
Theoretical Computer Science 754 (2019) 35–49
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Population protocols with faulty interactions: The impact of

a leader ✩

Giuseppe A. Di Luna a,∗, Paola Flocchini a, Taisuke Izumi b, Tomoko Izumi c,
Nicola Santoro d, Giovanni Viglietta a

a Department of Electrical and Computer Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, Canada
b Department of Computer Science and Engineering, Nagoya Institute of Technology, Gokisocho, Showa Ward, 466-8555 Nagoya, Japan
c College of Information Science and Engineering, Ritsumeikan University, 56-1 Tojiin Kitamachi, Kita-ku, 603-8577 Kyoto, Japan
d School of Computer Science, Carleton University, 125 Colonel By Drive, Ottawa, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2017
Received in revised form 2 August 2018
Accepted 7 September 2018
Available online 11 September 2018
Communicated by P.G. Spirakis

Keywords:
Population protocols
Omission failures
Two-way simulation

We consider the problem of simulating traditional population protocols under weaker
models of communication, which include one-way interactions (as opposed to two-way
interactions) and omission faults (i.e., failure by an agent to read its partner’s state during
an interaction), which in turn may be detectable or undetectable. We focus on the impact
of a leader, and we give a complete characterization of the models in which the presence
of a unique leader in the system allows the construction of simulators: when simulations
are possible, we give explicit protocols; when they are not, we give proofs of impossibility.
Specifically, if each agent has only a finite amount of memory, the simulation is possible
only if there are no omission faults. If agents have an unbounded amount of memory,
the simulation is possible as long as interactions are detectable. If an upper bound on
the number of omissions involving the leader is known, the simulation is possible in all
omissive models.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Framework

Consider a system of interacting computational entities, called agents, whose interaction is however not under their control
but decided by an external scheduler. Such are for example systems of wireless mobile entities where two entities can
interact (i.e., exchange information) when they are within the communication range of each other, but their movements,
and thus their interactions, are unpredictable. Systems satisfying this condition, sometimes called opportunistic mobility or
passive mobility, have been extensively examined under a variety of assumptions, especially within the context of distributed
computing in highly dynamic networks and time-varying graphs (for recent surveys see [14,30]).

In particular, in the population protocol model (PP), introduced in the seminal paper [3], the entities are assumed to be
finite-state and anonymous (i.e., identical), execute the same protocol, and interactions are always between pairs of agents.

✩ A preliminary version of the results contained in this paper have been published in [25].

* Corresponding author.
E-mail addresses: gdiluna@uottawa.ca (G.A. Di Luna), paola.flocchini@uottawa.ca (P. Flocchini), t-izumi@nitech.ac.jp (T. Izumi), izumi-t@fc.ritsumei.ac.jp

(T. Izumi), santoro@scs.carleton.ca (N. Santoro), gvigliett@uottawa.ca (G. Viglietta).
https://doi.org/10.1016/j.tcs.2018.09.005
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.09.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:gdiluna@uottawa.ca
mailto:paola.flocchini@uottawa.ca
mailto:t-izumi@nitech.ac.jp
mailto:izumi-t@fc.ritsumei.ac.jp
mailto:santoro@scs.carleton.ca
mailto:gvigliett@uottawa.ca
https://doi.org/10.1016/j.tcs.2018.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2018.09.005&domain=pdf

36 G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49
The roles of the two agents involved in an interaction are asymmetric: one agent is considered the starter and the other
is the reactor. Still, the communication is two-way: each agent receives the state of the other and executes the protocol to
update its own state based on the received information and its own state. Furthermore, in the selection of the occurrences
of the interactions, the scheduler is constrained to satisfy some fairness assumption.

The restricted computational universe defined by the basic assumptions of PP has been subsequently expanded in an
attempt to overcome the inherent computability limitations and to examine the computational impact of factors such as
non-constant memory (e.g., [1,2,17]), presence of a leader (e.g., [6]), storage of information on edges (e.g., [16,18,21,29]),
etc.

In all these models, including the original one, the interaction is assumed to be fault-free. An immediate important
question is what happens if interactions are subject to failures. Very little is known in this regard, and most works have
focused on faults pertaining agents, i.e., Byzantine failures or crash-stop failures [7,22,23]. To the best of our knowledge,
the investigation of failures on interactions is new. An insight comes from the study of the so-called one-way interaction
models [4], where the starter of an interaction is not able to see the state of the reactor (immediate transmission), or it is
not even able to detect that the interaction has taken place (immediate observation). This study showed that, under one-way
interactions, the computational power of the agents is strictly weaker than it is with the usual bidirectional interactions. In
particular, if the interactions are not detectable by the starter (i.e., immediate observation), the agents can compute only
the threshold predicates, i.e., if a specific symbol in the input is above a certain threshold: #(a) > t [4]. In the case of
two-way interactions, the class of computable predicates coincides with the semilinear predicates, i.e., those corresponding
to first-order formulas in Presburger arithmetic. An example of a predicate that is semilinear but is not a threshold predicate
is #(a) ≡ 3 (mod 5).

In this paper we focus on omission failures: during an interaction, the state of an agent is not transmitted. This implies
that one, or both agents, may fail to see the state of the other or to detect that an interaction occurred.

The one-way interaction models capture a class of permanent omission failures involving the starter’s side, those where
the starter never sees the state of the reactor agent. Clearly, there are many more types of omission failures, such as those
occurring at the reactor’s side and, more insidious, those whose occurrence is dynamic and unpredictable. And of course,
for each of these types there are different variations, depending on the kind of fault detection assumed.

The complete range of dynamic omission failures has been classified in [24], where the following general question was
posed: Under what additional system capabilities is it possible to correctly execute every traditional two-way population protocol
in spite of dynamic omission failures? More specifically, under what conditions (if any) is it possible to simulate the execution of
every two-way population protocol for a given class of omission failures? A population protocol P , working in the presence of
some kind of omission failures, is said to simulate a population protocol P ′ if each execution of P can be “reinterpreted”
as an execution of P ′ , in the sense that the sequence of state changes in the agents executing P is the same as the one
that could be observed if the agents executed P ′ instead. In other words, a simulator provides an interface between the
simulated protocol P and the physical communication layer, giving the system the illusion of being in a fault-free two-way
environment.

The existence of simulators is important in scenarios in which we do not only concern ourselves with the final output
of a population protocol, but also with the execution that leads to the result. We may want, for instance, to guarantee
that our simulating agents enter some critical states exactly as many times as they would if they were actually executing
the protocol that is being simulated. A critical state could be a state that determines an outcome on a physical asset; for
example, entering a certain state could trigger a money transaction between two bank accounts.

The existence of fault-tolerant one-way simulators of two-way protocols has been investigated in [24] in terms of the
amount of memory required by the agents to perform such simulations, and a variety of models and results were established.
It is shown that, with no a-priori knowledge, the simulation of two-way protocols in the presence of omissions is impossible
even if the agents have infinite memory. In the weakest models investigated, this impossibility holds even if the number of
omission failures in each execution is limited to one.

On the other hand, it is also shown that simulation is possible if agents have unique IDs or the total number of agents is
known. Moreover, in some restricted models, simulation is possible when an upper bound on the number of omission faults
is known. Notice that the focus of the investigation in [24] and of our paper is on simulation. That is, given a particular
two-way protocol P that solves some problem, we do not investigate in a general sense the possibility of solving the same
problem in a different model: we only focus on the possibility of simulating P in such a model, incidentally solving the
same problem as P .

In this paper we continue this general line of research and investigate how the presence in the system of a distinguished
agent, a leader, can impact the capability of the system to tolerate dynamic omission failures. More precisely, we study the
possibility and impossibility of simulation of two-way protocols with the aid of a leader, with respect to the different classes
of omission failures and one-way interactions.

1.2. Main contributions

As in [24], we consider all the computationally distinct models that arise from the introduction of omission faults and/or
one-way interactions in two-way protocols: TW, IT, IO, Ti (i = 1, 2, 3), and I j (j = 1, 2, 3, 4); see Fig. 3, where the type
of transition function δ, detailed in Section 2, uniquely identifies each model. In particular, TW refers to two-way protocols

G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49 37
Fig. 1. Map of results (cf. Fig. 3 page 12). White blobs denote the existence of simulators; gray blobs indicate that simulations are not possible.

without omissions; IT and IO refer to the one-way models with immediate transmission and immediate observation, introduced
in [4]; the Ti ’s and Ii ’s refer to the distinct two-way and one-way models with omissions, respectively.

We consider two types of omission adversaries: informally, a “malignant” one (the unfair omissive, UO), which is able
to arbitrarily insert omission faults into “globally fair” sequences of interactions, and a “benign” one (the eventually non
omissive, �NO), which inserts some omission faults, but eventually stops. To make our results stronger, we always assume
the benign adversary in the impossibility proofs and the malignant one in the possibility proofs.

We study the negative impact that omissions have on computability, and we show that the simulation of two-way
protocols is impossible even with the aid of a leader (Theorem 1), assuming that the amount of memory available to the
simulator is bounded.

On the other hand, we show that the presence of both a leader and infinite memory on each agent makes the simulation
possible in the weak intermediate one-way models I1 and I2 (Theorem 4), and thus in all the upper models of Fig. 3,
Section 2.5. The fact that this possibility does not apply to IO and T1 is not accidental: indeed we prove that, for these
two models, the simulation is impossible even with both a leader and infinite memory, even against the benign omission
adversary (Theorem 2).

Finally, we study what happens when a bound on the omission failures involving the leader is known, and essentially
we show that simulators exists for models I1 and I2 (Theorem 5) and model T1 (Theorem 6), and these imply the possibility
of simulations in all other omissive models.

For non-omissive models, we show that two-way simulation is possible in the IT model (Theorem 7). In light of the fact
that with constant memory, in absence of additional capabilities, IT protocols are strictly less powerful than TW (see [4]),
our results show that this computational gap can be overcome by using a leader.

Our main results are summarized in Fig. 1, where white blobs represent possibilities, and gray blobs impossibilities. As
a consequence of these results, we have a complete characterization of the feasibility of simulations with respect to the
presence of a leader. In Fig. 2, there is a summary of the results contained in [24] for the unbounded-memory case and the
case of knowledge on omissions: as we can see, the assumption of a leader drastically changes the possibility of designing
a simulator. A preliminary version of the results contained in this paper have been published in [25].

1.3. Related work

Since their introduction, there have been extensive investigations on Population Protocols (e.g., see [5,8,11,13,15,19,20,
30,27]), and the basic assumptions of the original model have been expanded in several directions, typically to overcome
inherent computability restrictions. For example, allowing each agent to have non-constant memory [1,2,17]; assuming the
presence of a leader [6]; allowing a certain amount of information to be stored on the edges [16,18,29] of the interaction
graph.

The issue of dependable computations in population protocols, first raised in [22], has been considered and studied only
with respect to processors’ faults, and the basic model has necessarily been expanded. In [23] it has been shown how to
compute functions tolerating O(1) crash-stops and transient failures, assuming that the number of failures is bounded and
known. In [7] the specific majority problem under O(

√
n) Byzantine failures, assuming a fair probabilistic scheduler, has

been studied. In [28] unique IDs are assumed, and it is shown how to compute functions tolerating a bounded number
of Byzantine faults, under the assumption that Byzantine agents cannot forge IDs. Interestingly, in [28] it is shown that,
in the population protocol model without IDs, the presence of a single Byzantine agent prevents the computation of any
non-trivial function. This setting is different from ours since a single Byzantine agent can send any number of bogus states
to the other agents.

Self-stabilizing solutions have been devised for specific problems such as leader election (assuming knowledge of the
system’s size and a non-constant number of states [12], or assuming a leader detection oracle [26]) and counting (assuming
the presence of a leader [9]). Moreover, in [10] a self-stabilizing transformer for general protocols has been studied in a
slightly different model and under the assumption of unbounded memory and a leader.

Finally, to the best of our knowledge, the one-way model without omissions, has been studied only in [4], where it is
shown that IT and IO, when equipped with constant memory, can compute a set of functions that is strictly included in that
of TW. Combined with our results in Fig. 1, this implies that, without using extra resources (e.g., infinite memory, leader,
etc.), simulations are impossible in all the one-way and omissive models.

38 G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49
Fig. 2. Map of results when a leader is not present, see [24] (cf. Fig. 1). White blobs denote the existence of simulators; gray blobs indicate that simulations
are not possible.

2. Model and terminology

In this section we define the computation model, the notion of omission, and the notion of simulator.

2.1. Interacting entities

We consider a system consisting of a set A = {a1, . . . , an} of interacting computational entities, called agents. Each inter-
action involves only two agents with asymmetric roles: one agent is the starter, as , and the other is the reactor ar , that is,
an interaction between as and ar is indicated by the ordered pair i = (as, ar).

Interactions occur at discrete times, and at every “time unit” exactly one interaction occurs.
When two agents interact, they exchange information and perform a local computation according to the same protocol P .

A protocol is a triple P = (QP , Q ′
P , δP), where QP is a set of local states, Q ′

P ⊆ QP is a set of initial states, potentially
infinite, and δP : QP × QP → QP × QP is the transition function defining the states of the two interacting agents at the
end of their local computation. With a small abuse of notation, and when no ambiguity arises, we will use the same literal
(e.g., ai) to indicate both an agent and its local state. The protocol P and the number of agents n are enough to uniquely
determine the static structure of the system, therefore we will refer to the system as the tuple (P, n). A configuration C of
a system (P, n) is an n-tuple of local states, that is C ∈ Q n

P . Initially, the systems starts in an initial configuration C0 ∈ Q ′ n
P .

Given a tuple t = (x1, x2, . . . , xm), we indicate with t[j], with j ∈ [1, m], the element x j . When clear from the context we
omit the subscript P .

We model the presence of a leader in the system by stipulating that, in every initial configuration, there is exactly one
agent in a distinguished state (or set of states).

2.2. Executions

The occurrence of an interaction i = (a j, ak) turns a configuration of the form C = (a1, . . . , a j, . . . , ak, . . . , an) into one of
the form

C ′ = (a1, . . . , δ(a j,ak)[0], . . . , δ(a j,ak)[1], . . . ,an)

This is indicated by the notation C
i−→ C ′ . We say that an infinite sequence of interactions I = (i0, i1, . . .) is a run of P .

Starting from an initial configuration C0, a run I induces an infinite sequence of configurations, �I (C0) = (C0, C1, . . .) such

that C j
i j−→ C j+1 for every j ≥ 0. This sequence of configurations is an execution of P .

2.3. Non omissive interaction models

Depending on the conditions imposed on the transition function, three main models of interactions have been identified:
the standard two-way model and the one-way models, immediate transmission and immediate observation, presented in [4].

Two-Way Interaction Model (TW). The state transition function consists of two functions f s : QP × QP → QP and
fr : QP × QP → QP , one for the starter and the other for the receiver respectively, with δP (as, ar) = (f s(as, ar), fr(as, ar)).

Immediate Transmission Model (IT). The state transition function consists of two functions g : QP → QP and f : QP ×
QP → QP , with δP (as, ar) = (g(as), f (as, ar)). Note that, in the IT interaction model, the starter does not read the state of
the reactor but it explicitly detects the interaction, as it applies function g to its own state.

Immediate Observation Model (IO). The state transition function has the form δP (as, ar) = (as, f (as, ar)). Note that, in
the IO model, there is no detection of the interaction (or proximity) by the starter.

G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49 39
2.4. Omissions

An omission is a fault involving a single interaction. In an omissive interaction, an agent does not receive any information
about the state of the other.1 If omissions can occur in the system, then transition functions become more general relations.
We consider the omissive models introduced in [24].

Two-Way Omissive Models. In the most general omissive model, T3, the transition relation has the form

δP (as,ar) = {(f s(as,ar), fr(as,ar)), (o(as), fr(as,ar)), (f s(as,ar),h(ar)), (o(as),h(ar))}.
The first pair is the outcome of an interaction when no omission is present; the other three pairs represent all possible

outcomes when there is an omission: respectively, an omission on the starter’s side, on the reactor’s side, and on both
sides. The functions o and h represent the detection capabilities of each agent: omissions are undetectable on a certain side
if the corresponding function is equal to the identity. From this we obtain the weaker models T2 and T1 depicted in Fig. 3
(see [24] for more details).

One-Way Omissive Models. These models are defined by the transition relation

δP (as,ar) = {(g(as), f (as,ar)), (o(as),h(ar))}.
The first pair is the outcome of an interaction when no omission is present, and the second pair when there is an omission.
Notice that, when no omissions are present, we obtain the IT model. When no omission are present and g is the identity
function, we obtain the IO model. As for the previous case, omissions are undetectable starter-side if o is the identity
function or if o = g . Moreover, if h = g , the reactor has detected the proximity of another agent, but it cannot read its
state or even determine who is the starter and who is the reactor. Collectively, these variations give rise to models I1
to I4 in Fig. 3. Other combinations of omissions and detections are possible, but they are provably equivalent to some of
the aforementioned ones (see [24] for more details). When omissions are considered, the interaction between as and ar is
denoted by the ordered pair (as, ar) and additional information specifying if the interaction is omissive and on which side.
Omissions are introduced by an adversarial entity. We consider two types of adversaries:

Definition 1 ([24] Unfair Omissive (UO) adversary). The UO adversary takes a run I and outputs a new sequence I ′ , which is
obtained by inserting a (possibly empty) finite sequence of omissive interactions between each pair of consecutive interac-
tions of I .

Definition 2 ([24] Eventually Non-Omissive (�NO/�NO1) adversary). The �NO adversary takes a run I and outputs a new
sequence I ′ , which is obtained by inserting any finite sequence of omissive interactions between finitely many pairs of
consecutive interactions of I . The �NO1 adversary is even weaker, and can only output interaction sequences with at most
one omission.

2.4.1. Fairness
We say that a set of configurations C ⊆ Q n

P is closed if, for every C ∈ C , and for every configuration ̂C , which is a
permutation of C , also ̂C ∈ C .

We say that an execution � is globally fair (GF) when: for every two (possibly infinite) closed sets of configurations
C, C′ ⊆ Q n

P such that for every C ∈ C there exists a non-omissive interaction i and some C ′ ∈ C′ such that C
i−→ C ′ if

infinitely many configurations of � belong to C , then infinitely many configurations of � belong to C′ (notice that this does
not necessarily mean that a configuration in C′ is an immediate successor of configurations of C in the execution �).

This definition of global fairness, introduced in [24], extends the standard one, which only deals with single configura-
tions, as opposed to sets (see [8]). When we consider protocols that use only finitely many states the two definitions are
equivalent, but when we consider protocols that work with infinitely many states only the extended definition is effective.

2.5. Simulation of two-way protocols

In this section we define the two-way protocol simulator, we first give an intuitive explanation of this concept, and then
we formally define it.

1 This happens also in the IT and IO models, but it is due to the nature of one-way interactions, and not because of failures.

40 G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49
Fig. 3. Interaction models (up to equivalence) and their computational relationships. An arrow between two blobs indicates that the class of solvable
problems in the source blob is included in that of the destination blob. The models on the left, T1, T2, T3, are the two-way models with omissions. The
models on the right, I1, I2, I3, I4, are the one-way models with omissions.

Informal definition Let P be a two-way protocol, and let S(P) be any protocol (which could be one-way, omissive, or both).
Next we are going to informally define what it means for S(P) to simulate P ; the formal definition can be found later in
the text.

We want the set of local states of S(P) to be of the form QP × QS , where QP is the set of local states of P (the
“simulated states”), and QS is some additional memory space used in the simulation. Suppose to start an execution of
S(P) on a system of n ≥ 2 agents from a given initial configuration. An initial configuration for S(P) is such that, when
restricted to the simulated states, it is an initial configuration of P . Agents are allowed to freely change the QS component
of their local states; but when they change their QP component, we want the change to reflect the transition function
of P . That is, if δP (as, ar) = (f s(as, ar), fr(as, ar)), then for every agent whose simulated state changes from as to f s(as, ar),
there must be some other agent (at some point in time) whose simulated state changes from ar to fr(as, ar). Moreover,
there must be a perfect matching between such transitions, in such a way that each starter of a simulated transition can
be implicitly mapped to an appropriate reactor. Also, such a perfect matching must be “consistent”, i.e., there must be an
ordering of the simulated two-way interactions that is an execution of the simulated protocol.

We additionally require that, if the execution of S(P) is globally fair, then also the resulting simulated execution of P is
globally fair.

Formal definition Given a two-way protocol P , consider a protocol S(P), whose set of local states is QP × QS , where QP
is the set of “simulated states”, that are local states of P , and the set QS is additional memory space used in the simulation.
The function πP : QP × QS → QP is the projection function onto the set of local states of P . Given a configuration C of
S(P), we write πP (C) to indicate the configuration of P consisting of the projections of the states of the agents of C .

Given an execution �I (C0) of S(P), where I = (i0, i1, . . .), we say that E(�I (C0)) = (e0, e1, . . .) is a sequence of events
for �I (C0) if it is a weakly increasing sequence of indices of interactions of I , with the following two constraints: no three
indices are the same, it contains at least the indices of the interactions that determine the update of the simulated state of
some agent in the execution �I (C0) (if an interaction updates the simulated states of two agents, then its index must appear
twice in E(�I (C0))). Therefore, at each event e j in E(�I (C0)), we can associate a unique agent involved in the interaction

G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49 41
ie j ; preferably, this agent is one that changes simulated state as a result of ie j . We allow in E(�I (C0)) also events associated
with agents that do not change simulated state, this is necessary to simulate two-way protocols that could leave the state
of an agent unmodified.

If �I (C0) = (C0, C1, . . .), we let C−
j = Ce j and C+

j = Ce j+1; the configurations C−
j and C+

j are the ones before and after
the j-th update of the simulated state, respectively.

Definition 3 ([24] Perfect matching of events). Given an execution �I(C0) of a run I and a sequence of events E = E(�I (C0)),
a perfect matching M(E) is a partition of N into ordered pairs (viewed as indices of events of E(�I (C0))) such that, if
(e j, ek) ∈ M(E), where e j is associated with agent ax and ek with agent ay , then x �= y and

δP (πP (C−
j [x]),πP (C−

k [y])) = (πP (C+
j [x]),πP (C+

k [y])).

Intuitively, a pair (e j, ek) in the perfect matching represents a simulated two-way interaction of the simulated protocol
P : where the event e j corresponds to the update of the simulated state in the starter, and, similarly, ek corresponds to the
update of the simulated state in the reactor.

Given a matching M(E), we can obtained a derived run D of the simulated protocol P . This run is obtained as follows:
sort the pairs (e j, ek) of M(E) by increasing min{e j, ek}, obtaining the sorted sequence M ′ . Now, we consider the m-th
element of M ′ , let it be (e′

j, e
′
k), where the event e′

j is associated with agent ax and e′
k with agent ay , and we insert in D as

m-th element the interaction (x, y). It is clear, that the run D of P induces a derived execution �D(πP (C0)).

Definition 4 ([24] Simulation). A protocol S(P) simulates P if, for any initial configuration C0 of n agents of S(P), and
any run I whose execution �I (C0) satisfies the GF condition, there exists a sequence of events E(�I (C0)) with a perfect
matching M(E) whose derived execution is an execution of n agents of P starting from the initial configuration πP (C0)

and satisfying the GF condition. We further require that, for each initial configuration C0, every finite initial sequence of
interactions of S(P) (possibly with omissions) can be extended to an infinite one I , having no additional omissions, whose
execution �I (C0) satisfies the GF condition.

3. Simulation with a leader in omissive models: impossibility

In this section we prove that the presence of a leader, alone, might not be sufficient to overcome dynamic omissions.
Indeed, we prove that there are two-way protocols that cannot be simulated with omissive interactions even if a leader is
present.

Next we consider the Pairing Problem introduced in [24]: a set of agents A is given, partitioned into consumer agents Ac ,
starting in state c, and producer agents Ap , starting in state p. Informally, we want a consumer to enter a specific state cs if
and only if it is paired with a producer, and we want to pair each producer with at most one consumer.

We say that a protocol P solves the Pairing Problem if it enforces the following properties:

(i) Irrevocability: P has a state cs that only agents in state c can reach; once an agent has state cs, its state cannot change
any more;

(ii) Safety: At any time, the number of agents in state cs is at most |A p |;
(iii) Liveness: In all globally fair executions of P , eventually the number of agents in state cs is equal to min{|Ac|, |Ap|}.

This problem can be solved in the standard two-way model by the simple protocol below:

Pairing Protocol PP P . QPP P = {cs, c, p, ⊥}. The only non-trivial transition rules are (c, p)
→ (cs, ⊥) and (p, c)
→ (⊥, cs).

However, as we will show, this protocol cannot be simulated, in spite of the presence of a leader, even in the strongest of
the omissive models.

3.1. Impossibility with finite memory

We investigate what happens when we introduce a distinguished leader node, but we restrict the memory of agents to
be bounded. We show our impossibility results directly for the T3 omissive model. The results clearly carry over to all the
less powerful omissive models.

Definition 5. (Omission-recurrent configuration) Let {�, a} be a system of two agents and the communication model be T3,
where � is the leader, and let C = (q�, qa) be a configuration. Suppose that there exists a finite non-empty sequence of inter-
actions I = (i1, i2, . . . , it), where i1 is omissive on both sides, such that, if I is executed according to the transition rules of
a population protocol P starting from configuration C , eventually the state of � is again q� . Then, if � is the starter (respec-
tively, the reactor) of i1, we say that C is a starter-omission-recurrent configuration (respectively, an reactor-omission-recurrent
configuration) for protocol P .

42 G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49
Note that, in the above definition, since i1 is omissive on both sides, the system transitions into configuration
(o(q�), h(qa)) or (h(q�), o(qa)) after executing i1. Intuitively, if a configuration C = (q�, qa) is omission-recurrent, then it
is possible to make the leader agent �, in state q� , “loop back” to state q� after an omission. This property will be used in
our impossibility proof to make � interact in the same state with multiple agents without noticing it.

To do so, we first prove a structural property of simulators of a system of two agents. In Lemma 1 we show that, every
time the two agents are able to exchange their states, they are in a configuration that is omission recurrent, and indeed the
simulation of a two-way interaction is based exclusively on the information contained in omission recurrent configurations.

Lemma 1. Let S(P) be a simulator having a finite number k of states in total and working under the �NO adversary. Let a system of
two agents {�, a} be given, where � is the leader. Let C0 be an initial configuration for � and a, and let I = (i1, i2, . . .) be an infinite
sequence of interactions with no omissions between � and a such that, if S(P) is executed according to I starting from C0, then the
execution is globally fair. Then there exists a finite sequence of interactions I ′ = (i′1, i′2, . . . i′t) with the following properties.

(1) I ′ is obtained by introducing at most k omissive interactions into an initial finite sub-sequence of I . All the omissive interactions of
I ′ are omissive on both sides.

(2) If � and a execute S(P) according to I ′ starting from C0, they both do a simulated state transition (according to δP).
(3) Suppose that � and a execute S(P) according to I ′ starting from C0, and let C j be the configuration of � and a immediately before

executing interaction i′j+1 . Then, if i′j+1 is not omissive and has � as the starter (respectively, reactor), C j is starter-omission-
recurrent (respectively, reactor-omission-recurrent) for S(P).

Proof. First we will insert at most k omissive interactions into I (thus building an infinite sequence that satisfies prop-
erty (1)) in such a way as to satisfy property (3). Then we will choose t so as to satisfy property (2).

We will construct I ′ incrementally by an inductive procedure. Suppose we have constructed I ′ up to i′j , and let C j be
the configuration of � and a after executing the first j interactions of I ′ starting from C0 (the base case is with j = 0).
Suppose also that the partial sequence (i′1, . . . , i′j) has been obtained by adding some omissive interactions to some initial
sub-sequence of I , say (i1, . . . , iv(j)) (with v(0) = 0, i.e., in the base case the sub-sequence is empty). Let iv(j)+1 have
� as its starter (respectively, reactor). Then, if C j is starter-omission-recurrent (respectively, reactor-omission-recurrent),
we set i′j+1 = iv(j)+1 and v(j + 1) = v(j) + 1. Otherwise, we let i′j+1 be omissive on both sides with � as the starter
(respectively, reactor), and we set v(j + 1) = v(j). Notice that, by constructing the sequence in the aforementioned way
we are satisfying property (3): for any interaction i′j+1 that is not omissive between � and a, we have that C j is either
reactor-omission-recurrent or starter-omission-recurrent. We claim that, if we continue this process indefinitely, we put at
most k omissive interactions in I ′ . Indeed, suppose that an omissive interaction i′j with � as the starter (respectively, reactor)
has been inserted in I ′ , which means that C j−1 is not a starter-omission-recurrent (respectively, reactor-omission-recurrent)
configuration. By definition of omission-recurrent configuration, � will never get the simulated state it had in C j−1 after
executing i′j . It follows that the same state will contribute to the addition of at most one omissive interaction to I ′ . Since
the possible states for � are at most k, there can be at most k omissive interactions in I ′ .

We now have to decide when to stop the incremental construction of I ′ . Recall that the execution of I starting from
C0 is globally fair, and observe that adding finitely many omissive interactions to it preserves its global fairness. So, by
definition of simulator, the simulated states of � and a also change in a globally fair way as they execute I ′ . Therefore, at
some point, they will conclude a simulated interaction, changing their local states according to δP . At this point we stop
the construction of I ′ , obtaining a sequence of finite length t that satisfies all three properties. �

In the next theorem (Theorem 1) we prove our impossibility results. In the proof, we show that there exists a system of
several agents where it is possible to trick the leader � and two other agents to believe that they are in a system of only
two agents. Each of these three agents sees a sequence of interactions I that respects the property dictated by Lemma 1.
From this we show that it is impossible to simulate the aforementioned Pairing Protocol.

Theorem 1. A system of agents, each of which has a finite amount of memory, cannot simulate every two-way protocol in the T3 model
(hence in all the omissive models), even with the presence of a leader and under the �NO adversary.

Proof. We will show that the Pairing Protocol PP P cannot be simulated in T3. Suppose by contradiction that there is a
simulator S(PP P) for it, and let us consider a system of two agents � and a, where � is the leader. Let C0 be an initial
configuration in which � has simulated state p and a has simulated state c, and let I be an omission-less infinite sequence
of interactions for the two agents whose execution starting from C0 is globally fair. According to PP P , eventually I will
make both � and a change simulated state to ⊥ and cs, respectively.

Let us apply Lemma 1 to S(PP P), C0, and I , which yields a sequence of interactions I ′ = (i′1, . . . , i′t) of length t , some
of which are omissive on both sides. The sequence I ′ guarantees that both agents will change simulated state to cs and ⊥,
as per property (2). Let C j be the configuration of the two agents after executing the first j interactions of I starting from
configuration C0.

G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49 43
Now we construct a larger system of agents: {�, a, b1, b2, . . . , bm, d}, where m = 2t . Let C ′
0 be the configuration of this

system in which � and a have the same state as in C0 and all other agents have the same state as a. We will show how
to modify I ′ by inserting some extra interactions in it, obtaining an expanded sequence I ′′ that involves also the other
members of the system (as opposed to only � and a). We will then show that executing I ′′ makes the simulator behave in
a way that is not compatible with the Pairing Problem.

We will construct I ′′ inductively by inserting a sequence of interactions before each interaction i′j ∈ I ′ . Say we have
already done so up to i′j , with 0 ≤ j < t (the base case being with j = 0). Executing I ′′ up to this point from configuration
C ′

0 makes the system reach configuration C ′
j . Let w(j) = m/2 j , and suppose that agents a, b1, b2, . . . , bw(j) have the same

state in C ′
j (this is certainly true for j = 0). Also suppose that, in C ′

j , � and a have the same state as in C j (again, this is
true for j = 0). As we construct I ′′ and j increases, we will also prove that these properties are preserved.

Now consider the next interaction i′j+1, which could be either non-omissive or omissive on both sides. Next we are going
to explain what interactions we add to I ′′ between i′j and i′j+1.

Suppose that i′j+1 is omissive on both sides, and let � be the starter and a the reactor. Then we introduce in I ′′ (right
after i′j) the sequence of interactions (d, b1), (d, b2), . . . , (d, bw(j)/2), omissive on both sides. Finally we introduce i′j+1 into
I ′′ . If a is the starter and � the reactor, we insert the same interactions, but with starter and reactor exchanged. It is
immediate to see that, after executing these interactions from configuration C ′

j , agents a, b1, b2, . . . , bw(j+1) have equal
states. Indeed, they have the same state in C ′

J , and then they all execute one omissive interaction as starters or as reactors.
Moreover, in C ′

j+1, � and a have the same state as in C j+1.
Suppose that i′j+1 is not omissive, and let � be the starter and a the reactor. By property (3) of I ′ , configuration C j is

starter-omission-recurrent. Let q� be the state of � in C j (and therefore in C ′
j). By definition of starter-omission-recurrent

configuration, there exists a sequence of interactions I∗ = (i∗1, i∗2, . . . , i∗z), with i∗1 omissive on both sides and having � as
the starter and a as the reactor, such that the state of � becomes q� again if I∗ is executed from configuration C j (and
hence from C ′

j). Note that the same happens if the partner of � in the interactions of I∗ is not a but any of the bx ’s, with
1 ≤ x ≤ w(j), since all these agents have the same state in C ′

j by inductive hypothesis. Given these premises, we introduce
in I ′′ (right after i′j) the following interactions.

• For all 1 ≤ x ≤ w(j)/2, we insert:
– the interaction (�, bx), omissive on �’s side;
– the interaction (d, bx+w(j)/2), omissive on both sides;
– the sequence of interactions (i∗2, i∗3, . . . , i∗z), with bx+w(j)/2 as �’s partner instead of a.

• Finally, we insert i′j+1.

The case in which � is the reactor of i′j+1 and a the starter is handled in a similar fashion, but we exchange starter and
reactor in the interactions that we add to I ′′ . Suppose now that the system executes the above sequence of interactions
starting from configuration C ′

j , and let us focus on the sub-system consisting of � and bx+w(j)/2, where x ∈ [1, w(j)/2]. The
agent � starts in state q� and then executes an omissive interaction, while bx+w(j)/2 executes another omissive interaction.
Together, these two interactions have the same effect on � and bx+w(j)/2 as i∗1 (note that the partners of � and bx+w(j)/2
were irrelevant, because the interactions were omissive on their sides). Then � and bx+w(j)/2 execute all the interactions of
I∗ except i∗1. Since bx+w(j)/2 started in the same state as a, by definition of I∗ it follows that the state of � is reset again to
q� after this sequence. By induction, this is true for all 1 ≤ x ≤ w(j)/2. Finally, the state of � correctly changes according to
i′j+1 as it interacts with a. On the other hand, a and all the bx ’s see � exactly once when it is in state q� and, since they
have the same state in C ′

j , they also have the same state in C ′
j+1.

We have shown that agents a, b1, b2, . . . , bw(j) have the same state in C ′
j for all 1 ≤ j ≤ t . In particular, for j = t , we

have that w(j) = m/2t = 1, which means that a and b1 have the same state in C ′
t . In turn, the simulated state of a in C ′

t
is the same as in Ct , i.e., cs. Since at the beginning there was only one agent with simulated state p (i.e., �), and now we
have two agents with simulated state cs, we have violated the safety property of the Pairing Problem, meaning that S(PP P)

cannot be a simulator.
As there is only a finite number of omissions in I ′′ , this sequence of interactions can be extended to an infinite one with

the addition of non-omissive interactions, which is compatible with the �NO adversary. �
3.2. Impossibility with infinite memory

For this case we can show that simulation is impossible in the omissive two-way model without detection, and thus
in IO.

Theorem 2. A system of agents, each of which has an infinite amount of memory, cannot simulate every two-way protocol in the T1
model (hence in IO), even with the presence of a leader and under the �NO adversary.

44 G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49
Proof. We will show that the Pairing Protocol PP P cannot be simulated in T1. Let S(PP P), �, a, C0, and I = (i1, i2, . . .) be
defined as in the first paragraph of the proof of Theorem 1. By definition of simulator and by the Pairing Problem, if we
execute I from C0 according to S(PP P), at some point we reach a configuration in which � has simulated state ⊥ and a
has simulated state cs. Say that this happens after executing i j , and let I j = (i1, i2, . . . , i j).

Let us now extend the system with a third agent b, initially having the same state as a in C0, and let us show how to
insert interactions into I j involving b as well, in order to obtain a contradictory finite sequence of interactions I ′ . Recall that
I is omission-less, and consider the interaction ix , with 1 ≤ x ≤ j. If ix = (�, a), we insert the interaction (�, b) right before
it, with omission on �’s side. If ix = (a, �), we insert the interaction (b, �) right before it, again with omission on �’s side.

Since omissions are undetectable, it is easy to see that the extended sequence I ′ will make � undergo the same state
transitions as I j (but at half the “speed”). On the other hand, a and b will always see � in the same state and will never
see each other, so they will both have the same state throughout the execution of I ′ . It follows that a and b will eventually
have simulated state cs, which violates the safety property of the Pairing Problem.

Note that the sequence I ′ contains finitely many omissions, and therefore it can be extended to an infinite sequence that
is compatible with the �NO adversary. �
Observation 1. Since in IO there are no omissions, the statement of Theorem 2 for the IO model trivially extends to the scenario in
which the number of omissions in the sequence of interactions is known in advance by the agents.

4. Simulation in omissive models

In this section we are going to make use of a result that appears in [24] as Theorem 4.5. This theorem assumes each
agent to have a unique ID, which is a non-negative integer, as part of its local state.

Theorem 3. Assuming IO, unique IDs, and O(log(max ID)) bits of memory on each agent (where max ID is the maximum ID in the
system), there exists a simulator for every two-way protocol, even under the UO adversary. �

What this theorem says is that, if the agents initially have unique IDs, they can perform a simulation of any two-way
protocol, even if the simulation runs in the weakest model, IO, and against the strongest adversary, UO. The technique used
in [24] to prove Theorem 3 is to use IDs to implement a locking mechanism between agents: if an agent a is seen by agent
b in a state that indicates that a is looking for a matching agent, then agent b uses the ID of a and its own ID to put a
in a state in which it is forced to pair with b. In this section we assume the presence of a leader and we show that, in
certain models, we can implement a naming algorithm, i.e., an algorithm that assign unique IDs to all agents. Once an ID
has been assigned to an agent, it cannot change. Therefore, the naming algorithm and the simulator of Theorem 3 can be
combined into a single protocol and where they run in parallel: if an agent has no ID yet, the simulator simply ignores
every interaction involving this agent. By global fairness, eventually all agents will have unique IDs, and the simulation will
finally involve the entire system, producing a globally fair simulated execution.

The protocols will be presented using an algorithmic style: for each interaction of the form (as, ar), the starter agent as

executes function Upon Event Starter sends() and the reactor agent ar executes Upon Event Reactor receives (vars), where
vars is the variable var in the local state of agent as .

4.1. Naming algorithm with infinite memory

If the leader has infinite memory, it can implement a simple naming algorithm under certain models. Since Theorem 2
already states the impossibility of simulation under models T1 and IO, we will assume model I1 or model I2. Constructing a
simulator for these models will imply the existence of a simulator for all other models except T1 and IO (refer to Fig. 1).

Theorem 4. Assuming I1 or I2 , the presence of a leader, and an infinite amount of memory on each agent, there exists a simulator for
every two-way protocol, even under the UO adversary.

Proof. By the above discussion, it suffices to implement a naming algorithm. Each agent has a local variable my_I D and
the leader also has a second variable next_I D . The leader has my_I D = 0 and next_I D = 1, while all other agents initially
have my_I D = ⊥. Every time the leader detects the proximity of another agent (i.e., it applies function g to its own state),
it increments the variable next_I D . Every time an agent, who does not have yet an ID, sees the state of the leader (i.e., it
applies function f), it sets its own my_I D to the value found in the leader’s next_I D variable.

Since the leader increments next_I D every time it is involved in an interaction (even if the interaction is omissive on
the other side), no two agents can get the same ID. Moreover, by global fairness, all agents will eventually see the leader in
a non-omissive interaction, and will therefore acquire an ID. �

G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49 45
4.2. Naming algorithms with knowledge on omissions

Now we assume that agents have only a finite amount of memory, but they know in advance a finite upper bound L
on the number of omission faults that the adversary is going to insert in interactions that involve the leader. Note that the
adversary can still be UO even if only finitely many omissive interactions involve the leader.

4.2.1. Naming algorithm for I1 and I2
We refine the naming algorithm of Theorem 4 to cope with the fact that now memory is bounded by a function of L

and the size of the system, n. It is worth mentioning that the precise value of n is not known to the agents, and L is only
an upper bound on the number of omissions involving the leader, not necessarily the exact number.

Theorem 5. Assuming I1 or I2 , the presence of a leader, knowledge of an upper bound L on the number of omission failures in interac-
tions that involve the leader, and �(L lognL) bits of memory on each agent (where n is the number of agents), there exists a simulator
for every two-way protocol, even under the UO adversary.

Proof. We implement the naming algorithm presented in Fig. 4. Compared to the algorithm of Theorem 4, here the leader
has an array of L + 1 next_I D variables, as opposed to only one. This array is initialized to [1, 2, . . . , L + 1] and, when an ID
is assigned, the corresponding entry of the array will be incremented by L + 1, so that no two equal IDs can be generated.

All entries of next_I D are initially unlocked: this information is stored in the leader’s Boolean array locked. The active
ID is defined as the unlocked entry of next_I D having minimum index, if there is any (line 10). This is the ID that will
tentatively be assigned next. Whenever the leader detects the proximity of another agent (i.e., it executes function g on its
own state, or function Upon Event Starter sends in the algorithm of Fig. 4), it locks the active entry of next_I D (line 12). The
purpose of locking an entry of next_I D (as opposed to just incrementing it as in Theorem 4) is that the leader cannot allow
its value to grow indefinitely, because now memory is limited. Instead, the leader will make the entry temporarily inactive,
and will keep it on hold until it gathers more information in the following interactions.

On the other hand, if an agent a sees the leader (i.e., it executes function f or function Upon Event Reactor receives in
Fig. 4), and a does not have an ID yet, then it assigns itself the active ID from the leader’s next_I D variable (line 30). So,
the next time the leader sees a, it will read its new ID and it will know that the corresponding entry of next_ I D can be
unlocked (line 23) and its value can be incremented by L + 1 (line 24).

It may happen that the leader is involved in an omissive interaction, and therefore the entry of next_I D that it locks will
never be unlocked again. However, this can happen at most L times, while the array has L + 1 entries.

This is not sufficient yet, because the same agent a may see the leader multiple times in a row and cause all entries
of next_I D to become locked. If a only stores one ID, it will have no way to tell the leader that more than one entry of
next_I D has to be unlocked. This is why a also has a variable called redundant , which is a Boolean array that will store
information on all the active entries of next_I D that a sees after receiving an ID. So, if the agent a already has an ID and it
sees the leader again, it sets to true the entry of redundant corresponding to the active ID of the leader (line 32).

Now, suppose that the leader sees that a has an entry of redundant set to true. This implies that the corresponding entry
of next_I D is currently locked and should be unlocked. However, this cannot be done right away: the leader wants to give
a an “acknowledgment”, so that a will set the entry of redundant to f alse first. This is to prevent the scenario in which the
entry of next_I D gets unlocked, becomes active, another agent b sees it, and takes it as its own ID. If then the leader sees
a again (still with redundant on true), it will unlock the entry of next_I D . Then perhaps yet another agent c will see the
leader, getting the same ID as b.

To prevent such an incorrect behavior, the leader has another variable array called waiting , in which it stores the IDs of
the agents that should reset their redundant variables. The size of such an array is L +1, since at most L +1 different entries
of next_I D can be locked by agents with IDs. So, when the leader sees that a has some entry of redundant set to true, it
stores the (unique) ID of a in the corresponding entry of waiting (line 18). Then, when a sees the leader again and reads
its own ID in the waiting array, it knows that it has to set to f alse the corresponding entries of redundant (line 34). Finally,
when the leader sees a again and notices that the entry of redundant has been set to f alse, it can reset the corresponding
entry of waiting (line 20) and unlock the entry of new_I D (line 21).

The fact that the algorithm does not give the same ID to two different agents follows from the observation that at most
one agent can keep an entry of new_I D locked at any given time, which in turn follows from the way the two variables
redundant and waiting function together. If no omission occurs and the leader is observed by some agent a, then a will
store information about the currently active ID. If a takes this ID for itself, that entry of next_I D will be incremented before
any other agent can get the same ID. If a has already an ID, the entry of next_I D will remain locked until a has reset its
own redundant variable. Moreover, the fact that the algorithm will eventually assign every agent an ID immediately follows
from the global fairness of the adversarial scheduler.

Since the IDs in the next_I D array increase by L + 1 every time one is assigned, and since there are n agents in total, the
value of every ID is O(nL). Hence, O(L lognL) bits of memory are required to store each agent’s arrays, and O(lognL) more
bits are required to run the simulator of Theorem 3. The total amount of memory needed per agent is therefore O(L log nL)

bits. �

46 G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49
1: Variables
2: my_I D � the leader has this variable initialized to 0, non-leaders to ⊥
3: next_I D[] := [1, 2, . . . , L + 1] � leader variable
4: locked[] := [f alse, f alse, . . . , f alse] � leader variable, array of size L + 1
5: waiting[] := [⊥, ⊥, . . . , ⊥] � leader variable, array of size L + 1
6: redundant[] := [f alse, f alse, . . . , f alse] � leader variable, array of size L + 1
7:
8: Upon Event Starter sends()
9: if my_I D = 0 then � I am the leader

10: j := min{ j | locked[j] = f alse, L + 2}
11: if j < L + 2 then
12: locked[j] := true
13:
14: Upon Event Reactor receives (my_I Ds, next_I Ds[], lockeds[], waitings[], redundants[])
15: if my_I D = 0 then � I am the leader
16: for all j ∈ {1, 2, . . . , L + 1} do
17: if redundants[j] = true then
18: waiting[j] := my_I Ds

19: else if waiting[j] = my_I Ds then
20: waiting[j] := ⊥
21: locked[j] := f alse
22: if ∃ j, next_I D[j] = my_I Ds then
23: locked[j] := f alse
24: next_I D[j] := next_I D[j] + L + 1
25: else � I am not the leader
26: if my_I Ds = 0 then � my partner is the leader
27: j = min{ j | lockeds[j] = f alse, L + 2}
28: if j < L + 2 then
29: if my_I D = ⊥ then
30: my_I D := next_I Ds[j]
31: else
32: redundant[j] := true
33: if my_I D �= ⊥ ∧ ∃ j, waitings[j] = my_I D then
34: redundant[j] := f alse

Fig. 4. Naming algorithm for I1 and I2 with knowledge on omissions, used in Theorem 5.

4.2.2. Naming algorithm for T1

Observe that the naming protocol of Fig. 4 does not work for model T1, because it is based on the fundamental assump-
tion that the leader can always detect an interaction. This is not possible in model T1: if an omission occurs, is it possible
for the leader to be the starter of an interaction without realizing it. Moreover, Theorem 2 does not hold when some kind
of upper bound on omissions is known.

Theorem 6. Assuming T1, the presence of a leader, knowledge of an upper bound L on the number of omission failures in interactions
that involve the leader, and �(L lognL) bits of memory on each agent (where n is the number of agents), there exists a simulator for
every two-way protocol, even under the UO adversary.

Proof. It is sufficient to give a naming algorithm. We modify the one used in Theorem 4 to work in T1 with O(L log nL)

memory. The leader has the same two local variables, but each other agent has an array my_I D of L + 1 local variables,
each of which is initially set to ⊥. If an agent a sees the leader, and the local array my_I D of a has some entries still set to
⊥, then a changes one of them from ⊥ to the value of the leader’s next_I D variable. On the other hand, if the leader sees
an agent whose local array my_I D has some entries still set to ⊥, it increments next_I D . When all entries of an agent’s
array my_I D have been set, the entire array is taken as the agent’s ID.

Since the execution is globally fair, eventually all agents will have their my_I D array completely set. Observe that,
whenever the leader increments next_I D , there is an agent a that removes one occurrence of ⊥ from its local array my_I D ,
unless the interaction is omissive on a’s side. But there can only be L such omissive interactions, which means that the
maximum value of next_I D will be O(nL). So, �(L log nL) bits of memory are enough for an agent to store its local array
my_I D . By Theorem 3, combining this naming algorithm with the simulator does not require more than �(L log nL) bits of
memory on each agent.

Suppose for a contradiction that two agents receive equal IDs. Therefore, both agents have observed the leader L + 1
times, and at the jth observation both agents must have read the same value in variable next_I D , for all 1 ≤ j ≤ L + 1.
So, the leader has failed to increment next_I D for at least L + 1 times, implying that there have been L + 1 omissive
interactions involving the leader, which contradicts the theorem’s assumptions. Thus all agents receive distinct IDs, and the
naming algorithm is correct. �

G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49 47
1: Variables
2: role � the leader has this variable initialized to leader , non-leaders to available
3: stateP := initial_stateP
4: token := ⊥
5:
6: Upon Event Starter sends()
7: token := ⊥
8: if role = leader then
9: role := available

10: else if role = moving then
11: role := available
12: else if role = starter then
13: role := pending
14:
15: Upon Event Reactor receives (roles, states

P , tokens)

16: token := tokens

17: if roles = leader then
18: role := moving
19: else if roles = moving then
20: role := starter
21: else if roles = starter then
22: token := stateP
23: stateP := fr(states

P , stateP)

24: else if role = pending ∧ token �= ⊥ then
25: stateP := f s(stateP , token)

26: role := leader
27: token := ⊥

Fig. 5. Simulation protocol for IT with finite memory, used in Theorem 7.

5. Simulation for IT

Notice that IT is the only finite-memory model for which the impossibility result of Theorem 1 does not hold (see Fig. 1).
It turns out that in this model we can implement a simulator that sequentializes the simulated two-way interactions via a
token-passing technique.

Theorem 7. Assuming IT, the presence of a leader, a constant amount of memory on each agent and at least n > 2 agents, there exists
a simulator for every two-way protocol.

Proof. The simulation algorithm is reported in Fig. 5. Suppose we are given a two-way protocol P whose transition function
is δP (as, ar) = (f s(as, ar), fr(as, ar)). In our simulator, each agent has a local variable called stateP , which is the state of P
that the agent is simulating, plus an auxiliary variable role, which is used to coordinate the simulation. Initially, the role of
one agent is leader, while all others are available. When the leader meets another agent a, the leadership is “transferred” to
a: the role of the leader becomes available (line 9), and the role of a becomes moving (line 18). Note that the leader does
not have to see the state of a to perform this operation.

The next agent b that sees a becomes the starter of a new simulated interaction: the role of b becomes starter (line 20)
and the role of a becomes available again (line 11). Now, the first agent c that observes b becomes the reactor of the
simulated interaction: it executes function fr on its own simulated state using b’s simulated state as part of the input
(line 23), while b’s role becomes pending (line 13).

Now, in order for b to perform its side of the simulated transition, it has to retrieve the simulated state that c had before
transitioning. To deliver this information to b, the agent c stores its own simulated state in a variable called token before
performing the transition (line 22). Now, as soon as an agent sees c, it copies the token (line 16), while c erases its own
copy (line 7). This token circulation protocol is executed until the token reaches b.

When b finally obtains the token, it uses it as part of the input to function f s and changes its simulated state accordingly
(line 25). Now both sides of the simulated transition have been performed correctly, and b resets its role to leader (line 26)
and destroys the token (line 27). At this point we have exactly one agent whose role is leader, while all other agents have
role available, as we had at the beginning. The next steps of the simulation are thus performed in the same fashion.

Note that, if the two-way protocol P has a constant number k of states, then our simulator has O(k2) states, indepen-
dently of the size of the system.

The correctness of the simulator can be proven by observing that, due to the uniqueness of the leader, there is at most
one pending transition at all times. Moreover, any agent in the system can become the starter (including the leader itself),
thanks to the extra step that creates an agent with role moving: any non-leader agent can become moving , and then any
agent (including the original leader) can become starter. Note that this is not true if the system consists of n = 2 agents (in
this case the leader will necessarily become the starter of every simulated interaction), but by hypothesis we have n > 2
agents.

48 G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49
We have to prove that the system will perform infinitely many simulated interactions, in such a way that the simulated
execution is globally fair. By the global fairness of the simulator, a token will certainly be created and will be passed around
by the agents; again by global fairness, the token will eventually reach the agent with role = starter, and the simulated
interaction will be concluded. The global fairness of the entire simulated execution also follows immediately from the
global fairness of the simulator itself. �
6. Conclusions

In this paper we investigated the impact of the presence of a leader on the problem of simulating traditional population
protocols under weaker models of communication, which include omission faults. The obtained results show that the pres-
ence of a leader effectively allows the simulation when there is an upper bound on the number of omissions or memory is
not constrained. This is in contrast with what happens where a leader is not present, see [24]. However, when the memory
is constrained and there is no upper bound on omissions, despite the presence of the leader, simulations are impossible in
presence of omission faults. We remark that, since the impossibility holds for any amount of finite memory, it also holds for
uniform message passing algorithms where the communication is dynamic and point to point, showing that implementing
an atomic exchange of messages between two parties s not trivial under omission faults. An interesting open problem is
to determine which problems become unsolvable when omissions are present, so to gain an insight into the computational
challenges introduced by omissions.

Acknowledgements

This research has been supported in part by NSERC under the Discovery Grant program, by Dr. Flocchini’s University
Research Chair, and by KAKENHI No. 15H00852 and 25289227.

References

[1] D. Alistarh, R. Gelashvili, Polylogarithmic-time leader election in population protocols, in: 42th International Colloquium on Automata, Languages and
Programming, ICALP, 2015, pp. 479–491.

[2] D. Alistarh, R. Gelashvili, M. Vojnovic, Fast and exact majority in population protocols, in: 4th Annual ACM Symposium on Principles of Distributed
Computing, PODC, 2015, pp. 47–56.

[3] D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, R. Peralta, Computation in networks of passively mobile finite-state sensors, Distrib. Comput. 18 (2006)
235–253.

[4] D. Angluin, J. Aspnes, D. Eisenstat, On the power of anonymous one-way communication, in: 9th International Conference on Principles of Distributed
Systems, OPODIS, 2005, pp. 396–411.

[5] D. Angluin, J. Aspnes, D. Eisenstat, Stably computable predicates are semilinear, in: 25th Annual ACM Symposium on Principles of Distributed Comput-
ing, PODC, 2006, pp. 292–299.

[6] D. Angluin, J. Aspnes, D. Eisenstat, Fast computation by population protocols with a leader, Distrib. Comput. 21 (2008) 61–75.
[7] D. Angluin, J. Aspnes, D. Eisenstat, A simple population protocol for fast robust approximate majority, Distrib. Comput. 2 (2008) 87–102.
[8] J. Aspnes, E. Ruppert, An introduction to population protocols, in: Bulletin of the European Association for Theoretical Computer Science, vol. 93, 2007,

pp. 98–117.
[9] J. Beauquier, J. Burman, S. Clavière, D. Sohier, Space-optimal counting in population protocols, in: 29th International Symposium on Distributed Com-

puting, DISC, 2015, pp. 631–649.
[10] J. Beauquier, J. Burman, S. Kutten, A self-stabilizing transformer for population protocols with covering, Theoret. Comput. Sci. 412 (2011) 4247–4259.
[11] O. Bournez, P. Chassaing, J. Cohen, J. Gerin, X. Koegler, On the convergence of population protocols when population goes to infinity, Appl. Comput.

Math. 215 (2009) 1340–1350.
[12] S. Cai, T. Izumi, K. Wada, How to prove impossibility under global fairness: on space complexity of self-stabilizing leader election on a population

protocol model, Theory Comput. Syst. 50 (2012) 433–445.
[13] D. Canepa, M. Gradinariu Potop-Butucaru, Self-stabilizing tiny interaction protocols, in: 3rd International Workshop on Reliability, Availability, and

Security, WRAS, 2010, pp. 1–6.
[14] A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-varying graphs and dynamic networks, Int. J. Parallel Emergent Distrib. Syst. 27 (2012)

387–408.
[15] I. Chatzigiannakis, S. Dolev, S. Fekete, O. Michail, P. Spirakis, Not all fair probabilistic schedulers are equivalent, in: 13th International Conference on

Principles of Distributed Systems, OPODIS, 2009, pp. 33–47.
[16] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis, All symmetric predicates in NSPACE(n2) are stably computable by the mediated

population protocol model, in: 35th International Symposium on Mathematical Foundations of Computer Science, MFCS, 2010, pp. 270–281.
[17] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis, Passively mobile communicating machines that use restricted space, Theoret.

Comput. Sci. 412 (2011) 6469–6483.
[18] I. Chatzigiannakis, O. Michail, P. Spirakis, Stably decidable graph languages by mediated population protocols, in: 12th International Symposium on

Stabilization, Safety, and Security of Distributed Systems, SSS, 2010, pp. 252–266.
[19] I. Chatzigiannakis, P. Spirakis, The dynamics of probabilistic population protocols, in: 22th International symposium on Distributed Computing, DISC,

2008, pp. 498–499.
[20] H.-L. Chen, R. Cummings, D. Doty, D. Soloveichik, Speed faults in computation by chemical reaction networks, in: 28th International Symposium on

Distributed Computing, DISC, 2014, pp. 16–30.
[21] S. Das, G. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, Mediated population protocols: leader election and applications, in: 14th Annual Conference on

Theory and Applications of Models of Computation, TAMC, 2017, pp. 172–186.
[22] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, What dependability for networks of mobile sensors? in: 1st Workshop on Hot Topics in System De-

pendability, HotDep, 2005, p. 8.
[23] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, E. Ruppert, When birds die: making population protocols fault-tolerant, in: 2nd IEEE International

Conference on Distributed Computing in Sensor Systems, DCOSS, 2006, pp. 51–66.

http://refhub.elsevier.com/S0304-3975(18)30570-X/bib64616C697374617232s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib64616C697374617232s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib64616C6973746172s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib64616C6973746172s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6669727374s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6669727374s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6F6E65776179s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6F6E65776179s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib636F6D7075746162696C697479s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib636F6D7075746162696C697479s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib666173746C6561646572s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6D616A62697As1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib666972737432s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib666972737432s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib73706163656F7074636F756E74696E67s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib73706163656F7074636F756E74696E67s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib4265617571756965723230313134323437s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib696E66696E697465706F70756C6174696F6Es1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib696E66696E697465706F70756C6174696F6Es1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib697A756D696C65s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib697A756D696C65s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib63616E65706132s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib63616E65706132s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib43614651533132s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib43614651533132s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib7363686564756C6572s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib7363686564756C6572s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6D65646961746564s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6D65646961746564s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib706173736976656D616368696E65s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib706173736976656D616368696E65s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6D6564696174656433s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6D6564696174656433s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib70726F626162696C6973746963s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib70726F626162696C6973746963s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib706F70636865636Ds1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib706F70636865636Ds1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib44617332303137313732s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib44617332303137313732s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib66697273746661756C74s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib66697273746661756C74s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6661756C74s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6661756C74s1

G.A. Di Luna et al. / Theoretical Computer Science 754 (2019) 35–49 49
[24] G. Di Luna, P. Flocchini, T. Izumi, T. Izumi, N. Santoro, G. Viglietta, On the power of weaker pairwise interaction: fault-tolerant simulation of population
protocols, in: 37th IEEE International Conference on Distributed Computing Systems, ICDCS, 2017, pp. 2472–2477.

[25] G. Di Luna, P. Flocchini, T. Izumi, T. Izumi, N. Santoro, G. Viglietta, Population protocols with faulty interactions: the impact of a leader, in: 10th
International Conference on Algorithms and Complexity, CIAC, 2017, pp. 454–466.

[26] M. Fischer, H. Jiang, Self-stabilizing leader election in networks of finite-state anonymous agents, in: 10th International Conference on Principles of
Distributed Systems, OPODIS, 2006, pp. 395–409.

[27] R. Guerraoui, E. Ruppert, Even Small Birds are Unique: Population Protocols with Identifiers, Technical Report CSE-2007-04, York University, 2007.
[28] R. Guerraoui, E. Ruppert, Names trump malice: tiny mobile agents can tolerate byzantine failures, in: 36th International Colloquium on Automata,

Languages and Programming, vol. 2, ICALP, 2009, pp. 484–495.
[29] O. Michail, I. Chatzigiannakis, P. Spirakis, Mediated population protocols, Theoret. Comput. Sci. 412 (2011) 2434–2450.
[30] O. Michail, I. Chatzigiannakis, P. Spirakis, New Models for Population Protocols, Morgan & Claypool, 2011.

http://refhub.elsevier.com/S0304-3975(18)30570-X/bib446946494953563136s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib446946494953563136s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib44694649495356313643494143s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib44694649495356313643494143s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6C6561646572656C656374696F6Es1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6C6561646572656C656374696F6Es1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib696473s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib62697A6661756C74s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib62697A6661756C74s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib6D6564696174656432s1
http://refhub.elsevier.com/S0304-3975(18)30570-X/bib706F70626F6F6Bs1

	Population protocols with faulty interactions: The impact of a leader
	1 Introduction
	1.1 Framework
	1.2 Main contributions
	1.3 Related work

	2 Model and terminology
	2.1 Interacting entities
	2.2 Executions
	2.3 Non omissive interaction models
	2.4 Omissions
	2.4.1 Fairness

	2.5 Simulation of two-way protocols

	3 Simulation with a leader in omissive models: impossibility
	3.1 Impossibility with ﬁnite memory
	3.2 Impossibility with inﬁnite memory

	4 Simulation in omissive models
	4.1 Naming algorithm with inﬁnite memory
	4.2 Naming algorithms with knowledge on omissions
	4.2.1 Naming algorithm for I1 and I 2
	4.2.2 Naming algorithm for T1

	5 Simulation for IT
	6 Conclusions
	Acknowledgements
	References

