
On Asynchrony, Memory, and Communication:
Separations and Landscapes
Paola Flocchini #

EECS, University of Ottawa, Canada

Nicola Santoro #

School of Computer Science, Carleton University, Ottawa, Canada

Yuichi Sudo #

Faculty of Computer and Information Sciences, Hosei University, Tokyo, Japan

Koichi Wada #

Faculty of Science and Engineering, Hosei University, Tokyo, Japan

Abstract
Research on distributed computing by a team of identical mobile computational entities, called
robots, operating in a Euclidean space in Look-Compute-Move (LCM) cycles, has recently focused
on better understanding how the computational power of robots depends on the interplay between
their internal capabilities (i.e., persistent memory, communication), captured by the four standard
computational models (OBLOT , LUMI, FST A, and FCOM) and the conditions imposed by the
external environment, controlling the activation of the robots and their synchronization of their
activities, perceived and modeled as an adversarial scheduler.

We consider a set of adversarial asynchronous schedulers ranging from the classical semi-
synchronous (Ssynch) and fully asynchronous (Asynch) settings, including schedulers (emerging
when studying the atomicity of the combination of operations in the LCM cycles) whose adversarial
power is in between those two. We ask the question: what is the computational relationship
between a model M1 under adversarial scheduler K1 (M1(K1)) and a model M2 under scheduler
K2 (M2(K2))? For example, are the robots in M1(K1) more powerful (i.e., they can solve more
problems) than those in M2(K2)?

We answer all these questions by providing, through cross-model analysis, a complete characteri-
zation of the computational relationship between the power of the four models of robots under the
considered asynchronous schedulers. In this process, we also provide qualified answers to several
open questions, including the outstanding one on the proper dominance of Ssynch over Asynch in
the case of unrestricted visibility.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Look-Compute-Move, Oblivious mobile robots, Robots with lights, Memory
versus Communication, Moving and Computing, Asynchrony

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2023.28

Related Version Full Version: https://arxiv.org/abs/2311.03328

Funding This research was partly supported by NSERC through the Discovery Grant program, by
JSPS KAKENHI No. 20H04140, 20KK0232, 20K11685, 21K11748, and by JST FOREST Program
JPMJFR226U.

1 Introduction

1.1 Background
Robot Models. Since the seminal work of Suzuki and Yamashita [31], the studies of the
computational issues arising in distributed systems of mobile computational entities, called
robots, operating in a Euclidean space have focused on identifying the minimal assumptions

© Paola Flocchini, Nicola Santoro, Yuichi Sudo, and Koichi Wada;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles of Distributed Systems (OPODIS 2023).
Editors: Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi; Article No. 28;
pp. 28:1–28:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pflocchi@uottawa.ca
https://orcid.org/0000-0003-3584-5727
mailto:santoro@scs.carleton.ca
https://orcid.org/0000-0001-6437-4173
mailto:sudo@hosei.ac.jp
https://orcid.org/0000-0002-4442-1750
mailto:wada@hosei.ac.jp
https://orcid.org/0000-0002-5351-1459
https://doi.org/10.4230/LIPIcs.OPODIS.2023.28
https://arxiv.org/abs/2311.03328
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Asynchrony, Memory, and Communication: Separations and Landscapes

on internal capabilities of the robots (e.g., persistent memory, communication) and external
conditions of the system (e.g., synchrony, activation scheduler) that allow the entities to
perform basic tasks and collectively solve given problems.

Endowed with computational, visibility and motorial capabilities, the robots are anony-
mous (i.e., indistinguishable from each other), uniform (i.e., run the same algorithm), and
disoriented (i.e., they might not agree on a common coordinate system). Modeled as math-
ematical points in the 2D Euclidean plane in which they can freely move, they operate
in Look-Compute-Move (LCM) cycles. In each cycle, a robot “Looks ” at its surroundings
obtaining (in its current local coordinate system) a snapshot indicating the locations of the
other robots. Based on this information, the robot executes its algorithm to “Compute” a
destination, and then “Moves” towards the computed location.

In the (weakest and de facto) standard model, OBLOT , the robots are also oblivious
(i.e., they have no persistent memory of the past) and silent (i.e., they have no explicit
means of communication). Extensive investigations have been carried out to understand the
computational limitations and powers of OBLOT robots for basic coordination tasks such as
Gathering (e.g., [1, 2, 4, 8, 9, 10, 17, 25, 31]), Pattern Formation (e.g., [18, 22, 31, 34, 35]),
Flocking (e.g., [7, 23, 30]); see also the monograph [14] for a general account.

The absence of persistent memory and the lack of explicit communication critically
restrict the computational capabilities of the OBLOT robots, and limit the solvability
of problems. These limitations are removed, to some extent, in the LUMI model of
luminous robots. In this model, each robot is equipped with a constant-bounded amount
of persistent1 memory, called light, whose value, called color, is visible to all robots. In
other words, luminous robots can both remember and communicate, albeit at a very limited
level. Since its introduction in [11], the model has been the subject of several investigations
focusing on the design of algorithms and the feasibility of problems for LUMI robots (e.g.
[3, 11, 12, 20, 24, 27, 28, 29, 32, 33]; see Chapter 11 of [14] for a recent survey). An important
result is that, even if so limited, the simultaneous presence of both persistent memory and
communication renders luminous robots strictly more powerful than oblivious robots [11].
This has in turns opened the question on the individual computational power of the two
internal capabilities, memory and communication, and motivated the investigations on two
sub-models of LUMI: the finite-state robots denoted as FST A, where the robots have a
constant-size persistent memory but are silent, and the finite-communication robots denoted
as FCOM, where robots can communicate a constant number of bits but are oblivious (e.g.,
see [5, 6, 20, 21, 27, 28]).

A/Synchrony. All these studies in all those models have brought to light the crucial role
played by two interrelated external factors: the level of synchronization and the activation
schedule provided by the system. Like in other types of distributed computing systems, there
are two different settings, the synchronous and the asynchronous ones.

In the synchronous (also called semi-synchronous) (Ssynch) setting, introduced in [31],
time is divided into discrete intervals, called rounds. In each round, an arbitrary but
nonempty subset of the robots is activated, and they simultaneously perform exactly one
Look-Comp-Move cycle. The selection of which robots are activated at a given round is
made by an adversarial scheduler, constrained only to be fair, i.e., every robot is activated
infinitely often. Weaker synchronous adversaries have also been introduced and investigated.
The most important and extensively studied is the fully-synchronous (Fsynch) scheduler,

1 i.e., it is not automatically reset at the end of a cycle.

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:3

which activates all the robots in every round. Other interesting synchronous schedulers are
Rsynch, where the sets of robots activated in any two consecutive rounds are restricted to
be disjoint, and it studied for its use to model energy-restricted robots [6], as well as the
family of sequential schedulers (e.g., RoundRobin), where in each round only one robot is
activated.

In the asynchronous setting (Asynch), introduced in [16], there is no common notion of
time, each robot is activated independently of the others; it allows for finite but arbitrary
delays between the Look, Comp and Move phases, and each movement may take a finite but
arbitrary amount of time. The duration of each cycle of a robot, as well as the decision of
when a robot is activated, are controlled by an adversarial scheduler, constrained only to be
fair, i.e., every robot must be activated infinitely often.

Weaker adversaries are easily identified considering the atomicity of the combination
of the Look, Comp and Move stages. In particular, if in every cycle the three operations
are executed as a single atomic instantaneous operation, this scheduler we shall call LCM -
atomic-Asynch coincides with Ssynch. On the other hand, by combining fewer operations,
two asynchronous schedulers are identified [27]: LC-atomic-Asynch, where the Look and
Comp operations are a single atomic operation; and CM -atomic-Asynch, where the Comp
and Move operations are a single atomic operation.

Of independent interest is the restricted asynchronous adversary unable to schedule the
Look operation of a robot during the Move operation of another. The particular theoretical
relevance of this scheduler, called M -atomic-Asynch [27] derives from the fact that one of
the strongest debilitating effects of unrestricted asynchrony is precisely the fact that a robot,
when looking, cannot detect if another robot is still or moving.

Separators. Like in other types of distributed systems, understanding the computational
difference between (levels of) synchrony and asynchrony has been a primary research focus,
first in the OBLOT model, and subsequently in the others.

Indeed, one of the first results in the field has been the proof that in OBLOT the simple
problem of two robots meeting at the same location, called Rendezvous(RDV), is unsolvable
under Ssynch [31] while easily solvable under Fsynch, implying that fully synchronous
OBLOT robots are strictly more powerful than semi-synchronous ones.

Any problem that, like Rendezvous, proves the separation between the computational
power of robots in two different settings is said to be a separator. The quest has immediately
been to determine if there are other problems in OBLOT separating Ssynch from Fsynch
(i.e., the extent of their computational difference); no other has been found so far. Clearly
more important and pressing has been the question of whether there is any computational
difference between synchrony and asynchrony. The quest for a problem separating Asynch
from Ssynch has been ongoing for more than two decades. Recently a separator has been
found in the special case when the visibility range of the robots is limited [26], leaving the
existence of a separator open for the unrestricted case.

The quest for a separator in OBLOT has been made more pressing since the result
that no separation exists between Asynch and Ssynch in the LUMI model [11]; that is,
the presence of a limited form of communication and memory is sufficient to completely
overcome the limitations imposed by asynchrony. This result has motivated the investigation
of the two submodels of LUMI where the robots are endowed with only the limited form of
persistent memory, FST A, or of communication, FCOM. While separation between fully
synchrony and semi-synchrony has been shown to exist for both submodels [5, 21], the more
important question of whether one of them is capable of overcoming asynchrony has not yet
been answered; indeed, no separator between Ssynch and Asynch has been found so far for
either submodel.

OPODIS 2023

28:4 Asynchrony, Memory, and Communication: Separations and Landscapes

Landscapes. To understand the impact that the factors of persistent memory and com-
munication have on the feasibility of problems, the main investigation tool has been the
comparative analysis of the (new and/or existing) results obtained for the same problems
under the different four models OBLOT ,FST A,FCOM,LUMI. The same methodological
tool can obviously be used also to establish the computational relationships between those
models within a spectrum of schedulers, so to identify the relative powers of those schedulers
within each model.

Through this type of cross-model analysis, researchers have recently produced a compre-
hensive characterization of the computational relationship between the four models with
respect to the range of synchronous schedulers <Fsynch, Rsynch, Ssynch>. creating a
comprehensive map of the synchronous landscape for distributed systems of autonomous
mobile robots in the four models [5, 21].

With respect to the (more powerful) asynchronous adversarial schedulers, ranging from
LCM -atomic-Asynch (i.e., Ssynch) to Asynch, very little is known to date on the
computational power of persistent memory and of explicit communication in general, and
on the computational relationship between the four models in particular. As mentioned,
it is known that in LUMI, robots have in Asynch the same computational power as in
Ssynch and that asynchronous luminous robots are strictly more powerful than oblivious
synchronous robots [11].

Summarizing, while a comprehensive computational map has existed for the synchronous
landscape, only disconnected fragments exist so far of the asynchronous landscape.

1.2 Contributions
In this paper, we analyze the computational relationship among the four models OBLOT ,
FST A, FCOM and LUMI, under the range of asynchronous schedulers < LCM -atomic-
Asynch, LC-atomic-Asynch, CM -atomic-Asynch, M -atomic-Asynch, and Asynch>,
establishing a large variety of results. Through these results, we close several open prob-
lems, and create a complete map of the asynchronous landscape for distributed systems of
autonomous mobile robots in the four models.

Among our contributions, we prove the existence of a separator between Ssynch and
Asynch in the standard OBLOT model for the unrestricted visibility case by identifying a
simple natural problem, Monotone Line Convergence (MLCv), that separates Ssynch from
Asynch for OBLOT robots. This problem requires two robots to convergence towards
each other monotonically (i.e., without ever increasing their distance) on the line connecting
them. We prove that this problem, trivially solvable in semi-synchronous systems, is however
unsolvable if the system is asynchronous.

Because of this separation inOBLOT on one hand, and of the known absence of separation
in LUMI on the other, the next immediate question is whether either of LUMI’s specific
features (i.e., constant-sized communication and persistent memory) is strong enough alone
to overcome asynchrony. In other words, are there separators between Ssynch and Asynch
in FST A ? in FCOM ? In these regards, we provide a positive answer to both questions,
thus proving that both features are needed to overcome asynchrony.

The characterization of the computational relationship between the four models with
respect to the range of asynchronous schedulers is complete: for any two models, M1, M2 ∈
{OBLOT ,FST A,FCOM,LUMI} and adversarial schedulers K1, K2 ∈ {LCM -atomic-
Asynch, LC-atomic-Asynch, CM -atomic-Asynch, M -atomic-Asynch, Asynch} it is
determined whether the computational power of (the robots in) M1 under K1 is stronger
than, weaker than, equivalent to or orthogonal to (i.e., incomparable with) that of (the
robots in) M2 under K2.

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:5

For example, we prove that for FST A (i.e., in presence of only limited internal persistent
memory), Ssynch is computationally more powerful than Move-atomic-Asynch, which
in turn is computationally more powerful than Asynch. The several orthogonality (i.e.,
incomparability) results include for example the fact that the combination of asynchrony
and limited persistent memory is neither more nor less powerful than the combination of
synchrony and obliviousness. Observe that to prove that a model under a specific scheduler
is stronger than or orthogonal to another model and scheduler (or same model and a different
scheduler, or other model and same scheduler) requires to determine a problem solvable in
one setting but not in the other.

Among the equivalence of two models each under a specific scheduler, we have proved
that for FCOM (i.e., in presence of only limited communication): the atomic combination of
Compute and Move does not provide any gain with respect to complete asynchrony; on the
other hand, the atomic combination of Look and Compute completely overcomes asynchrony.
The proof of the equivalence has involved designing a simulation protocol that allows to
correctly execute any protocol for the first model and scheduler into the other model and
scheduler.

The resulting asynchronous landscape is shown in Figure 1 where S, A, ALC AM , and
ACM denote Ssynch, Asynch, LC -atomic-Asynch, M -atomic-Asynch, and CM -atomic-
Asynch, respectively; a box located higher than another indicates dominance unless they
are connected by a dashed line, which denotes orthogonality; equivalence is indicated directly
in the boxes.

LUMIS≡LUMIA

FSTAAM

FSTAS

OBLOTS

orthogonality

FCOMS≡FCOMALC

FCOMAM≡FCOMA

FSTAALC≡FSTAAOBLOTAM

OBLOTALC≡OBLOTA

Figure 1 Asynchronous landscape of LUMI, FCOM, FST A and OBLOT .

Due to space limitations, some proofs and detailed descriptions are omitted; they can be
found in [19].

2 Models and Preliminaries

2.1 Robots
We shall consider a set R = {r0, · · · , rn−1} of n > 1 mobile computational entities, called
robots, operating in the Euclidean plane R2. The robots are anonymous (i.e., they are indis-
tinguishable by their appearance), autonomous (i.e., without central control), homogeneous
(i.e., the all execute the same program). Viewed as points they can move freely in the plane.
Each robot is equipped with a local coordinate system (in which it it is always at its origin),

OPODIS 2023

28:6 Asynchrony, Memory, and Communication: Separations and Landscapes

and it is able to observe the positions of the other robots in its local coordinate system.
The robots are disoriented; that is, there might not be consistency between the coordinate
systems of different robots at the same time, or the same robot at different times2. We
assume that the robots however have chirality; that is, they agree on the the same circular
orientation of the plane (e.g., “clockwise” direction).

At any time, a robot is either active or inactive. When active, a robot r executes a
Look-Compute-Move (LCM) cycle. Each cycle is compose of three operations:

1. Look: The robot obtains an instantaneous snapshot of the positions occupied by the other
robots (expressed in its own coordinate system)3. We do not assume that the robots are
capable of strong multiplicity detection [15].

2. Compute: The robot executes its algorithm using the snapshot as input. The result of
the computation is a destination point.

3. Move: The robot moves to the computed destination4; if the destination is the current
location, the robot stays still and the move is said to be null.

After executing a cycle, a robot becomes inactive. All robots are initially inactive. The time
it takes to complete a cycle is assumed to be finite and the operations Look and Compute
are assumed to be instantaneous.

In the standard model, OBLOT , the robots are also silent: they have no explicit means
of communication; furthermore, they are oblivious: at the start of a cycle, a robot has no
memory of observations and computations performed in previous cycles.

In the other common model, LUMI, each robot r is equipped with a persistent register
Light[r], called light, whose value called color, is from a constant-sized set C and is visible
by the robots. The color of the light can be set in each cycle by r at the end of its Compute
operation, and is not automatically reset at the end of a cycle. In LUMI, the Look operation
produces a colored snapshot; i.e., it returns the set of pairs (position, color) of the other
robots. It is sometimes convenient to describe a robot r as having k ≥ 1 lights, denoted
r.light1, . . . , r.lightk, where the values of r.lighti are from a finite set of colors Ci, and to
consider Light[r] as a k-tuple of variables; clearly, this corresponds to r having a single light
that uses Πk

i=1|Ci| colors. Note that if |C| = 1, this case corresponds to the OBLOT model.
Two submodels of LUMI, FST A and FCOM, have been defined and investigated, each

offering only one of its two capabilities, persistent memory and direct means of communication,
respectively. In FST A, a robot can only see the color of its own light; thus, the color merely
encodes an internal state. Therefore, robots are silent, as in OBLOT , but they are finite-state.
In FCOM, a robot can only see the color of the light of the other robots; thus, a robot can
communicate to the other robots the color of its light but does not remember its own state
(color). Thus, robots are enabled with finite-communication but are oblivious.

In all the above models, a configuration C(T) at time T is the multiset of the n pairs
(ri(T), ci(T)), where ci(T) is the color of robot ri at time T .

2 This is also called variable disorientation; restricted forms (e.g., static disorientation, where each local
coordinate system remains always the same) have been considered for these systems.

3 This is called the full visibility (or unlimited visibility) setting; restricted forms of visibility have also
been considered for these systems [17].

4 This is called the rigid mobility setting; restricted forms of mobility (e.g., when movement may be
interrupted by an adversary), called non-rigid mobility have also been considered for these systems.

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:7

2.2 Schedulers, Events
With respect to the activation schedule of the robots, and the duration of their LCM cycles,
the fundamental distinction is between the synchronous and asynchronous settings.

In the synchronous setting (Ssynch), also called semi-synchronous and first studied
in [31], time is divided into discrete intervals, called rounds; in each round, a non-empty set
of robots is activated and they simultaneously perform a single Look-Comp-Move cycle in
perfect synchronization. The selection of which robots are activated at a given round is made
by an adversarial scheduler, constrained only to be fair (i.e., every robot is activated infinitely
often). The particular synchronous setting, where every robot is activated in every round is
called fully-synchronous (Fsynch). In a synchronous setting, without loss of generality, the
expressions “i-th round” and “time t = i” are used as synonyms.

In the asynchronous setting (Asynch), first studied in [16], there is no common notion of
time, the duration of each phase is finite but unpredictable and might be different in different
cycles, and each robot is activated independently of the others. The duration of the phases of
each cycle as well as the decision of when a robot is activated is controlled by an adversarial
scheduler, constrained only to be fair, i.e., every robot must be activated infinitely often.

In the asynchronous settings, the execution by a robot of any of the operations Look,
Compute and Move is called an event. We associate relevant time information to events: for
the Look (resp., Compute) operation, which is instantaneous, the relevant time is TL (resp.,
TC) when the event occurs; for the Move operation, these are the times TB and TE when
the event begins and ends, respectively. Let T = {T1, T2, ...} denote the infinite ordered set
of all relevant times; i.e., Ti < Ti+1, i ∈ IN. In the following, to simplify the presentation
and without any loss of generality, we will refer to Ti ∈ T simply by its index i; i.e., the
expression “time t” will be used to mean “time Tt”.

In our analysis of Asynch, we will also consider and make use of the following submodels
of Asynch, defined by the level of atomicity of the Look, Comp and Move operations.

LC-atomic-Asynch: The scheduler does not allow any robot r to perform a Look
operation while another robot r′ ̸= r is performing its Comp operation in that cycle
[13, 27]. Thus, in the LC -atomic-Asynch model, it can be assumed that, in every cycle,
the Look and Comp operations are performed simultaneously and atomically and that
tL = tC .
M-atomic-Asynch: The scheduler does not allow any robot r to perform a Look
operation while another robot r′ ̸= r is performing its Move operation in that cycle
[13, 27]. In this case, Move operations (called M -operations) in all cycles can be considered
to be performed instantaneously and that tB = tE .
CM -atomic-Asynch: The scheduler does not allow any robot r to perform a Look
operation while another robot r′ ̸= r is performing a Comp or Move operation in that
cycle. Thus, in this model, in every cycle the operations Comp and Move, denoted as
CPM, can be considered as performed simultaneously and atomically, and tC = tB = tE .

To complete the description, two additional specifications are necessary.
Specification 1. In presence of visible external lights (i.e., models LUMI and FCOM), if a
robot r changes its color in the Comp operation at time t ∈ T , by definition, its new color
will become visible only at time t + 1.

Specification 2. Under the M -atomic-Asynch and CM -atomic-Asynch schedulers, if
a robot r ends a non-null Move operation at time t ∈ T , by definition, its new position will
become visible only at time t + 1.

OPODIS 2023

28:8 Asynchrony, Memory, and Communication: Separations and Landscapes

Note that, the model where the Look, Comp, and Move operations are considered as
a single instantaneous atomic operation (thus referable to as LCM -atomic-Asynch is
obviously equivalent to Ssynch.

In the following, for simplicity of notation, we shall use the symbols F , S, A, ALC ,
AM , and ACM to denote the schedulers Fsynch, Ssynch, Asynch, LC -atomic-Asynch,
M -atomic-Asynch, and CM -atomic-Asynch, respectively.

2.3 Problems and Computational Relationships
Let M = {LUMI,FCOM,FST A,OBLOT } be the set of models under investigation and
S = {F, S, A, ALC , AM , ACM} be the set of schedulers under consideration.

A problem to be solved (or task to be performed) is described by a set of temporal
geometric predicates, which implicitly define the valid initial, intermediate, and (if existing)
terminal5 configurations, as well as restrictions (if any) on the size n of the set R of robots.

An algorithm A solves a problem P in model M ∈M under scheduler K ∈ S if, starting
from any valid initial configuration, any execution by R of A in M under K satisfies the
temporal geometric predicates of P .

Given a model M ∈M and a scheduler K ∈ S, we denote by MK , the set of problems
solvable by robots in M under adversarial scheduler K. Let M1, M2 ∈M and K1, K2 ∈ S.

We say that model M1 under scheduler K1 is computationally not less powerful than
model M2 under K2, denoted by MK1

1 ≥MK2
2 , if M1(K1) ⊇M2(K2).

We say that M1 under K1 is computationally more powerful than M2 under K2, denoted
by MK1

1 > MK2
2 , if MK1

1 ≥MK2
2 and (M1(K1) \M2(K2)) ̸= ∅.

We say that M1 under K1 and M2 under K2, are computationally equivalent , denoted
by MK1

1 ≡MK2
2 , if MK1

1 ≥MK2
2 and MK2

2 ≥MK1
1 .

Finally, we say that K1 K2, are computationally orthogonal (or incomparable), denoted
by MK1

1 ⊥MK2
2 , if (M1(K1) \M2(K2)) ̸= ∅ and (M2(K2) \M1(K1)) ̸= ∅.

Trivially,

▶ Lemma 1. For any M ∈M and any K ∈ S:
1. MF ≥MS ≥MALC ≥MA

2. MF ≥MS ≥MACM ≥MAM ≥MA

3. LUMIK ≥ FST AK ≥ OBLOT K

4. LUMIK ≥ FCOMK ≥ OBLOT K

Let us also recall the following equivalence established in [11]:

▶ Lemma 2 ([11]). LUMIA ≡ LUMIS

that is, in the LUMI model, there is no computational difference between Asynch and
Ssynch.

Observe that, in all models, any restriction of the adversarial power of the asynchronous
scheduler does not decrease (and possibly increases) the computational capabilities of the
robots in that model. In other words, if Aα is a restricted scheduler of Aβ , then MAβ ≤MAα

for any robot model M ∈M.
Note that the difference between ACM and AM is that there exists just one type of

configuration that can be observed in AM but cannot be observed in ACM : the one before
moving but after computing. As for X ∈ {FST A,OBLOT }, since robots cannot observe
the colors of the other robots, we have XACM ≡ XAM and XALC ≡ XA.

5 A terminal configuration is one in which, once reached, the robots no longer move.

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:9

3 The OBLOT Computational Landscape

3.1 Separating SSYNCH from ASYNCH

In this section we prove that, under Ssynch, the robots in OBLOT are strictly more powerful
than under AM , thus separating Ssynch from Asynch in OBLOT .

To do so, we consider the classical Collisionless Line Convergence (CLCv) problem,
where two robots, r and q, must converge to a common location, moving on the line connecting
them, without ever crossing each other; i.e., CLCv is defined by the predicate

CLC ≡
[
{∃ℓ ∈ R2,∀ϵ ≥ 0,∃T ≥ 0,∀t ≥ T : |r(t)− ℓ|+ |q(t)− ℓ| ≤ ϵ},

and {∀t ≥ 0 : r(t), q(t) ∈ r(0)q(0)},

and {∀t ≥ 0 : dis(r(0), r(t)) ≤ dis(r(0), q(t)), dis(q(0), q(t)) ≤ dis(q(0), r(t))}
]

and we focus on the monotone version of this problem defined below.

▶ Definition 3 (MONOTONE LINE CONVERGENCE (MLCv)). The two robots, r and q must
solve the Collisionless Line Convergence problem without ever increasing the distance
between them.

In other words, an algorithm solves MLCv iff it satisfies the following predicate:

MLC ≡ [CLC and {∀t′ ≥ t, |r(t′)− q(t′)| ≤ |r(t)− q(t)|}]

First observe that MLCv can be solved in OBLOT S .

▶ Lemma 4. MLCv∈ OBLOT S. This holds even under non-rigid movement and in absence
of chirality.

Proof. It is rather immediate to see that the simple protocol using the strategy “move to
half distance” satisfies the MLC predicate and thus solves the problem. ◀

On the other hand, MLCv is not solvable in OBLOT AM .

▶ Lemma 5. MLCv ̸∈ OBLOT AM even under fixed disorientation and agreement on the unit
of distance.

Proof. By contradiction, assume that there exists an algorithm A that solves MLCv in
OBLOT AM . Let the two robots, r and q, have the same unit of distance, initially each see
the other on the positive direction of the X axis and their local coordinate system not change
during the execution of A. Three observations are in order.
(1) First observe that, by the predicates defining MLCv, if a robot moves, it must move

towards the other, and in this particular setting, it must stay on its X axis.
(2) Next observe that, every time a robot is activated and executes A, it must move. In

fact, if, on the contrary, A prescribes that a robot activated at some distance d from the
other must not move, then, in a fully synchronous execution of A where both robots are
initially at distance d, neither of them will ever move and, thus, will never converge.

(3) Finally observe that, when robot r moves towards q on the X axis after seeing it at
distance d, the length f(d) of the computed move is the same as that q would compute
if seeing r at distance d.

OPODIS 2023

28:10 Asynchrony, Memory, and Communication: Separations and Landscapes

Consider now the following execution E under AM : Initially both robots are simultaneously
activated, and are at distance d from each other. Robot r completes its computation and
executes the move instantaneously (recall, they are operating under AM), and continues to
be activated and to execute A while robot q is still in its initial computation.

Each move by r clearly reduces the distance between the two robots. More precisely, by
observation (3), after k ≥ 1 moves, the distance will be reduced from d to dk where d0 = d

and dk>0 = dk−1 − f(dk−1) = d−
∑

0≤i<k f(di).

▷ Claim. After a finite number of moves of r, the distance between the two robots becomes
smaller that f(d).

Proof. By contradiction, let r never get closer than f(d) to q; that is for every k > 0,
dk > f(d).

Consider then the execution Ê of A under the RoundRobin synchronous scheduler: the
robots, initially at distance d, are activated one per round, at alternate rounds. Observe that,
since A is assumed to be correct under AM , it must be correct also under RoundRobin.
This means that, starting from the initial distance d, for any fixed distance d′ > 0, the two
robots become closer than d′. Let m(d′) denote the number of rounds for this to occur;
then, the distance between them becomes smaller than f(d) after m(f(d)) rounds. Further
observe that, after round i, the distance di between them is reduced by f(di). Summarizing,
dm(f(d)) = d−

∑
0≤i<m(f(d)) f(di) < f(d), contradicting that dk > f(d) for every k > 0. ◁

Consider now the execution E at the time the distance becomes smaller that f(d); let
robot q complete its computation at that time and perform its move, of length f(d), towards
r. This move then creates a collision, contradicting the correctness of A. ◀

From Lemmas 4 and 5, and since OBLOT AM ≥ OBLOT A by definition, the main result
now follows:

▶ Theorem 6. OBLOT S > OBLOT A

In other words, under the synchronous scheduler Ssynch, OBLOT robots are strictly
more powerful than when under the asynchronous scheduler Asynch. This results provides
a definite positive answer to the long-open question of whether there exists a computational
difference between synchrony and asynchrony in OBLOT .

3.2 Refining the OBLOT Landscape
We can refine the OBLOT landscape as follows; By definition, OBLOT AM ≥ OBLOT A.
Consider now the following problem for n = 4 robots.

▶ Definition 7 (TRAPEZOID FORMATION (TF)). Consider a set of four robots, R = {a, b, c, d}
whose initial configuration forms a convex quadrilateral Q = (ABCD) = (a(0)b(0)c(0)d(0)) with
one side, say CD, longer than all others. The task is to transform Q into a trapezoid T ,
subject to the following conditions:
(1) If Q is a trapezoid, the configuration must stay unchanged (Figure 2(1)); i.e.,

TF1 ≡ [Trapezoid(ABCD)⇒ {∀t > 0, r ∈ {a, b, c, d} : r(t) = r(0)}]

(2) Otherwise, without loss of generality, let A be farther than B from CD. Let Y (A) (resp.,
Y (B)) denote the perpendicular lines from A (resp., B) to CD meeting CD in A′ (resp.
B′), and let α be the smallest angle between ∠BAA′ and ∠ABB′.

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:11

(1)

Initial Configuration Final Configuration

(2)

A B

D C

A B

D C

D

B’

α

A

B

C
A’

α≧π/4
A B

C
D

α<π/4
α

A
B

D C
A’ B’

A
B

D C

(3)

Figure 2 TRAPEZOID FORMATION (TF).

(2.1) If α ≥ π/4 then the robots must form the trapezoid shown in Figure 2(2), where
the location of a is a translation of its initial one on the line Y (A), and that of all
other robots is unchanged; specifically,

TF2.1 ≡ [(α ≥ π/4) ⇒ {∀t ≥ 0, r ∈ {b, c, d} : r(t) = r(0), a(t) ∈ Y (A)} and

{∃t > 0 : ∀t′ ≥ t, {a(t′)b(t′) ||CD} and {a(t′) = a(t)} }]

(2.2) If instead α < π/4 then the robots must form the trapezoid shown in Fig. 2(3),
where the location of all robots but b is unchanged, and that of b is a translation of
its initial one on the line Y (B); specifically,

TF2.2 ≡ [(α < π/4) ⇒ {∀t ≥ 0, r ∈ {a, c, d} : r(t) = r(0), b(t) ∈ Y (B)} and

{∃t > 0 : ∀t′ ≥ t, {a(t′)b(t′) ||CD} and {b(t′) = b(t)} }]

Observe that TF can be solved in OBLOT AM .

▶ Lemma 8. TF ∈ OBLOT AM , even in absence of chirality.

Proof. It is immediate to see that the following simple set of rules solves TF in OBLOT AM .
Rule 1: If the observed configuration is as shown in Figure 2 (1), the configuration is

already a trapezoid, and no robot performs any move (TF1).
Rule 2: Let the configuration be as shown in Figure 2 (2). Whenever observed by b, c, d,

none of them moves; when observed by a, a moves to the desired point eventually creating a
terminal configuration subject to Rule 1. Since the scheduler is Move-atomic Asynch the
other robots do not observe a during this move, but only after the move is completed.

Rule 3: Analogously, let the configuration be as shown in Figure 2 (3). Whenever observed
by a, c, d, none of them moves; when observed by b, b moves to the desired point eventually
creating a trapezoid and reaching a terminal configuration, unseen by all other robots during
this movement. ◀

However, TF cannot be solved in OBLOT A.

▶ Lemma 9. TF /∈ OBLOT A, even with fixed disorientation.

Proof. By contradiction, let A be an algorithm that always allows the four OBLOT robots to
solve TF under the asynchronous scheduler. Consider the initial configuration where a is fur-
ther than b from CD, and α = π/4. In this configuration, a is required to move (along Y (A))
while no other robot is allowed to move. Observe that, as soon as a moves, it creates a configu-
ration where a is still further than b from CD, but α′ = min{∠b(t)a(t)A′,∠a(t)b(t)B′} < π/4.

OPODIS 2023

28:12 Asynchrony, Memory, and Communication: Separations and Landscapes

Consider now the execution of A in which a is activated first, and then b is activated while
a is moving; in this execution, the configuration seen by b requires it to to move, violating
TF2.1 and contradicting the assumed correctness of algorithm A. ◀

Thus, by Lemmas 8 and 9, we have

▶ Theorem 10. OBLOT AM > OBLOT A

▶ Theorem 11. OBLOT S > OBLOT AM > OBLOT ALC ≡ OBLOT A

Proof. (1) The equivalence OBLOT ALC ≡ OBLOT A holds because, by definition, OBLOT
robots cannot distinguish between ALC and A; then, by Theorem 10, OBLOT AM >

OBLOT ALC . (2) It follows from Lemmas 4 and 5. (3) It follows from (1) and Theorem 6. ◀

4 The FCOM Computational Landscape

4.1 Separating SSYNCH from ASYNCH in FCOM
We have seen (Theorem 6) that, to overcome the limitations imposed by asynchrony, the
robots must have some additional power with respect to those held in OBLOT .

In this section, we show that the communication capabilities of FCOM are not sufficient.
In fact, we prove that, under Ssynch, the robots in FCOM are strictly more powerful than
under AM , thus separating Ssynch from Asynch in FCOM. To do so, we use the problem
MLCv again.

Observe that MLCv can be solved even in OBLOT S (Lemma 4), and thus in FCOMS .

▶ Lemma 12. MLCv ∈ FCOMS; this holds even under variable disorientation, non-rigid
movement and in absence of chirality.

On the other hand, MLCv is not solvable in FCOMAM .

▶ Lemma 13. MLCv ̸∈ FCOMAM .

Proof. Let us consider two robots, r and q, and show that the adversary can activate them
in a way that exploits variable disorientation to cause them to violate the condition of MLCv.

We consider the execution in which the adversary always forces the robots to perceive
the distance between r and q as 1, which is equivalent to the current unit distance of X.
We define a function f(c, d) as the length of the move taken by a robot when it observes
color c of the other robot and the true distance between the two robots is d in the last Look
phase. Since the distance always appears as 1 to the robots, the value F (c) = f(c, d)/d is
independent of d. We denote the initial color of the robots as c0 and assume that F (c0) > 0,
which does not affect generality as the adversary can activate r and q multiple times until
both robots have a color c such that F (c) > 0. Without loss of generality, we also assume
that F (c0) ≤ 1/2. If F (c0) > 1/2, it follows that r and q pass each other when the adversary
activates both robots at time step 0, violating the condition of MLCv. Therefore, we assume
0 < F (c0) < 1/2 without loss of generality.

Starting from time step 0, the adversary refrains from activating r and instead activates
only q to move ⌊log1−F (c0) F (C0)⌋ + 1 times. Since q always perceives c0 as the color of
r during this period, the distance between r and q decreases by a factor of (1 − F (C0))
with each move of q. As a result, the distance between r and q becomes smaller than
F (C0)d0 = f(c0, d0) after this period, where d0 is the initial distance between r and q. The
adversary then activates r to perform its Move phase. r moves a distance of f(c0, d0) and
overtakes q, thereby violating the condition. ◀

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:13

From Lemmas 12 and 13, and since FCOMAM ≥ FCOMA by definition, the main result
now follows:

▶ Theorem 14. FCOMS > FCOMA

4.2 Refining the FCOM Landscape
In this Section we complete the characterization of the asynchronous landscape of FCOM
proving FCOMA ≡ FCOMAM ≡ FCOMACM < FCOMALC ≡ FCOMS

We first show that every problem solvable by a set of FCOM robots under ACM can
also be solved under Asynch. We do so constructively: we present a simulation algorithm
for FCOM robots that allows them to correctly execute in Asynch any protocol A given in
input (i.e., all its executions under Asynch are equivalent to some executions under ACM).
The simulation algorithm (called SIM) makes each FCOM robot execute A infinitely often,
never violating the conditions of scheduler CM -atomic-Asynch. To achieve this, SIM needs
an activated robot to be able to retrieve some information about its past (e.g., whether or not
it has “recently” executed A). Such information can obviously be encoded and persistently
stored by the robot in the color of its own light; but, since an FCOM robot cannot see the
color of its light, the robot cannot access the stored information. However, this information
can be seen by the other robots, and hence can be communicated by some of them (via the
color of their lights) to the needing robot. This can be done efficiently as follows. Exploiting
chirality, the robots can agree at any time on a circular ordering of the nodes where robots
are located, so that for any such a location x both its predecessor pred(x) and its successor
suc(x) in the ordering are uniquely identified, with pred(suc(x)) = x; all robots located at
x then become responsible for communicating the needed information to the robots located
at suc(x)6.

Let A be an algorithm for FCOM robots in CM -atomic-Asynch, and let A use a light
of ℓ colors: C = {c0, c1, . . . cℓ−1}. It is assumed that, in any initial configuration C, the
number of distinct locations7 is m ≥ 2.

As described later, the simulation algorithm is composed of four phases. To execute the
simulation protocol, a robot r uses four externally visible persistent lights:
1. r.light ∈ C, indicating its own light used in the execution of A; initially, r.light = c0;
2. r.phase ∈ {1, 2, 3, m}, indicating the current phase of the simulation algorithm; initially

r.phase = 1;
3. r.state ∈ {W, M, F}, indicating the state of r in its execution of the simulation; initially,

r.state = W ;
4. r.suc.state ∈ 2{W,M,F }, indicating the set of states at suc(x), where x is the current

location of r; initially, r.suc.state={W}.
Summarizing, each robot r has Light[r] = ⟨r.light, r.phase, r.state, r.suc.state⟩. For a
location x and l ∈ {light, phase, state, suc.state}, let x.l = ∪r at xr.l denote the set of the
lights r.l of the robots at location x.

Informally, the simulation algorithm is composed of three main phases which are contin-
uously repeated and a fourth one which is occasionally performed. Each execution of the
three main phases corresponds to a single execution of A, each satisfying the CM -atomic

6 Although we use chirality to determine the cyclic order, this assumption can be circumvented by slightly
increasing the number of light colors and deciding the color of the corresponding robot using local ’suc’
and ’pred’ [14].

7 In FCOM, by definition, if all robots of the same color are located on the same position, they would
not be able to see anything including themselves and they could not perform any task.

OPODIS 2023

28:14 Asynchrony, Memory, and Communication: Separations and Landscapes

condition, by some robots. The three main phases are repeated until every robot has executed
A at least once, ensuring fairness. Appropriate flags are set up to detect this occurrence; a
“mega-cycle” is said to be completed, and after the execution of the fourth phase (a reset),
a new mega-cycle is started (continuing the simulation of the execution of A through the
continuing execution of the three phases). In other words, in each mega-cycle all robots are
activated and execute8 A under the CM -atomic condition.

Let us describe the protocol in more details. After the Look operation, an activated robot
r at x recognize its own r.state by using the predecessor’s suc.state and the set r.state.here

of states seen by r at its own location x. It understands to be in Phase 1 by detecting
ρ.phase = 1 for any other robot ρ.

In Phase 1, if the activated robot r has not executed yet A in the current mega-cycle (its
state is W) and does not observe any robot with state = M , r changes its state flag from
W to M and executes A; otherwise, it changes r.phase to 2. Note that, in Phase 1 only
a robot with state flag M might be moving; hence since activated robots do not execute
A if they see any robot in phase 1 with state flag M , the simulated algorithm is executed
under CM -atomic-Asynch. Once all these executions of A are completed, within finite
time every robot r has r.phase = 2, and the second phase starts.

In Phase 2, there are no robots executing algorithm A, no robot is moving, and the
locations of the robots remains unchanged. An activated robot r at x only updates r.suc.state

by observing suc(x) and change its phase flag from 2 to 3. When every robot r has r.phase

to 3, the third phase starts.
In Phase 3, if robot r executed algorithm A in Phase 1 (r.state = M), then it changes its

state flag from M to F (to ensure that the scheduling of robots performing the simulated
algorithms is fair). After all robots with M change their state flags to F , every robot copies
its neighboring states’ flags (suc(x).state) setting Phase to 1.

At the beginning of Phase 1, the end of the current mega-cycle is checked. If the mega-
cycle is finished (i.e., all robots have their state flags set to F), the robots enter the special
Phase m, in which each robot r resets the flag r.state = W and r.suc.state = {W}. Once
completed, the robots return to Phase 1 and begin a new mega-cycle. Observe that, during
the transition from Phase 1 to Phase m and from Phase m back to Phase 1, there are
configurations containing both phase flags m and 1; it is however not difficult for the robots
to distinguish the particular transition being observed: if ∀r(r.state = F)is true, it is the
former, otherwise ∀r(r.state = W) is true it is the latter.

The correctness of the simulation (see [19]) implies the following:

▶ Theorem 15. FCOMACM ≡ FCOMA. This holds even in absence of chirality.

Since ACM ≤ AM ≤ A, in turn this theorem implies the following corollary.

▶ Corollary 16. FCOMAM ≡ FCOMA. This holds even in absence of chirality.

We can use the same simulation algorithm to show the equivalence between ALC and
Ssynch in FCOM. Since FCOMALC ≤ FCOMS by definition, to prove FCOMALC ≡
FCOMAM , we need to show that every problem solvable by a set of FCOM robots under
Ssynch can also be solved under ALC .

The simulation algorithm for FCOM robots that allows them to correctly execute under
ALC any protocol designed to work under Ssynch, is actually precisely the simulation
algorithm SIM described in the previous subsection, that executes under Asynch any

8 In each phase of mega-cycles, at most one robot may execute the simulated algorithm more than once.

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:15

Algorithm 1 SIM(A): predicates and subroutines for robot r at location x.

Assumptions: Let x0, x1, . . . , xm−1 be the circular arrangement on the configuration C (m ≥ 2),
and let define suc(xi) = xi+1 mod m and pred(xi) = xi−1 mod m.

State Look
Observe, in particular, pred(x).state(suc.state), suc(x).state(suc.state), and ρ.phase(ρ ̸= r);
as well as r.state.here (the set of states seen by r at its own location x.
Note that, for this, r cannot see its own color).

predicate Is-all-phases(p:phase)
∀ρ(̸= r)(ρ.phase = p)

predicate Is-phases-mixed(p, q: phase)
∀ρ(̸= r)[(ρ.phase = p) or (ρ.phase = q)]
and [not Is-all-phases(p)] and [not Is-all-phases(q)]

predicate Is-exist-M
∃ρ(̸= r)[(ρ.state = M) or (M ∈ ρ.suc.state)]

predicate Is-all(s: state)
∀ρ(ρ.state = s) and own.state = {s}

function r.own.state: set of states
own.state← pred(x).suc.state− x.state.here,
where x.state.here corresponds to the set of states seen by r at its own location x

subroutine Copy-States-of-Neighbors
r.suc.state ← suc(x).state

subroutine Reset-state-and-neighbor-state
r.state←W

r.suc.state← {W}

algorithm A designed to work under ACM . To understand why this is the case, observe that,
as we have shown, any asynchronous execution of SIM with algorithm A in input produces a
specific execution of A under ACM . If the executions of SIM were not arbitrary (i.e., under
Asynch) but under a restricted asynchronous scheduler (say Aα), then each such execution
would clearly produce a specific execution of A under the asynchronous scheduler which
satisfies both CM and α.

Thus, the execution of SIM under ALC with A in input, will produce an execution of
A that satisfies both LC and CM ; that is, an execution under LCM-atomic-Asynch =
Ssynch.

▶ Theorem 17. FCOMS ≡ FCOMALC .

Finally, Theorems 14–17 imply the following separation:

▶ Theorem 18. FCOMALC > FCOMACM .

OPODIS 2023

28:16 Asynchrony, Memory, and Communication: Separations and Landscapes

Algorithm 2 SIM(A) - for robot r at location x.

State Compute
1: r.des ← r.pos
2: if Is-all-phases(1) then
3: Copy-state-of -Neighbors

4: r.phase← 1
5: if Is-all(F) then r.phase← m

6: else if (∃ρ(̸= r)[(ρ.state = M)) then r.phase← 2
7: else if (r.own.state= {W}) then
8: Execute the Compute of A // determining my color r.light and destination r.des //
9: r.state←M

10: else if Is-all-phases(2) then
11: r.phase← 3
12: Copy-state-of -Neighbors

13: else if Is-all-phases(3) then
14: Copy-state-of -Neighbors

15: r.phase← 3
16: if Is-exist-M then
17: if r.own.state= {M} then
18: r.state← F

19: Copy-state-of -Neighbors

20: else// no-M//
21: r.phase← 1
22: Copy-state-of -Neighbors

23: else if Is-phase-mixed(1,2) then
24: r.phase← 2
25: else if Is-phase-mixed(2,3) then
26: r.phase← 3
27: Copy-state-of -Neighbors

28: else if Is-phase-mixed(1,3) then
29: r.phase← 1
30: Copy-state-of -Neighbors

31: else if Is-all-phases(m) then //Reset state//
32: Reset-state-and-neighbor-state
33: if ∃ρ ̸= r(ρ.state = F) then
34: r.phase ← m

35: else //There does not exist F //
36: r.phase ← 1
37: else if Is-phase-mixed(1,m) and Is-all(F) then r.phase← m

38: else if Is-phase-mixed(1,m) and Is-all(W) then r.phase← 1

State Move
Move to r.des;

5 The FST A Computational Landscape

5.1 Separating SSYNCH from ASYNCH in FST A

In this section, we consider the FST A model; in this model, the only difference with OBLOT
is that the robots are endowed with a bounded amount of memory whose content persists
from a cycle to the next. We investigate whether, with this additional capability, the robots
are able to overcome the limitations imposed by asynchrony,

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:17

The answer is unfortunately negative: we prove that, also in this model, the otherwise
enhanced robots are strictly more powerful under the synchronous scheduler Ssynch than
under the asynchronous one Asynch.

To do so, we consider the problem MLCv again.
Observe that MLCv can be solved even in OBLOT S (Lemma 4), and thus in FST AS .

▶ Lemma 19. MLCv ∈ FST AS; this holds even under variable disorientation, non-rigid
movement and in absence of chirality.

On the other hand, MLCv cannot be solved in FST AAM .

▶ Lemma 20. MLCv /∈ FST AAM

Proof. Let r and q be the two robots that we consider. In what follows, we will show that
for any algorithm, the adversary can activate r and q and exploit variable disorientation so
that they violate the condition of MLCv.

Because of variable disorientation, whenever a robot X ∈ {r, q} performs a Look operation,
the adversary can (and will) force the observed distance between r and q in the resulting
snapshot to be always 1 (i.e., equals the current unit distance of X). Let f(c, d) be the
length of the computed move when a robot has color c and the real distance between the two
robots is d in the last Look phase. Note that F (c) = f(c, d)/d does not depend on d because
the distance always looks one to the robots.

Since the distance always looks the same to the robots, unless the two robots meet, the
transition sequence of the internal colors set by a robot is fixed. In particular, since the
number of colors is a fixed constant, after a finite transient, say (c0, c1, . . . , ck), the sequence
becomes periodic, say (cs, cs+1, ..., ck)∗.

Then, the adversary can activate the robots in the following way so that, either during
the transient they violate the condition of MLCv, or both of them end the transient without
meeting each other and have color cs:
1. i← 0.
2. If F (ci) > 1/2, the adversary activates both r and q, by which they pass each other,

clearly violating the condition of MLCv. If F (ci) ≤ 1/2, the adversary first activates r,
and then activates q, by which r and q never meets (i.e., never reach the same location).

3. i← i + 1 and go back to 2.

If the robots did not violate the condition of MLCv during their transient, they are both
at the beginning of their periodic sequence with color cs in distinct positions. If F (ci) = 0
holds for all i = s, s + 1, . . . , k, no robot moves, thus MLCv is never solved. So, without loss of
generality, we assume cs = c0 and F (c0) > 0. Then, the following strategy of the adversary
leads to the violation of the condition of MLCv, where d0 is the distance between r and q at
time 0.
1. Let r and q perform Look and Compute phase, by which both r and q compute to move

by distance f(c0, d0).
2. While r is still waiting to be activated to move, activate only q repeatedly until q overtakes

r or the distance between r and q becomes less than f(c0, d0). The former case occurs if
F (ci) > 1 for some i. This obviously violates the condition of MLCv. Otherwise, the latter
case must eventually occur because the distance between r and q becomes constant times
smaller each time q changes its color k times. Then, the adversary finally activate r to
perform its Move phase. Then, r moves a distance f(c0, d0) and overtakes q, violating
the condition.

Thus, for any algorithm, the two robots must violate the condition of MLCv. ◀

OPODIS 2023

28:18 Asynchrony, Memory, and Communication: Separations and Landscapes

Thus, by Lemmas 19 and 20, a separation between Ssynch and Asynch in FST A is
shown.

▶ Theorem 21. FST AS > FST AA

5.2 Refining the FST A landscape
We can refine the FST A landscape as follows; Consider again the TF problem defined
and analyzed in Section 3.2. By Lemma 8, TF can be solved in OBLOT AM , and thus in
FST AAM .

On the other hand, TF is not solvable in FST AALC .

▶ Lemma 22. TF ̸∈ FST AALC , even with fixed disorientation.

Proof. By contradiction, let A be an algorithm that always allows the two FST A robots to
solve TF and form a trapezoid reaching a terminal state in finite time under the ALC scheduler.
Consider the initial configuration where a is further than b from CD, and α = π/4. Starting
from this configuration, a is required to move within finite time along Y (A); on the other hand,
no other robot is allowed to move. Consider now the execution ofA in which only a is activated,
and starts moving at time t; observe that, as soon as a moves, it creates a configuration
where a is still further than b from CD, but α′ = min{∠b(t)a(t)A′,∠a(t)b(t)B′} < π/4.

Activate now b at time t′ > t while a is still moving. Should this have been an initial
configuration, within a constant number of activations (bounded by the number of internal
states), b would move, say at time t”. In the current execution, slow down the movement of
a so that it is still moving at time t′′. Since in FST A b cannot access the internal state of a,
nor remember previously observed angles and distances, it cannot detect that the observed
configurations are not initial configurations; hence it will move at time t”, violating TF2
and contradicting the assumed correctness of A. ◀

Summarizing: by definition, FST AAM ≥ FST AA; by Lemma 8, it follows that TF is
solvable in FST AAM ; and, by Lemma 22, it follows that TF is not solvable in FST AA. In
other words:

▶ Theorem 23. FST AAM > FST AA

▶ Theorem 24.
1. FST AALC ≡ FST AA

2. FST AS > FST AAM

3. FST AS > FST AALC

4. FST AAM > FST AALC

Proof. 1. holds because, by definition, FST A robots cannot distinguish between ALC and
A. 2. follows from follows from Lemmas 19 and 20. 3. follows from 1. and Theorem 21. 4.
follows from 1. and Theorem 23. ◀

6 Relationship Between Models Under Asynchronous Schedulers

In the previous sections, we have characterized the asynchronous landscape within each robot
model. In this section, we determine the computational relationship between the different
models under the asynchronous schedulers ALC , AM , ACM and Asynch.

We do so by first determining the relationship between FCOM and the other models
under the asynchronous schedulers; we then complete the characterization of the landscape
by establishing the still remaining relationships, those between FST A and OBLOT .

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:19

6.1 Relative power of FCOM
In this section, we determine the relationship between FCOM and the other models under
the asynchronous schedulers ALC , AM , ACM and Asynch.

We first show that FCOMALC and FST AAM are orthogonal. To prove this result we use
the existence of a problem, Cyclic Circles (CYC), shown in [6] to be solvable in FCOMA

but not in FST AS :

▶ Lemma 25 ([6]).
1. CYC ̸∈ FST AS

2. CYC ∈ FCOMA, even under non-rigid-movement.

We then consider the problem Get Closer but Not too Close on Line (GCNCL)
defined as follows.

▶ Definition 26 (Get Closer but Not too Close on Line (GCNCL)). Let a and b be two robots
on distinct locations a(0), b(0) where r(t) denotes the position of r ∈ {a, b} at time t ≥ 0.
This problem requires the two robots to get closer, without ever increasing their distance on
the line connecting them, and eventually stop at distance at least |a(0)− b(0)|/2 from each
other.

In other words, an algorithm solves GCNCL iff it satisfies the following predicate:

GCNCL ≡
(
∀t ≥ 0 : a(t), b(t) ∈ a(0)b(0)

)
∧ (∀t, t′ : 0 ≤ t ≤ t′ → dt ≥ dt′)

∧
(
∃t : d0

2 ≤ dt < d0 ∧ (∀t′ ≥ t : a(t) = a(t′) ∧ b(t) = b(t′))
)

,

where dt is the distance between the two robots at time t, i.e., dt = |a(t)− b(t)|.

▶ Lemma 27.
1. GCNCL ̸∈ FCOMS.
2. GCNCL ∈ FST AA.

Proof. 1. The impossibility of FCOMS can be obtained as follows. Since we consider
FCOM, a robot computes its destination depending on the color of its opponent, not on its
own color. We say that a color c is attractive if a robot decides to move (i.e., not stay) when
the color of the opponent is c. The adversary can prevent the robots from solving GCNCL in
the following way. Initially, both robots have the same color. If that color is not attractive,
the adversary keeps on simultaneously activating both robots until the color of the robots
becomes attractive. During this period, no robot moves by the definition of attractive colors.
Note that an attractive color must appear eventually to solve GCNCL. From then on, the
adversary keeps on activating only one robot, say a, while never activating b. During this
period, b never changes its color, so the color of b is always attractive. Because of variable
disorientation, the adversary can guarantee that there is a fixed positive constant c ≤ 1 such
that when a is activated at time t, the resulting distance between a and b (after a moves) is
c · dt = c · |a(t)− b(t)|. (The robots immediately violate the specification of GCNCL if c > 1
or c = 0.) However, this implies that the distance between a and b converges to zero as a

moves repeatedly, violating the specification of GCNCL.
2. The problem is easily solvable with FST A robot in Asynch. Let the robots have

color A initially. The first time a robot is activated, it moves closer by distance d/4 to the
other and changes its color to B, where d is the observed distance. Whenever a robot is
activated, if its color is B, it does not move. Clearly, both robots eventually stop and their
final distance is at least d0/2. ◀

OPODIS 2023

28:20 Asynchrony, Memory, and Communication: Separations and Landscapes

The orthogonality of FCOMALC and FST AAM (or FST AA) then follows from Lem-
mas 25 and 27.

▶ Theorem 28.
1. FCOMALC⊥ FST AAM

2. FCOMALC⊥ FST AA

3. FCOMALC > OBLOT S

Proof. 1.–2. By Lemmas 25 and 27. 3. is proved by the fact that RDV can be solved by
FCOMS but not by OBLOT S , and by the equivalence of FCOMS and FCOMALC . ◀

The following theorem shows the relative power of FCOMA.

▶ Theorem 29.
1. FCOMA(≡ FCOMAM)⊥ FST AAM

2. FCOMA⊥ FST AA

3. FCOMA⊥ OBLOT S

4. FCOMA > OBLOT AM

Proof. 1. (resp. 2.) follows from Theorem 28 1. (resp. 2.) and noting that CYC can be
solved in FCOMA. 3. is proved by Lemmas 4 and 13(MLCv can be solved in OBLOT S

but cannot be solved in FCOMAM) and the fact that CYC cannot be solved in FST AS

(and so OBLOT S). 4. is proved by the equivalence of FCOMAM and FCOMA and using
the result of RDV. ◀

The relationship between FCOM and the other models under the asynchronous schedulers
has been determined in the previous section (Theorems 28 and 29). To complete the
characterization of the relationship between the computational power of the models under
the asynchronous schedulers, we need to determine the relationship between FST A and
OBLOT .

▶ Theorem 30.
1. FST AAM⊥ OBLOT S

2. FST AAM > OBLOT AM > OBLOT A

3. FST AA⊥ OBLOT AM

4. FST AA⊥ OBLOT S

5. FST AA > OBLOT A

Proof. Note that RDV can be solved in FST AA (and so FST AAM) but cannot be solved
in OBLOT S (and so OBLOT AM and OBLOT A). 1. is proved by the results of RDV, and
MLCv, which can be solved in OBLOT S but cannot be solved in FST AAM (Lemmas 4
and 20). 2. is proved with the result of RDV and Theorem 10. 3. (resp. 4.) are proved with
the result of RDV and TF (Lemmas 8, 22 and the equivalence of FST AALC and FST AA)
(resp. MLCv (Lemmas 4, 20 and Theorem 23)). 5. is proved by the result of RDV. ◀

7 Concluding Remarks

In this paper, we investigated the computational relationship between the power of the four
models OBLOT , FST A, FCOM and LUMI, under a range of asynchronous schedulers,
from Ssynch to Asynch, and provided a complete characterization of such relationships.
In this process, we have established a variety of results on the computational powers of the
robots in presence or absence of (limited) internal capabilities of memory persistence and/or
communication. These results include the proof of computational separation between Ssynch
and Asynch in absence of either capability, closing several important open questions.

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:21

This investigation has also provided valuable insights into the elusive nature of the
relationship between asynchrony and the level of atomicity of the Look, Comp, and Move
operations performed in an LCM cycle. In fact, in this paper, the study of the asynchronous
landscapes has focused on precisely the set of asynchronous schedulers defined by the different
possible atomic combinations of those operations as well as the Move operation: starting
from LCM -atomic-Asynch, which corresponds to Ssynch, ending with Asynch, and
including LC-atomic-Asynch, CM -atomic-Asynch, and M -atomic-Asynch.

These results open several new research directions. In particular, an important direction
is the examination of other classes of asynchronous schedulers, to further understand the
nature of asynchrony for robots operating in LCM cycles, identify the crucial factors that
render asynchrony difficult for the robots, and possibly discover new methods to overcome it.

References
1 N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots.

SIAM Journal on Computing, 36(1):56–82, 2006. doi:10.1137/050645221.
2 H. Ando, Y. Osawa, I. Suzuki, and M. Yamashita. A distributed memoryless point convergence

algorithm for mobile robots with limited visivility. IEEE Transactions on Robotics and
Automation, 15(5):818–828, 1999.

3 S. Bhagat and K. Mukhopadhyaya. Optimum algorithm for mutual visibility among asyn-
chronous robots with lights. In Proc. 19th Int. Symp. on Stabilization, Safety, and Security of
Distributed Systems (SSS), pages 341–355, 2017. doi:10.1007/978-3-319-69084-1_24.

4 Z. Bouzid, S. Das, and S. Tixeuil. Gathering of mobile robots tolerating multiple crash
faults. In the 33rd Int. Conf. on Distributed Computing Systems, pages 337–346, 2013.
doi:10.1109/ICDCS.2013.27.

5 K. Buchin, P. Flocchini, I. Kostitsyna, T. Peters, N. Santoro, and K. Wada. Autonomous
mobile robots: Refining the computational landscape. In APDCM 2021, pages 576–585, 2021.
doi:10.1109/IPDPSW52791.2021.00091.

6 K. Buchin, P. Flocchini, I. Kostitsyna, T. Peters, N. Santoro, and K. Wada. On the com-
putational power of energy-constrained mobile robots: Algorithms and cross-model analysis.
In Proc. 29th Int. Colloquium on Structural Information and Communication Complexity
(SIROCCO), pages 42–61, 2022. doi:10.1007/978-3-031-09993-9_3.

7 D. Canepa and M. Potop-Butucaru. Stabilizing flocking via leader election in robot networks.
In Proc. 10th Int. Symp. on Stabilization, Safety, and Security of Distributed Systems (SSS),
pages 52–66, 2007. doi:10.1007/978-3-540-76627-8_7.

8 S. Cicerone, Di Stefano, and A. Navarra. Gathering of robots on meeting-points. Distributed
Computing, 31(1):1–50, 2018. doi:10.1007/S00446-017-0293-3.

9 M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by
mobile robots: Gathering. SIAM Journal on Computing, 41(4):829–879, 2012. doi:
10.1137/100796534.

10 R. Cohen and D. Peleg. Convergence properties of the gravitational algorithms in asyn-
chronous robot systems. SIAM J. on Computing, 34(6):1516–1528, 2005. doi:10.1137/
S009753970444647.

11 S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Autonomous mobile robots
with lights. Theoretical Computer Science, 609:171–184, 2016. doi:10.1016/J.TCS.2015.09.
018.

12 G.A. Di Luna, P. Flocchini, S.G. Chaudhuri, F. Poloni, N. Santoro, and G. Viglietta. Mutual
visibility by luminous robots without collisions. Information and Computation, 254(3):392–418,
2017. doi:10.1016/J.IC.2016.09.005.

13 S. Dolev, S. Kamei, Y. Katayama, F. Ooshita, and K. Wada. Brief announcement: Neigh-
borhood mutual remainder and its self-stabilizing implementation of look-compute-move
robots. In 33rd International Symposium on Distributed Computing, pages 43:1–43:3, 2019.
doi:10.4230/LIPICS.DISC.2019.43.

OPODIS 2023

https://doi.org/10.1137/050645221
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1109/ICDCS.2013.27
https://doi.org/10.1109/IPDPSW52791.2021.00091
https://doi.org/10.1007/978-3-031-09993-9_3
https://doi.org/10.1007/978-3-540-76627-8_7
https://doi.org/10.1007/S00446-017-0293-3
https://doi.org/10.1137/100796534
https://doi.org/10.1137/100796534
https://doi.org/10.1137/S009753970444647
https://doi.org/10.1137/S009753970444647
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1016/J.IC.2016.09.005
https://doi.org/10.4230/LIPICS.DISC.2019.43

28:22 Asynchrony, Memory, and Communication: Separations and Landscapes

14 P. Flocchini, G. Prencipe, and N. Santoro (Eds). Distributed Computing by Mobile Entities.
Springer, 2019. doi:10.1007/978-3-030-11072-7.

15 P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious Mobile Robots.
Morgan & Claypool, 2012. doi:10.2200/S00440ED1V01Y201208DCT010.

16 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard tasks for weak robots: the role of
common knowledge in pattern formation by autonomous mobile robots. In 10th Int. Symp. on
Algorithms and Computation (ISAAC), pages 93–102, 1999. doi:10.1007/3-540-46632-0_10.

17 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous robots
with limited visibility. Theoretical Computer Science, 337(1–3):147–169, 2005. doi:10.1016/
J.TCS.2005.01.001.

18 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation
by asynchronous oblivious robots. Theoretical Computer Science, 407:412–447, 2008. doi:
10.1016/J.TCS.2008.07.026.

19 P. Flocchini, N. Santoro, Y. Sudo, and K. Wada. On asynchrony, memory, and communication:
Separations and landscapes. CoRR abs/2311.03328, arXiv, 2023. arXiv:2311.03328.

20 P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory.
Theoretical Computer Science, 621:57–72, 2016. doi:10.1016/J.TCS.2016.01.025.

21 P. Flocchini, N. Santoro, and K. Wada. On memory, communication, and synchronous
schedulers when moving and computing. In Proc. 23rd Int. Conference on Principles of
Distributed Systems (OPODIS), pages 25:1–25:17, 2019. doi:10.4230/LIPICS.OPODIS.2019.
25.

22 N. Fujinaga, Y. Yamauchi, H. Ono, S. Kijima, and M. Yamashita. Pattern formation by
oblivious asynchronous mobile robots. SIAM Journal on Computing, 44(3):740–785, 2015.
doi:10.1137/140958682.

23 V. Gervasi and G. Prencipe. Coordination without communication: The case of the flocking
problem. Discrete Applied Mathematics, 144(3):324–344, 2004. doi:10.1016/J.DAM.2003.11.
010.

24 A. Hériban, X. Défago, and S. Tixeuil. Optimally gathering two robots. In Proc. 19th Int.
Conference on Distributed Computing and Networking (ICDCN), pages 1–10, 2018. doi:
10.1145/3154273.3154323.

25 T. Izumi, S. Souissi, Y. Katayama, N. Inuzuka, X. Défago, K. Wada, and M. Yamashita.
The gathering problem for two oblivious robots with unreliable compasses. SIAM Journal on
Computing, 41(1):26–46, 2012. doi:10.1137/100797916.

26 D. Kirkpatrick, I. Kostitsyna, A. Navarra, G. Prencipe, and N. Santoro. Separating bounded
and unbounded asynchrony for autonomous robots: Point convergence with limited visibility.
In 40th Symposium on Principles of Distributed Computing (PODC). ACM, 2021. doi:
10.1145/3465084.3467910.

27 T. Okumura, K. Wada, and X. Défago. Optimal rendezvous L-algorithms for asynchronous
mobile robots with external-lights. In Proc. 22nd Int. Conference on Principles of Distributed
Systems (OPODIS), pages 24:1–24:16, 2018. doi:10.4230/LIPICS.OPODIS.2018.24.

28 T. Okumura, K. Wada, and Y. Katayama. Brief announcement: Optimal asynchronous ren-
dezvous for mobile robots with lights. In Proc. 19th Int. Symp. on Stabilization, Safety, and Se-
curity of Distributed Systems (SSS), pages 484–488, 2017. doi:10.1007/978-3-319-69084-1_
36.

29 G. Sharma, R. Alsaedi, C. Bush, and S. Mukhopadyay. The complete visibility problem for fat
robots with lights. In Proc. 19th Int. Conference on Distributed Computing and Networking
(ICDCN), pages 21:1–21:4, 2018. doi:10.1145/3154273.3154319.

30 S. Souissi, T. Izumi, and K. Wada. Oracle-based flocking of mobile robots in crash-recovery
model. In Proc. 11th Int. Symp. on Stabilization, Safety, and Security of Distributed Systems
(SSS), pages 683–697, 2009. doi:10.1007/978-3-642-05118-0_47.

31 I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric pat-
terns. SIAM Journal on Computing, 28:1347–1363, 1999. doi:10.1137/S009753979628292X.

https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.2200/S00440ED1V01Y201208DCT010
https://doi.org/10.1007/3-540-46632-0_10
https://doi.org/10.1016/J.TCS.2005.01.001
https://doi.org/10.1016/J.TCS.2005.01.001
https://doi.org/10.1016/J.TCS.2008.07.026
https://doi.org/10.1016/J.TCS.2008.07.026
https://arxiv.org/abs/2311.03328
https://doi.org/10.1016/J.TCS.2016.01.025
https://doi.org/10.4230/LIPICS.OPODIS.2019.25
https://doi.org/10.4230/LIPICS.OPODIS.2019.25
https://doi.org/10.1137/140958682
https://doi.org/10.1016/J.DAM.2003.11.010
https://doi.org/10.1016/J.DAM.2003.11.010
https://doi.org/10.1145/3154273.3154323
https://doi.org/10.1145/3154273.3154323
https://doi.org/10.1137/100797916
https://doi.org/10.1145/3465084.3467910
https://doi.org/10.1145/3465084.3467910
https://doi.org/10.4230/LIPICS.OPODIS.2018.24
https://doi.org/10.1007/978-3-319-69084-1_36
https://doi.org/10.1007/978-3-319-69084-1_36
https://doi.org/10.1145/3154273.3154319
https://doi.org/10.1007/978-3-642-05118-0_47
https://doi.org/10.1137/S009753979628292X

P. Flocchini, N. Santoro, Y. Sudo, and K. Wada 28:23

32 S. Terai, K. Wada, and Y. Katayama. Gathering problems for autonomous mobile robots
with lights. Theoretical Computer Science, 941(4):241–261, 2023. doi:10.1016/J.TCS.2022.
11.018.

33 G. Viglietta. Rendezvous of two robots with visible bits. In 10th Int. Symp. on Algorithms
and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGO-
SENSORS), pages 291–306, 2013. doi:10.1007/978-3-642-45346-5_21.

34 M. Yamashita and I. Suzuki. Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoretical Computer Science, 411(26–28):2433–2453, 2010.
doi:10.1016/J.TCS.2010.01.037.

35 Y. Yamauchi, T. Uehara, S. Kijima, and M. Yamashita. Plane formation by synchronous
mobile robots in the three-dimensional euclidean space. J. ACM, 64:3(16):16:1–16:43, 2017.
doi:10.1145/3060272.

OPODIS 2023

https://doi.org/10.1016/J.TCS.2022.11.018
https://doi.org/10.1016/J.TCS.2022.11.018
https://doi.org/10.1007/978-3-642-45346-5_21
https://doi.org/10.1016/J.TCS.2010.01.037
https://doi.org/10.1145/3060272

	1 Introduction
	1.1 Background
	1.2 Contributions

	2 Models and Preliminaries
	2.1 Robots
	2.2 Schedulers, Events
	2.3 Problems and Computational Relationships

	3 The OB Computational Landscape
	3.1 Separating SSYNCH from ASYNCH
	3.2 Refining the OB Landscape

	4 The FCOM Computational Landscape
	4.1 Separating SSYNCH from ASYNCH in FCOM
	4.2 Refining the FC Landscape

	5 The FST A Computational Landscape
	5.1 Separating SSYNCH from ASYNCH in FST A
	5.2 Refining the FS landscape

	6 Relationship Between Models Under Asynchronous Schedulers
	6.1 Relative power of FC

	7 Concluding Remarks

