities by the order in which they access the

whiteboard (e.g., the first agent will create a counter set to 1 in the whiteboard, and assume

that identity; subsequently, an anonymous agent accessing the whiteboard will increase the

counter and take its value as its identity). Thus, we can assume w.l.g. that the agents have

distinct identities.

The distinct identities of the agents allow any tie to be deterministically broken. As a

consequence, even if the ring is unoriented, the agents can agree on the clockwise direction

of the ring. Thus, in the rest of this section, we assume w.l.g. that the ring is oriented.

Recall that 0, 1, . . . n−1 are the nodes of the ring in clockwise direction (0,−1, . . .−(n−1))

in counter-clockwise direction); furthermore, without loss of generality, let us assume that

node 0 is the home base.

3.1 Size- and Cost- Optimal Solution

At least two agents are needed to locate the black hole (Lemma 1), and we have seen that,

regardless of how many agents are employed, Ω(nlogn) moves need to be performed.

We will now prove that two co-located agents suffice to solve the problem; furthermore,

the two agents can locate the back hole with minimal cost.

The algorithm proceeds in phases. Let Ei and Ui denote the explored and unexplored

nodes in phase i, respectively. Clearly, Ei and Ui partition the ring into two connected

subgraphs, with the black hole located somewhere in Ui. The idea is to divide the unexplored

part of the ring between the two agents, assigning to each a region of almost equal size. Each

agent starts the exploration of the assigned part. Because of the existence of the Bh, only one

of them will complete the exploration. When this happens, it will go through the explored

part, until it reaches the last safe link visited by the other agent. It will then again partition

the unexplored area in two parts of almost equal size, leave a message for the other agent

(in case it is not in the Bh), and go to explore the newly assigned area.

13

Algorithm 1 Divide

Start with round number i = 1, E1 = {0}, and U1 = {1, 2, . . . , n − 1}.

1. Divide Ui into two continuous disjoint parts U l
i and U r

i of almost equal sizes. Since Ui

is a path, this is always possible. We may assume U l
i is to the left of 0 while U r

i is to

the right.

2. Let agents l and r explore (using Cautious Walk) U l
i and U r

i , respectively. Note that,

since both of them are within Ei and since Ui is divided into two continuous parts, the

agents can safely reach the parts they have to explore.

3. Since U l
i and U r

i are disjoint, at most one of them contains the black hole; hence, one of

the agents (w.l.g. assume r) successfully completes Step 2. Agent r then moves across

Ei and follows the safe ports of U l
i until it comes to the node v from which there is no

safe port leading to the left.

4. Denote by Ui+1 the remaining unexplored area. All nodes to the right of v, up to the

last node of U r
i explored by r, are now explored – they form Ei+1. If |Ui+1| = 1, agent r

knows that the black hole is in the single unexplored node and terminates. Otherwise,

Ui+1 is divided into U l
i+1 and U r

i+1 as in Step 1. Agent r leaves on the whiteboard of v

a message for l indicating the two areas U l
i+1 and U r

i+1 and the new stage number i+1

(overwriting any previous message). Note that O(log n) bits are sufficient to code this

message.

5. Agent r proceeds to round i + 1: traverses Ei+1 and goes to Step 2.

6. When (if) l returns to v, it finds the message and proceeds to round i + 1.

14

Theorem 2 Algorithm Divide lets two co-located agents find the black hole with 2n log n +

O(n) moves.

Proof. In each phase, one of the two agents completes the exploration of its part, and will

be called the traveling agent; the other can not complete the exploration of its part (since

it contains the black hole), and will be called blocked. Notice that the blocked agent might

have explored some of its assigned area.

Let ei be the size of the total explored area up to phase i. Let wi be the total work (i.e.,

number of moves) done by the two agents during phase i. Initially, ei = 1 and wi = 0. Let

pi be the number of links traversed by the blocked agent of phase i.

From the description of the algorithm, it follows that the size of the explored area during

phase i is equal to half of the size of the unexplored area of the previous phase, plus the

new area explored by the current blocked agent. Thus, the total area explored at the end of

phase i is: ei = d1
2
(n− ei−1)e+ pi + ei−1 ≤

1
2
(n + ei−1) + pi + 1. Moreover, we also have that

wi = 2ei.

Combining the two expressions, we obtain that 1
2
wi ≤

1
2
(n + 1

2
wi−1) + pi + 1, thus wi ≤

n + 1
2
wi−1 + 2pi + 2.

So, we have:

w0 = 0

w1 ≤ n + 1
2
w0 + 2p1 + 2

w2 ≤ n + 1
2
w1 + 2p2 + 2

. . .

ws ≤ n + 1
2
ws−1 + 2ps + 2.

Summing up, it follows that

s
∑

j=0

wi ≤ sn +
1

2

s−1
∑

j=0

wj + 2

s
∑

j=1

(pj + 1).

Thus,

s
∑

j=0

wi −
1

2

s−1
∑

j=0

wj ≤ sn + 2

s
∑

j=1

(pj + 1)

15

and, hence,

1

2

s
∑

j=0

wj ≤ sn + 2

s
∑

j=1

(pj + 1) − ws/2

Since the work done at the last phase s is at most 2(n − 1), we obtain:

s
∑

j=0

wj ≤ 2sn + 4
s

∑

j=1

(pj + 1)) − 2(n − 1)

Since, as observed before, s ≤ dlog ne and
∑s

j=1(pj + 1) < n
2
, we have that

s
∑

j=0

wj ≤ 2n log n + O(n)

. 2

From Lemma 1, Theorems 1 and 2, it follows that

Theorem 3 Algorithm Divide is size-optimal and cost-optimal.

It is easy to see that the time complexity of Algorithm Divide is also 2n log n + O(n).

3.2 More Than Two Agents: Improving the Time

In this section we study the effects of having k > 2 agents in the home base. We know that

increasing k will not result in a decrease of the total number of moves. In fact, the lower

bound of Theorem 1 is independent of the number of agents, and is already achieved, within

a factor of two, by k = 2. The availability of more agents can be exploited to improve the

time complexity of locating the black hole.

The following theorem shows a simple lower bound on the time needed to find the black

hole, regardless of the number of agents in the system.

Theorem 4 In the worst case, 2n−4 time units are needed to find the black hole, regardless

of the number of agents available.

Proof. Let the black hole be positioned on node n−1. For the agents to report the position

of the black hole to node 0, it is necessary to receive some information from node n − 2. It

takes n − 2 steps for an agent to reach node n − 2 and another n − 2 steps are needed to

report that back to node 0, for a total of 2n − 4 steps. 2

16

Algorithm 2 OptTime

Let r1 . . . rn−1 be the n− 1 agents. Each agent ri is assigned a location i; its task is to verify

whether the black hole is there. It does so in two steps, executed independently of the other

agents.

1. ri first goes to node i− 1 in clockwise direction and, if successful, returns to the home

base.

2. It then goes, in counter clockwise direction, to node −(n − i − 1) and, if successful,

returns to the home base: the black hole resides in the assigned location i.

We now show that the lower bound can be achieved employing n − 1 agents.

Clearly, in Algorithm OptTime, only one agent will be able to complete both its steps

without being trapped in the black hole, while the other n−2 agents will be destroyed there.

Theorem 5 Algorithm OptTime lets n − 1 co-located agents find the black hole in 2n − 4

time.

Proof. Let the black hole be located at node b (−(n− b) from the left). The agent reports

the information about node b−1 at time 2(b−1), and the information about node −(n−b)+1

at time 2(n− b− 1). Thus, the total time complexity is 2(b− 1) + 2(n− b− 1) = 2n− 4 and

is independent of the location of the black hole. 2

Thus, by Theorems 4 and 5, it follows that

Theorem 6 Algorithm OptTime is time-optimal.

3.3 Trading Agents for Time

We now show how to obtain a trade-off between the number of agents employed and the

time needed to find the black hole. This is achieved by exploiting two key ideas.

The first key idea is to employ the time-optimal strategy over a number of stages, reusing

in each stage the agents. The overall algorithm proceeds in q rounds. In each round n1/q − 1

agents (r1 . . . rn1/q−1) follow an algorithm similar to Algorithm 2 to reduce the size of the

17

unexplored area by a factor of n1/q. The unexplored area is divided into n1/q segments

S1, S2, . . . , Sn1/q of almost equal size (e.g., in the first phase the segment Si is (i−1)n(q−1)/q +

1, . . . , in(q−1)/q). Agent rj verifies the guess that the black hole belongs to segment Sj by

checking the nodes around Sj (first the right one, then the left one). Clearly only one agent,

say ri, will be able to locate the segment containing the black hole. At this point, we would

like to start the new phase applying Algorithm 2 only to Si. To do so, we need all the agents

to survive the previous stage.

Unfortunately, in Algorithm OptTime optimality in time is achieved at the expenses of

a high level of “casualties”. In fact, only one agent will be able to complete both steps of

the algorithm and survive, while the other n − 2 will enter the black hole. This fact makes

it impossible to reuse the agents.

The second key idea is to reduce the number of agents that enter the black hole, at the

expense of a small increase in time and number of moves. This is achieved by technique we

call Exploring Agents Technique:

Two agents e1 and e2 (the exploring agents), starting from h, move in opposite

directions with the only purpose of marking the safe links before disappearing in

the black hole. They both move using cautious walk, thus performing 3n moves;

they complete their exploration in time at most 3n.

We will employ such an exploration as a (pipelined) pre-processing phase when starting

the execution of the main algorithm. The use of this technique frees the other agents from

using cautious walk: the other agents follow the main algorithm but they move only if the

link they have to traverse is already marked as safe. If such a link is not safe, they simply

wait.

We now describe how to employ the ideas used for the Algorithm OptTime in con-

junction with the exploring agents technique to obtain a trade-off between the number of

agents employed and the time needed to find the black hole. The new algorithm, called

Algorithm TradeOff, is reported in Algorithm 3.

As mentioned above, we will divide the unexplored area into disjoint segments, assign

an agent to verify whether that segment contains the black hole (using the approach of

Algorithm OptTime), and employ the two explorers to save the other agents (see Figure 1).

18

Bh

h

Si

Si−1

Si+1

S1

right Si

left Si

Figure 1: AlgorithmTradeOff. At each round, agent rj verifies the guess that the black

hole belongs to segment Sj by checking the nodes immediately outside Sj (first the left one,

then the right one.

Clearly only one agent ri will verify its guess about the assigned region Si. Observe that,

when this happens, all other agents are blocked (possibly inside Si): the agents rj with j < i

are blocked to the right of the Bh, while the agents rj with j > i are blocked to the left of

the Bh. To use these agents in the next round, ri has to notify them.

Notice that, except for the two exploring agents, all agents survive.

Theorem 7 Let 1 ≤ q ≤ log n. Algorithm TradeOff let n1/q + 1 co-located agents locate

the black hole in 2(q + 1)n − q − o(n) time.

Proof. The size of the unexplored segment decreases by a factor of n1/q at each round and

clearly it becomes equal to n1/q after q rounds.

To simplify the analysis, we will assume that, upon notification, an agent goes to h before

starting the next round; notice that this only increases the time and cost, thus the upper

bound we derive is a valid one.

Let rt be the only successful agent in stage t. In round t, each agent rj 6= rt moves at

most from h to the left border of Sj, then to the right border of Sj, and then back to h.

Agent rt will in addition move also possibly inside its own region to notify the other agents.

19

Algorithm 3 TradeOff

Let k = n1/q +2 be the number of agents, where q (1 ≤ q ≤ log n) is the trade-off parameter.

1. Two agents e1 and e2 perform the Exploring Agents Technique.

2. The other agents (r1 . . . rn1/q) start their algorithm in pipeline with the two explorers,

always leaving from safe ports. The algorithm proceeds in q rounds.

In each round the unexplored area is divided into n1/q segments S1, S2, . . . , Sn1/q of al-

most equal size (e.g., at the first phase the segment Si is (i−1)n(q−1)/q+1, . . . , in(q−1)/q).

(a) Agent rj verifies the guess that the black hole belongs to segment Sj by checking

the nodes immediately outside Sj (first the left one, then the right one).

(b) Only one agent, say ri, will be able to locate the segment containing the black

hole. To complete this round, ri moves left (possibly entering Si) up to the last

safe port.

(c) At this point, ri moves right up to the last safe port, passing through h, notifying

all other agents to start the computation of the next round; once this is done, it

starts the computation of the next round.

(d) When notified, an agent stops the computation of the current round, and starts

the new round.

20

Hence, the amount of time is at most

2

q
∑

t=1

(n − n(q−t)/q) +

q
∑

t=1

N(t),

where N(t) is the total amount of time required by the additional moves due to notification

in round t.

N(t) is exactly the size of the part of the region assigned to rt which had been safely

explored by the two explorers by the time rt arrived there. In other words, N(t) ≤ n(q−t)/q−1.

Hence, the total amount of time is at most

2

q
∑

t=1

(n − n(q−t)/q) +

q
∑

t=1

((n(q−t)/q) − 1) = (2n − 1)q − o(n).

Let us now consider the cost due to the two explorers. The agents are sent in pipeline

immediately after the two explorers start to mark the safe ports of the ring. The explorers

will then delay the discovery of the black hole of 2 units of time for each unexplored port for

a total of additional 2n units. Thus, the total time complexity is: 2(q + 1)n − q − o(n). 2

4 Dispersed Agents

In this section we examine the case of dispersed anonymous agents (i.e., initially there is at

most one agent at any given location). The number k of agents is not known a priori.

4.1 Lower Bounds and Properties

We now establish a lower bound (that we will prove to be tight in the next section) on the

cost for locating the black hole; the lower bound is established for oriented rings and, thus,

applies also to the unoriented case.

Theorem 8 The cost of locating the black hole in oriented rings with dispersed agents is at

least Ω(n log n).

Proof. We show that there is an adversary Adv such that, for every initial dispersion of

k agents and for every black hole solution protocol P, Adv can place the black hole and set

21

link delays in such a way to force P to make Ω(n log n) moves. Let a and b be the agents

that start closest to each other. Clearly, the distance between their home bases ha and hb is

at most n/k. Consider an adversary that lets a and b move, but blocks (makes very slow) all

the other agents, until they come in contact with a, b or with an already unblocked agent.

Since a and b do not know the number of agents, they must behave correctly also in the case

there are no other agents. In particular, let optimistically set the initial explored area to be

the (shorter) segment between ha and hb; note that its size is at most bn/kc + 1, while the

initial unexplored area has size at most bn(k − 1)/kc − 1. In this scenario, Lemma 3 as well

the proof of Theorem 1 applies, as if a and b started at the same place and reached their

current position in the course of the algorithm. In particular, a blocked agent will become

unblocked by Adv only when the area explored by a and b is expanded to include its home

base. Since the proof of Theorem 1 makes no assumptions on the number of agents moving

inside the explored area, the lower bound of Ω(n log n) follows. 2

The proof of the above lemma relies on the fact that the agents do not know their number

k. We now show that, even if every agent is endowed with a priori knowledge of k, the cost

remains high.

Theorem 9 If k is known a priori to the agents, the cost of locating the black hole in oriented

ring is Ω(n log(n − k)).

Proof. The adversary places all agents in a block of k contiguous nodes. Clearly, the

technique from Theorem 1 can be applied with the initial explored region set to be the block

containing all the agents. 2

The proof of Theorem 9 considers a worst-case scenario: an adversarial placement of both

the black hole and the agents in the ring. So, one last question is whether, knowing k we

could obtain a substantially better performance under a (blind but) favorable placement of

the agents in the ring; i.e., assuming that k is known a priori and that we can place the agents,

leaving to the adversary only the placement of the black hole. Also in this case, the answer is

substantially negative. In fact, the application of the proof technique of Theorem 1 (with the

initial explored region set to be the smallest connected region containing all agents, which is

clearly of size at most n − n/k) yields a lower bound of Ω(n log(n/k)) = Ω(n(log n − log k),

which, for reasonably small k, is still Ω(n log n).

22

A simple but important property is that, although anonymous, the dispersed agents can

uniquely identify each other by means of purely local names. This is easily achieved as

follows. Each agent a will think of the nodes as numbered with consecutive integers in the

clockwise direction, with its starting node (its home base) as node 0. Then, when moving,

agent a will keep track of the relative distance da from the home base: adding +1 when

moving clockwise, and −1 otherwise. Thus, when a finds at the node (at distance) da = −3

a message written by an agent b that is at distance db = +2 from its own home base, a is

able to unambiguously determine the home base of b (in a’s view of the ring) as follows. If

the ring is oriented, b’s home base is node da − db = −5. If the ring is not oriented, that

message must also indicate which of the two ports leads to the “right” in b’s view of the

ring; if a and b share the same view, then a computes as before; otherwise b’s home base in

a’s view is node da + db = −1. In other words,

Lemma 4 Each agent can distinguish and recognize all the other agents in an oriented ring.

With dispersed agents, there is a major difference between oriented and unoriented rings.

In fact, if the ring is unoriented, two agents no longer suffice to solve the problem: they could

be located in the nodes next to the black hole, and both made their first move towards it.

In other words,

Lemma 5 At least three dispersed agents are needed to locate the black hole in an unoriented

ring.

Thus, when dealing with the unoriented ring, we will assume that there are at least three

dispersed agents.

4.2 Oriented Rings: Cost-Optimal Solution

In this section we describe a cost-optimal algorithm for the oriented ring where k ≥ 2

anonymous agents are dispersed. The algorithm is composed of three distinct phases: pairing,

elimination, and resolution.

In the first phase, agents form pairs, according to the protocol described in AlgorithmPairing.

23

Algorithm 4 Pairing

Initially, all agents are not paired. Each agent moves along the ring clockwise, using cautious

walk, marking (direction and distance to its own starting node) the visited nodes.

1. If an agent reaches a node visited by another agent b, it becomes chasing, and follows

b’s trace.

2. If an agent arrives at a node visited by two agents, it terminates with status alone.

3. If a chasing agent reaches the last safe node visited by the chased agent, it leaves a

mark Join me and terminates with status paired-left.

4. If a non chasing agent, during its cautious walk, encounters the mark Join me, it clears

this mark and terminates with status paired-right.

The agents with status paired- will then execute the elimination phase to locate the

black hole. The agents terminating with status alone will be passive in the remainder of the

computation.

Lemma 6 At least one pair is formed during the pairing phase. The pairing phase lasts at

most 3n − 6 time units, and its cost is at most 4n − 7.

Proof. First we prove correctness, i.e. that at least one pair is formed. Let r1, r2 and r3

be the first, second and third (if any) agent to the left of the black hole (refer to Figure 2).

Either will r2 arrive to the home base of r1 or it will be reached by r3. In the latter case, r2

and r3 form a pair. If, instead, r2 arrives to the home base of r1, it will chase r1 and a pair

will be formed at the last node r1 was able to explore before either being reached by r2 or

entering the black hole.

Consider now the cost of the pairing phase. Due to rules 2. and 4., no link is traversed

by more then two agents. The link to the right of the black hole is not traversed at all, while

the link to the left of the black hole is traversed by at most one agent. There are at most 3

moves on all other links due to cautious walk and additional move due to chasing. Summing

all these terms yields a bound of at most 4n − 7 moves in total.

24

Bh

h

r1

r2

r3

Figure 2: Proof of Lemma 6.

Consider the time complexity. According to the algorithm, at any time, within 3 time

steps, each non-terminated agent either terminates or moves at least one node to the right.

There are at most n − 2 such possible moves, resulting in the 3n − 6 bound on time. 2

Note that, if the pairing algorithm starts with k agents, any number of pairs between

1 and bk/2c can be formed, depending on the timing. For example bk/2c pairs are formed

when the “even” (as counting to the left from the black hole) agents are very slow, and the

“odd” agents are fast and reach their right neighbors.

Since agents can distinguish themselves using local names based on their starting nodes

(Lemma 4), also the pairs can be given local names, based on the node where the pair was

formed (the home base). This allows a pair of agents to ignore all other agents. Using this

fact, a straightforward solution to the Black Hole Search problem consists of having now

each pair independently execute the location algorithm for two agents (AlgorithmDivide).

This however will yield an overall O(n2 log n) worst-case cost.

To reduce the cost, the number of active pairs must be effectively reduced. The reduction

is done in the next phase, called elimination, by executing Algorithm Elimination. In this

phase, the number of “active” pairs is reduced to at most two. The two agents in the pair

formed at node v will be denoted by rv and lv, and referred to as the right and the left agent,

respectively; v will be their home base.

In Algorithm Elimination, the rule of Case (b) renders stronger a home base (and, thus,

a pair) in a higher logical round; ties are resolved giving priority to the right node (by Case

25

Algorithm 5 Elimination

The computation proceeds in logical rounds. In each round,

1. the left agent lv cautiously moves to the left until

(a) it is destroyed by the black hole, or

(b) it reaches a home base u with higher or

(c) equal round number.

In Case (b), lv returns to v, marks it Eliminated, and stops any further execution. In

Case (c), lv marks u as Eliminated and returns to v; if v is not marked Eliminated, it

is promoted to the next round.

2. Similarly, agent rv cautiously moves to the right until it finds (if it is not destroyed

by the black hole) the first home base u in equal or higher round; it then returns back

to v. If the current level of v (its level could have risen during the travel of rv) is not

higher then the level of u, v is marked Eliminated and rv stops any further execution;

otherwise (v is not marked Eliminated) rv travels again to the right (it is now in a

higher round).

To prevent both agents of a pair entering the black hole, both lv and rv maintain a counter

and travel to distance at most b(n − 1)/2c. If one of them has traveled such a distance

without finding another home base with the same or higher round, it returns back to v, and

v is marked Selected.

26

(c) and by the way the right agent behaves). In the following, we will call selected the pair

whose home base has been marked Selected during the elimination phase, and Eliminated

the pair whose home base has been marked Eliminated. The following lemma shows that the

elimination phase will eventually select either one or two pairs.

Lemma 7 The elimination phase selects at least one and at most two pairs in O(n log n)

moves.

Proof. First note that, since the distance the agents travel is limited by b(n − 1)/2c, it

cannot happen that both agents of a pair fall into the black hole. Moreover, according to

Algorithm Elimination, if a pair is promoted to a higher round, the pair to its left has been

eliminated. This means that the number of agents still not eliminated is at least halved in

each round; thus there are at most

log(k/2) < log n (6)

rounds.

Consider the rightmost (with respect to the black hole) home base v of a pair that reached

round i. We show that either there is a pair that reached round i + 1 or v becomes Selected.

There are four possible outcomes of the travel done by agent lv in round i:

1. lv found a node in a higher round.

2. lv found a node in the same round. In this case v is promoted to the next round.

3. lv traveled distance b(n− 1)/2c without entering the black hole and without finding a

node in the same or higher round. In this case, v is declared Selected.

4. lv entered the black hole. Since v is the rightmost (with respect to the black hole)

home base of a pair in round i, rv will not find any node in the same or higher round.

Moreover, since the black hole is at the distance at most b(n − 1)/2c to the left from

v, rv will not enter the black hole. In other words, rv will return to v after its counter

expired and v will be declared Selected.

27

In the first two cases there is a node in round i + 1, in the remaining cases v is declared

Selected. Since the number of rounds is bounded, eventually some node will be Selected.

Because of the limited traversal, there could be several Selected nodes. However, each of

the selected pairs has explored at least b(n + 1)/2c nodes (including the home base) without

encountering a black hole or another Selected node; hence there are at most 2 Selected nodes.

Since there are at most four moves on each link by agents of a given round (each agent

travels only to the closest neighbour of the same round and back home), the cost of each

round is O(n). By Equation (6), the lemma follows. 2

When a home base v has been marked Selected, the corresponding agents lv and rv will

then start the resolution phase of the algorithm, consisting in the executing of Algorithm Di-

vide. Note that, for each of the selected pairs, the execution of Algorithm Divide is started

by a single agent; the other agent either has been destroyed by the black hole or will join in

the execution upon its return to the home base.

The overall algorithm (consisting of the pairing, elimination and resolution phases) that

allows a number of Dispersed agents to locate a black hole in an Oriented Ring will be called

Dor. By Lemmas 6–7, and from the correctness of Algorithm Divide shown in Theorem 2,

we have

Theorem 10 Algorithm Dor lets k ≥ 2 dispersed anonymous agents locate the black hole

in oriented rings in O(n logn) time and cost.

Thus, by Theorems 8 and 10, it follows that

Corollary 1 Algorithm Dor is cost-optimal.

4.3 Oriented Rings: Considerations on Time

In the previous section, we have shown that the lower bound on cost is tight, and can be

achieved by two agents. This implies that the presence of multiple agents can not reduce the

cost of locating the black hole. The natural question is whether the presence of more agents

can be successfully exploited to reduce the time complexity.

In the case of co-located agents, we were able to distribute the workload among them so

to reduce time. In the case of dispersed agents, to achieve the same goal, they must first

28

be able to find each other. Moreover, note that, if the agents are able to quickly gather at

a node, then they can execute Algorithm TradeOff. This is the approach we are going

to take. In the remainder of this section, we focus on the problem of quickly gathering the

agents.

If the number k of agents is known, the gathering problem is easily solved by Algo-

rithm Gathering. Eventually, since all agents travel to the right, all but one agent (which

Algorithm 6 Gathering

The number k of agents is known.

1. Each agent moves along the ring clockwise using cautious walk.

2. When arriving at a node already visited by another agent, it proceeds to the right via

the safe port. If there is no safe port, it tests how many agents are at this node; if the

number of agents at the node is k − 1, the algorithm terminates.

will reach the black hole) will be at the same node; in the worst case, this node will be the

left neighbor of the black hole. Since, using cautious walk, it takes at most three time units

to safely move to the right, and since there are at most n− 2 such possible moves, we have:

Lemma 8 Let k be the total number of dispersed agents in the ring, and let k be known.

Algorithm Gathering lets k− 1 agents gather in an oriented ring with a black hole in time

3n − 6.

Therefore, we have the following

Theorem 11 In oriented rings, k agents can locate the Bh in O
(

n/logn
log(k−2)

)

time, with k

known.

Proof. Use Algorithm Gathering to gather k − 1 agents; the other one acts as one of

the two explorers required by Algorithm TradeOff. By Theorem 7 and Lemma 8, with

k − 2 = n
1

q , the theorem follows. 2

Clearly, Algorithm Gathering can not be applied when k is unknown, as the agents

have no means to know when to terminate (and, thus, to switch to Algorithm TradeOff).

29

We do not know whether an improvement in time complexity can be obtained if k > 2 is not

known.

Unlike cost, there are several measures of time complexity; in addition to the main one,

ideal time considered so far, there are also bounded delay time and causal time.

If the bounded delay time complexity is considered (i.e., assuming a global clock and that

each move takes at most one time unit), the additional agents can indeed help, even if k is

not known, as shown in Algorithm Bod.

Algorithm 7 Bod

k is unknown, and initially all agents are in state alone.

Rules for agent r in state alone.

1. Cautiously walk to the right until you meet another agent r′.

2. If r′ is in state alone, form a group G (r and r′ change state to grouped) and start

executing the group algorithm.

3. Otherwise (r′ is in state grouped, belonging to the group G ′, formed at the node

g′) join the group G ′: Go to g′ and set your state to Join[g′].

Rules for group G formed at node g, consisting of |G| agents.

Execute Algorithm TradeOff using |G| agents, with the following actions taken after

finishing each phase and before starting the next one:

1. If any of your agents have seen agents of another group G ′ whose starting node

g′ is to the right of g, join group G ′ by sending all your agents to g′, with state

Join[g′].

2. Otherwise add all the agents waiting at g with state Join[g] to G and execute the

next phase of Algorithm 3 using the updated number of agents.

Theorem 12 Algorithm Bod lets k = n1/q dispersed agents locate the black hole in oriented

rings in O(qn1/q) bounded delay time complexity.

30

Proof. Observe (similarly to Lemma 6) that, by time 3n − 6, all agents will belong to

some group. Note that, by executing the first phase of Algorithm TradeOff, each group

explores a segment of size at least (n + 1)/2 (including its starting node). However, this

means that by time 5n − 10 every two groups will come in contact, collapsing into one (the

rightmost) group G. Since no group except G starts the second phase, and since n − 2 time

units are enough to make all the agents of other groups converge to the starting node of

G, by time 6n − 12, group G contains all the agents. This means that the time complexity

of Algorithm Bod is at most as the time complexity of the Algorithm TradeOff plus an

additional O(n). 2

If causal time complexity is considered (i.e., the length of the longest chain of causally

related moves, over all possible executions of the algorithm), the availability of additional

agents can be of little help in the worst case.

Lemma 9 The causal time complexity of locating the black hole in an oriented ring, using

k agents is at least n(log n − log k) − O(n).

Proof. Place all but two agents in a block next to the black hole. Consider an adversary

that makes all the links leading to nodes within this block very slow. The two remaining

agents are placed elsewhere and are free to move. According to the technique used in the

proof of Theorem 1 we have that, using 2 agents, the time for locating the region of size k

containing the black hole is n(log n − log k). Hence, the two free agents will have to do all

this work before they can get help from the remaining agents. 2

4.4 Unoriented Ring

If the ring is unoriented, at least three dispersed agents are needed to locate the black hole

(Lemma 5). Thus, we assume that there are at least three dispersed agents.

It is easy to convert a solution for oriented rings into one for the unoriented ones, at the

cost of twice the number of moves and of agents.

Lemma 10 Let P be a protocol for oriented ring which, using p agents solves a problem S

in time T and cost C. Then there is a protocol P ′ for unoriented ring which, using 2p − 1

agents, solves S in time T and complexity at most 2C.

31

Proof. The agents in the unoriented ring can be classified into two groups, according to

what they assume clockwise to be. The problem is solved by the agents of each groups inde-

pendently. Each agent remembers the direction it considers right and executes P, ignoring

the agents with different opinion. Since there are 2p− 1 agents, one group will have at least

p agents. That group will successfully execute P and solve S. The running time is not

influenced; the complexity is at most doubled. 2

Lemma 10 can be applied to all previous algorithms presented for scattered agents. Note

that, for Algorithm Gathering, it is sufficient to set k = p.

From Theorem 10, Lemma 10, and Lemma 5, it follows that:

Theorem 13 Three dispersed agents are necessary and sufficient to locate the black hole in

an unoriented ring. They can do so with optimal Θ(n log n) cost.

5 Extensions

We have provided solutions to the black hole search problem in anonymous rings for two

settings: when the anonymous agents are co-located and when they are dispersed.

The protocol for the dispersed agents setting, Algorithm Dor, can be actually employed

to solve the black hole search problem in the more general setting, when the anonymous

agents are in more than one location in the ring, but some locations contain more than one

agent; that is, the agents are neither all co-located nor fully dispersed.

In this general setting, Algorithm Dor can be used as follows.

1. If an agent is the sole occupant of its home base, it will execute the algorithm without

modifications.

2. In the case of several agents sharing the same home base, Algorithm Pairing (the first

step of Algorithm Dor) becomes simpler:

(a) only two of the colocated agents will be selected (e.g., using the whiteboard to

break ties);

(b) the two selected agents will form a pair and execute the rest of the algorithm,

while the others will become alone.

32

It is not difficult to verify that the complexity is not increased.

Acknowledgments This work has been partially supported by NSERC and by VEGA

(Slovak Grant Agency).

References

[1] S. Alpern, V. Baston, and S. Essegaier. Rendezvous search on a graph. Journal of

Applied Probability, 36(1):223–231, 1999.

[2] E. Arkin, M. Bender, S. Fekete, and J. Mitchell. The freeze-tag problem: how to

wake up a swarm of robots. In 13th ACM-SIAM Symposium on Discrete Algorithms

(SODA ’02), pages 568–577, 2002.

[3] B. Awerbuch, M. Betke, and M. Singh. Piecemeal graph learning by a mobile robot.

Information and Computation, 152:155–172, 1999.

[4] M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble:

Exploring and mapping directed graphs. In Proc. of 30th ACM Symp. on Theory of

Computing (STOC ’98), pages 269–278, 1998.

[5] David M. Chess. Security issues in mobile code systems. In Proc. Conf. on Mobile Agent

Security, LNCS 1419, pages 1–14, 1998.

[6] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little memory.

In Proc. of 13th ACM-SIAM Symposium on Discrete Algorithms (SODA ’02), 2002.

[7] K. Diks, A. Malinowski, and A. Pelc. Reliable token dispersal with random faults.

Parallel Processing Letters, 4:417–427, 1994.

[8] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile agents searching for a black

hole in an anonymous ring. In Proc. of 15th International Symposium on Distributed

Computing (DISC 01), pages 166–179, 2001.

33

[9] P. Fraigniaud, A. Pelc, D. Peleg, and S. Pérennes. Assigning labels in unknown anony-

mous networks. In Proc. of 19th ACM Symposium on Principles of Distributed Com-

puting (PODC 2000), pages 101–112, 2000.

[10] O. Goldreich and L. Shrira. On the complexity of computation in the presence of link

failures: The case of a ring. Distr. Computing, 5:121–131, 1991.

[11] M.S. Greenberg, J.C. Byington, and D. G. Harper. Mobile agents and security. IEEE

Commun. Mag., 36(7):76 – 85, 1998.

[12] N. Hanusse, D. Kavvadias, E. Kranakis, and D. Krizanc. Memoryless search algorithms

in a network with faulty advice. In Proc. of 2nd IFIP International Conference on

Theoretical Computer Science, (TCS ’02), pages 206–216, 2002.

[13] F. Hohl. A model of attacks of malicious hosts against mobile agents. In Proc. of the

ECOOP Workshop on Distributed Object Security and 4th Workshop on Mobile Object

Systems (LNCS 1603), pages 105 – 120, 1998.

[14] L.M. Kirousis, E. Kranakis, D. Krizanc, and Y.C. Stamatiou. Locating information with

uncertainty in fully interconnected networks. In Proc. of 14th International Symposium

on Distributed Computing, (DISC ’00), pages 283–296, 2000.

[15] R. Oppliger. Security issues related to mobile code and agent-based systems. Computer

Communications, 22(12):1165 – 1170, 1999.

[16] P. Panaite and A. Pelc. Exploring unknown undirected graphs. Journal of Algorithms,

33:281–295, 1999.

[17] T. Sander and C. F. Tschudin. Protecting mobile agents against malicious hosts. In

Mobile Agents and Security, LNCS 1419, pages 44–60, 1998.

[18] K. Schelderup and J. Ines. Mobile agent security - issues and directions. In 6th Int.

Conf. on Intell. and Services in Networks, LNCS 1597, pages 155–167, 1999.

[19] L.C. Thomas and P.B. Hulme. Searching for targets who want to be found. Journal of

the Operations Research Society, 48(1):44–50, 1997.

34

[20] Jan Vitek and Giuseppe Castagna. Mobile computations and hostile hosts. In

D. Tsichritzis, editor, Mobile Objects, pages 241–261. University of Geneva, 1999.

35

