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Abstract

Mobile agents operating in networked environments face threats from other agents as well

as from the hosts (i.e., network sites) they visit. A black hole is a harmful host that destroys

incoming agents without leaving any trace. To determine the location of such a harmful

host is a dangerous but crucial task, called black hole search. The most important parameter

for a solution strategy is the number of agents it requires (the size); the other parameter of

interest is the total number of moves performed by the agents (the cost). It is known that at

least two agents are needed; furthermore, with full topological knowledge, Ω(n log n) moves

are required in arbitrary networks. The natural question is whether, in specific networks,

it is possible to obtain (topology-dependent but) more cost efficient solutions. It is known

that this is not the case for rings. In this paper, we show that this negative result does

not generalizes. In fact, we present a general strategy that allows two agents to locate the

black hole with O(n) moves in common interconnection networks: hypercubes, cube-connected

cycles, star graphs, wrapped butterflies, chordal rings, as well as in multidimensional meshes

and tori of restricted diameter. These results hold even if the networks are anonymous.
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1 Introduction

The use of mobile agents is becoming increasingly popular when computing in networked

environments, ranging from Internet to the Data Grid, both as a theoretical computational

paradigm and as a system-supported programming platform.

Computing in such environments is termed distributed mobile computing, and has recently

been the focus of extensive theoretical research (e.g., see [1, 3, 5, 6, 9, 10, 12, 15, 17, 22]).

In its terminology, a network site is a host; local processes are stationary agents; mobile

agents navigate moving from host to neighboring host, and perform computations at each

host, according to a predefined set of behavioral rules called protocol, the same for all agents.

In the setting we consider, the agents are asynchronous in their actions (e.g., computation,

movement, etc) (i.e., the amount of time required by an action is finite but otherwise un-

predictable). The hosts provide a storage area called whiteboard for incoming agents to

communicate and compute, and its access is held in fair mutual exclusion.

The major practical concern in these systems is definitely security [4, 11, 16, 19]. Among

the severe security threats faced in distributed mobile computing environments, two are

particularly troublesome: harmful agent (that is, the presence of a malicious mobile process),

and harmful host (that is, the presence at a network site of a harmful stationary process).

The former problem is particularly acute in unregulated non-cooperative settings such as

Internet (e.g., e-mail transmitted viruses). The latter not only exists in those settings, but

also in environments with regulated access and where agents cooperate towards common

goals (e.g., sharing of resources or distribution of a computation on the Grid [2]). In fact, a

single local (hardware or software) failure might render a host harmful.

The problem posed by the presence of a harmful host has been intensively studied from a

programming point of view (e.g., see [13, 14, 20, 18, 21]), and recently also from an algorithmic

prospective [7, 8]. Obviously, the first step in any solution to such a problem must be to

identify, if possible, the harmful host; i.e., to determine and report its location; following this

phase, a “rescue” activity would conceivably be initiated to deal with the destructive process

resident there. Depending on the nature of the danger, the task to identify the harmful host

might be difficult, if not impossible, to perform.

Consider the presence in the network of a black hole: a host that disposes of visiting

agents upon their arrival, leaving no observable trace of such a destruction [7, 8]. The task

is to unambiguously determine and report the location of the black hole, and will be called

black hole search.

Note that this type of highly harmful host is not rare; for example, the undetectable

crash failure of a site in an asynchronous network turns such a site into a black hole. Hence

the problem is relatively common.

Consider how a team of searching agents can solve this problem. The searching agents

start from the same safe site, the home base; the task is successfully completed if, within

finite time, at least one agent survives and knows the location of the black hole. The

research concern is to determine under what conditions and at what cost mobile agents can

successfully accomplish this task.

Some answers follow from simple facts. For example, if the network is not biconnected,

the problem is unsolvable1; hence, we will only consider biconnected networks. Similarly, at

1i.e., no deterministic protocol exists which always correctly terminates.
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least two agents are needed to solve the problem.

The problem has been investigated and its solutions characterized for ring networks

[7]. Subsequently, the problem has been studied also for arbitrary networks and different

solutions and matching lower bounds were presented, depending on the amount of topological

information available to the agents [8]. In particular, if the agents have full knowledge of the

network topology, two agents are sufficient, and can locate the black hole using Θ(n logn)

moves.

A natural question to ask is whether the O(n log n) bound for two agents with full topolog-

ical knowledge of a general network can be improved for networks with special topologies. A

negative result holds for rings where Ω(n log n) moves are needed by any two-agents solution

[7].

In this paper we show that the negative result for rings does not generalize. On the

contrary, we present a general technique for efficient black hole location and prove that its

application leads to Θ(n) protocols for most of the frequently used interconnection networks:

hypercubes, cube-related networks, chordal rings, and multidimensional tori and meshes of

restricted diameter. These results hold even if the networks are anonymous (i.e., the nodes

are undistinguishable).

These results are obtained by exploiting the properties of the traversal pair of a bicon-

nected graphs, a novel concept we introduce and analyze in this paper. In particular, we

show how to construct a traversal pair of an arbitrary biconnected graph; and analyze the

properties of traversal pairs in several common interconnection networks. We then present a

general solution protocol for two agents, T P, based on the constructed traversal pair, that

allows two searching agents to efficiently locate the black hole. The properties of traversal

pairs lead to the Θ(n) bound in common interconnection networks.

We also show that, for the class of networks considered here, full topological knowledge

is not necessary and topological awareness suffices: in fact, both the network size and the

position of the home base can be efficiently determined from topological awareness.

The paper is organized as follows. In the next section we present the model, definitions

and basic properties. In Section 3, we introduce the notion of traversal pair, present the

algorithm for locating the black hole using this notion and derive its complexity in terms

of attributes of the traversal pair it uses. In Section 4 we show how to construct traversal

pairs, analyze their properties in specific networks and apply the results to obtain Θ(n)

black hole location algorithm for most commonly used interconnection networks. Finally,

in Section 5 we show how to relax the somewhat strong requirements on the structural

information available to the agents.

2 Definitions and Basic Properties

Let G = (V, E) be a simple biconnected graph; let n = |V | be the size of G, E(x) be the

links incident on x ∈ V , d(x) = |E(x)| denote the degree of x, and ∆ denote the maximum

degree in G. If (x, y) ∈ E then x and y are said to be neighbors. The nodes of G can be

anonymous (i.e., without unique names).

At each node x, there is a distinct label (called port number) associated to each of its

incident links (or ports); let λx(x, z) denote the label associated at x to the link (x, z) ∈ E(x),

and λx denote the overall injective mapping at x. The set λ = {λx|x ∈ V } of those mappings
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is called a labelling and we shall denote by (G, λ) the resulting edge-labelled graph.

Operating in (G, λ) is a team of two autonomous mobile agents. The agents can move

from a node to a neighboring node in G, have computing capabilities and bounded compu-

tational storage (O(log n) bits suffice for all our algorithms), obey the same set of behavioral

rules (the protocol). The agents are asynchronous in the sense that every action they per-

form (computing, moving, etc.) takes a finite but otherwise unpredictable amount of time.

Initially, all agents are in the same node h, called home base.

Each node has a bounded amount of storage, called whiteboard; O(log n) bits suffice for

all our algorithms. Agents communicate by reading from and writing on the whiteboards;

access to a whiteboard is gained fairly in mutual exclusion.

We can assume that the agents have unique names without loss of generality. In fact,

should the agents be initially anonymous, distinct names can be easily assigned; e.g., by

having a counter on the whiteboard of home base, and having each agent increasing the

counter and acquiring the current value as its name.

A black hole (shortly Bh) is a node where a stationary process resides that destroys any

agent arriving at that node; no observable trace of such a destruction will be evident outside

the node. The location of the black hole is unknown to the agents. The Black Hole

Search (shortly Bhs) problem is to find the location of the black hole. More precisely, Bhs

is solved if at least one agent survives, and the surviving agents know the location of the

black hole.

The main measure of complexity of a solution protocol P is the number of agents used

to locate the black hole, called the size of P . Clearly

Lemma 2.1 ([7]). At least two agents are needed to locate the black hole.

The actual number of agents depends also on the amount of a priori network information

the agents have. We assume that the agents have complete topological knowledge of (G, λ);

that is, they have available: (1) knowledge of the labelled graph (G, λ); (2) correspondence

between port labels and the link labels of (G, λ); and (3) location of the home base in (G, λ).

Example. Consider a 5 × 9 mesh with the source node at position (2, 3) from the lower

left corner. (1) means that the agents know they are in 5 × 9 mesh; note that (1) implies

the knowledge of n. (2) means that the agents know for each node which links lead to north,

east, south and west; this knowledge implies the ability to optimally route between any two

nodes, even if there are given ”forbidden” nodes that have to be avoided. (3) means that

the agents know that they start at position (2, 3) from the lower left corner.

Lemma 2.2 ([8]). With complete topological knowledge, two agents suffice to locate the

black hole.

The other measure of complexity is the total number of moves performed by the agents,

called the cost of P . We are interested in size-optimal cost-efficient protocols.

At any moment of the execution of a protocol, the ports will be classified as unexplored –

no agent has been sent/received via this port, explored – an agent has been received via this

port or dangerous – an agent has been sent via this port, but no agent has been received via

it. Obviously, an explored port does not lead to a black hole (we will call such ports also

safe); on the other hand, both unexplored and dangerous ports might lead to it. To minimize

the number of casualties (i.e., agents entering the black hole), we will not allow any agent to
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leave through a dangerous port. To prevent the execution from stalling, we will require any

dangerous port not leading to the black hole, to be made explored as soon as possible.

This is accomplished as follows: Whenever an agent a leaves a node u through an un-

explored port (transforming it into dangerous), upon its arrival to the node v, and before

proceeding somewhere else, a returns to u (transforming that port into explored). This tech-

nique is called Cautious Walk and has been employed in [7, 8]. A node is considered safe if

at least one of its incident edges is explored.

3 The BHS Protocol

3.1 Overview

The approach our agents will use consists in cooperatively and dynamically dividing the work

between them. Specifically, the unexplored area is partitioned into two parts of (almost)

equal size. Each agent explores one part without entering the other one. Since the parts

are disjoint, one of them does not contain the black hole and the corresponding agent will

complete its exploration. When this happens, the agent reaches the last safe node visited

by the other agent and partitions whatever is still left to be explored, leaving a note for

the other agent (should it be still alive). This process is repeated until the unexplored area

consists of a single node: the black hole. Since the unexplored area is almost halved each

time, the number of times (i.e., ”rounds”) the process must be repeated is O(log n).

In this approach, there are two costs, the one due to the exploration (i.e., the moves needed

to explore the nodes), and the one due to communication (i.e., the moves needed by an agent

to notify the other of a new partition). Using this type of approach in a ring network (like in

[7]), the agents explore by moving in opposite directions, and thus the total exploration cost

is O(n) moves; however, the communication cost between the agents consists of O(n) moves

in each round, with a total of O(log n) rounds, yielding an overall cost of O(n log n) moves.

If G has an Hamiltonian circuit, we could use this circuit for the exploration (like in a

ring) and use the other links as shortcuts to reduce the communication cost. The research

question then becomes:

(1) How to find good shortcuts and how to estimate the resulting communication costs?

If G is not Hamiltonian, then we have the additional more important research question

(2) What structure, other than a circuit, would allow the agents to explore the network

moving in “opposite directions”?

The answer, as we will see, is the novel notion of Traversal Pair (T P) of a biconnected

graph. The BHS algorithm we construct will use a traversal pair T P, not only to indicate

the order in which the network must be explored by the agents, but also to indicate to the

agents how to avoid “dangerous” parts of the network.

The properties of a traversal pair T P will allow us to answer the first question for all

biconnected G even if they are not Hamiltonian.
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a. b.

πa

πb

Figure 1: (a) Hamiltonian circuit defining a T P pair for a mesh with at least one side of even

length. In this case πb is a reverse of πa. (b) T P of a mesh with both sides of odd length (only

the two top rows differ from the even case). In this case πa differs from πb.

3.2 Traversal Pair

In the rest of the paper, we denote by <G an arbitrary fixed total ordering v1 <G v2 . . . <G vn

of the nodes of G. We say that a walk v1, v2, . . . , vn explores a node vi = w at (logical) round

i, if vi is the first occurrence of w in the walk.

Definition 3.1 (Traversal Pair). Let G = (V, E) be an n-node graph with a total ordering

<G of its nodes. Let πa and πb be two walks in G starting from v1 and vn, respectively, and

exploring the nodes of G in the order v1, v2, . . . , vn and vn, vn−1, . . . , v1, respectively. Then

π = (πa, πb) is called v1-vn traversal pair of G with respect to <G.

We will call πa (resp. πb) the left (resp. right) traversal (see Figure 1), and by |πa| (resp.

|πb|) the length of πa (resp. πb). Note that, in general |πa| need not be equal to |πb|.

The above definition binds a v1-vn T P to the ordering <G. Throughout the paper we

will need the following more general notions:

Definition 3.2.

1. G has an u-v T P, with u, v ∈ V , if ∃ an ordering <G and an u-v T P with respect to

<G.

2. G is traversable if it has u-v T P for any u, v ∈ V .

3. G has T P from u ∈ V , if there exists a neighbor v of u such that G has u-v T P.

As we will see later, a black hole location algorithm with home base h is based on a

T P from h. To achieve good complexity, we need the T P to have nice properties. Let

π = (πa, πb) be a u-v T P of G, and let Ga
i (resp. Gb

i ) denote the subgraph of G induced
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a. b.

Gi

Figure 2: Proof of Lemma 3.1. (a) v is an articulation point of G. (b) The thick edges represent

an “ear” in Gi.

by vertices v1, v2, . . . , vi (resp. vn, vn−1, . . . , vi). Moreover, let r(Ga
i ) (resp. r(Gb

i )) be the

depth of the breadth first search tree of Ga
i (resp. Gb

i ) rooted at v1 (resp. vn).

Definition 3.3 (Size and Radius). The size of π is sπ(G) = max{|πa|, |πb|}, i.e., the maxi-

mum of the lengths of walks πa and πb. The radius of π is rπ(G) = maxi(max{r(Ga
i ), r(Gb

i )}).

Note that, if a graph G has an Hamiltonian circuit, then G is traversable, with sπ(G) ≤ n

and rπ(G) ≤ n.

The following lemma shows that our notion of a traversable graph actually coincides

with biconnectivity. Since a black hole can always be located if and only if the network is

biconnected [7], we do not lose anything by focusing only on graphs with a T P .

Lemma 3.1. A graph G is traversable if and only if it is biconnected.

Proof. To show the “only if” direction consider a traversable graph G. By contradiction, let

v be an articulation point of G (i.e., a node whose removal disconnects the graph). If every

component of G−{v} contains only one vertex then G is a star and there is no T P. So let us

consider a vertex u 6= v such that there are at least two vertices in the component of G−{v}

containing u and choose z be a neighbor of u in the component of G−{v}. There exists a T P

in G between any pair of vertices, so let us choose an u-z T P π. Since v is an articulation

point, there is some vertex w which is in a different component of G − {v} than u (refer to

the example depicted in Figure 2.a). Clearly, πa ≡ u = v1, v2, . . . , v, . . . , w, . . . , vn = z, and

πb ≡ z = vn, vn−1, . . . , v, . . . , w, . . . , v1 = u; thus, in both πa and πb, v is explored before w:

a contradiction.

The “if” direction is shown by an inductive construction. Consider a biconnected graph

G and an edge (v, z) ∈ G. Let Gi denote the induced subgraph of G for which a T P has

been already constructed, where G1 = {v, z}. If Gi = G we are done; otherwise, take a T P

πi for Gi. Consider πi
a. Let u be the first appearance of a vertex with a neighbor not in

Gi. Since G is biconnected, there exists an “ear” – a path u = u0, u1, . . . , uk = w such that

u, w ∈ Gi and uj 6∈ Gi for 1 ≤ j < k (see Figure 2.b). The existence of an ear follows readily

from the biconnectivity: u has one neighbor in Gi and another outside Gi and there is a

circle containing both of them. Part of this circle outside Gi forms an ear. Moreover, as u

was chosen to be the first appearance of a vertex with a neighbor outside Gi in πi
a, it must
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be the case that w is explored after u in πi
a. Given an ear, we extend the T P πi as follows.

After the first occurrence of u in πi
a we insert the sequence u1, u2, . . . , uk−1, uk−2, . . . , u1, u

and the rest of πi
a is left unchanged. With πi

b, the situation is somewhat different: just before

the first occurrence of u the walk πi
b returns to w using only vertices already visited by πi

b.

Then the sequence uk−1, . . . , u1, u is inserted and the rest stays unchanged.

The following notation will be used in the rest of the paper. We will denote by V [i, j] for

i < j the set of nodes {vi, vi+1, . . . , vj}. Gbij is the graph induced by the nodes in V \V [i, j].

The segment of πa (resp. πb) between the first occurrences of vi and vj will be denoted by

πa[i, j] (resp. πb[i, j]).

3.3 Algorithm Presto

We are now ready to present and analyze a size-optimal Bhs protocol Presto. The algo-

rithm uses a traversal pair T P , which has two main functions: it will indicate the order in

which the network must be explored by the agents, and will be used by the agents to avoid

“dangerous” parts of the network.

The two agents, a and b, start from the same node v0 = h; a T P (πa, πb) of G from v0 is

available to both. The algorithm proceeds in logical rounds. In each round, the agents follow

the cooperative approach of dynamically dividing the work between them: the unexplored

area is partitioned into two parts of (almost) equal size. Each agent explores one part without

entering the other one; exploration and avoidance are directed by the traversal pair. Since

the parts are disjoint, one of them does not contain the black hole and the corresponding

agent will complete its exploration. When this happens, the agent (reaches the last safe

node visited by the other agent and there) partitions whatever is still left to be explored,

leaving a note for the other agent (should it be still alive). This process is repeated until the

unexplored area consists of a single node: the black hole.

At any time, an agent will be either exploring its part of the network, or searching for

the other agent to perform another partition, or destroyed by the black hole.

We remind that a node is safe if there is a safe link incident to it, or if it is the home base

of an agent. The safe nodes represent the explored part of the network. Let U be the set of

unexplored nodes, and p be the node where the partition occurs. Initially, U = V [1, n − 1],

and p = v0.

Presto

Start -

1. Initially, one of the two agents, say a, partitions V [1, n − 1] into two sets Va[1, k] and

Vb[k + 1, n − 1], where k = bn/2c.

2. Agents a and b leave v0 to explore the corresponding sets, using cautious walk on

πa[1, k] and πb[k+1, n−1], respectively. Note that, since Va and Vb do not overlap, one

of them does not contain Bh, and the corresponding agent will finish its exploration.

3. When the agent completes the exploration, it searches for the other agent to com-

pute the new partition. In general, let U = V [i, j] be the unexplored area when the

exploration began (initially, U = V [1, n − 1]). All operations on indices are modulo n.

Searching for the other agent -
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a. b.

vi

vj

vk

vk+1

Ve

vk

vi′

Va
Vb

Va Vb

Ve

Figure 3: Algorithm Presto. (a) Beginning of a round. (b) After finishing its part, the agent b

finds the node from which agent a departed to vi′ and the remaining unexplored part is divided

into new Va and Vb.

1. If a is searching for b: a goes to vj+1 (the node from which b departed towards its

unexplored part) using the shortest possible route avoiding Vb. It then follows the safe

links of the path πb[j, k + 1] until it reaches the last safe vertex p reached by b. Let vj′

be the vertex to which b has departed. Then now U = V [k + 1, j′]. Agent a computes

the new partitions of U .

2. If b is searching for a: b goes to vi−1 (the node from which a departed towards its

unexplored part) using the shortest possible route avoiding Va. It follows the safe links

of the path πa[i, k] until it reaches the last safe vertex p reached by a. Let vi′ be the

vertex to which a has departed. Then, now U = V [i′, j]. Agent b computes the new

partitions of U .

Partitioning U = V [f, l] at p -

1. The agent performing the partition sets Va = V [f, k′] and Vb = V [k′ + 1, l], where

k′ = b(f + l)/2c (see Figure 3);

2. it then writes at p a note informing the other agent of the partition, and leaves to

explore its assigned set.

3. If the other agent finds the note informing it of the new partitions Va and Vb, it will

reach and explore the new assigned part.

Reaching and Exploring the Partition -

1. If a is the agent moving towards its partition, it returns to vf−1 using the shortest

possible route avoiding the new Vb; it then departs towards vf and starts exploring Va

using cautious walk on πa[f, k′].

2. If b is the agent moving towards its new partition, it returns to vl+1 using the shortest

possible route avoiding the new Va; it then departs towards vl and starts exploring Vb

using cautious walk on πb[l, k
′ + 1].
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3. When an agent completes the exploration of its part, it will search for the other agent

to compute the new partition.

Termination - When computing the new partition, if U contains a single node, that node is

the black hole.

Theorem 3.1. Let a graph G have a T P π from h of size sπ(G) and radius rπ(G). Then

two agents placed at h can locate the black hole in G using O(sπ(G) + rπ(G) log n) moves.

Proof. Correctness. Note that from the definition of T P and the way the algorithm works, it

never happens that two agents depart to the same non-safe node. In fact, the algorithm uses

the T P to be able to safely explore Va without wandering into Vb, and vice versa. T P allows

us to specify in a unified format the way Va and Vb are explored, regardless of the actual

values of Va and Vb, which depend of the specifics of the particular execution. This means

that one agent will always survive. The fact that the agents never wait ensures progress of

the algorithm. Since in each round the number of the unexplored nodes is halved, after log n

rounds there is a single unexplored node and the algorithm terminates.

Complexity. We now focus on the number of moves. The time complexity cannot be

higher, and since there are only 2 agents, neither it could be asymptotically lower.

In each round, the only steps of the algorithm when agents move are to

1. Explore the assigned area (without loss of generality, we assume that b explored whole

Vb, while a explored only part of Va).

2. Move to the ”beginning” of Va.

3. Chase the other agent through the newly explored area.

4. Move to the ”starting” node for the next round.

Let vbh be the node containing the black hole. Note that the total exploration path

performed by agent a during Step (1) over all rounds is at most |πa[1, bh]| (the bound is

|πb[bh, n] + 1| for b). Clearly, the total cost of Step (1) over all rounds is less then 2sπ(G).

Using similar arguments, the same bound holds also for the total cost of Step (3).

The cost of Steps (2) and (4) for one agent in one round is clearly bound by 2rπ(G).

Combining with the fact that there are at most dlog ne rounds results in O(sπ(G) +

rπ(G) log n bound on the number of moves.

4 Traversal Pair Construction and Properties

4.1 T P Construction

In this subsection we present a technique for construction of T P based on hierarchical de-

composition of the graph, making use of the T Ps of the graph’s components.

Let H = (VH , EH) be a biconnected graph with |VH | = k; let πH = (πH
a , πH

b ) be a

traversal pair of H .

Let F1 = (V1, E1), F2 = (V2, E2), . . . , Fk = (Vk, Ek) be a set of (traversable) biconnected

graphs. Let us denote by s(Fi) the maximal size among all T Ps (between any pair of nodes)

of Fi, and by r(Fi) the maximal radius among all T Ps of Fi. Moreover, define r(F ) =

maxk
i=1(r(Fi)). Let d(G) denote the diameter of a graph G and let d(F ) = maxk

i=1(d(Fi)).
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H G

Figure 4: G is a T P-composition of H and F1, F2, F3 and F4.

Definition 4.1. We say that G = (V, E) is a T P-composition of H and F1, F2, . . . , Fk if

and only if the following holds:

1. V = ∪k
i=1Vi and ∪k

i=1Ei ⊂ E.

2. If (vi, vj) ∈ EH then there exists an edge (ui, uj) ∈ E such that ui ∈ Vi and uj ∈ Vj .

3. Let, for all 2 ≤ i < k, vai
and vbi

be the nodes from which vi is for the first time visited

in πH
a and πH

b , respectively. Then, there are two different nodes w, z ∈ Vi such that w

has a neighbor in Vai
and z has a neighbor in Vbi

.

Moreover, if ∀ (vi, vj) ∈ EH , and ∀ u ∈ Vi, ∃w ∈ Vj such that the distance from u to w is

less than or equal to c, we say that G has dilation c.

Informally, the T P-composition of H and F1, F2, . . . , Fk is obtained by replacing a vertex

vi of H by graph Fi; the connectivity requirements are designed to allow the T P of H to be

extended to the T P of G (refer to the example depicted in Figure 4).

Lemma 4.1. Let G = (V, E) be a T P-composition of H and F1, F2, . . . , Fk. Then G has a

T P πG from any vertex u ∈ V1 with a neighbor in Vk, such that

sπG
(G) ≤ (d(F ) + 1)sπH

(H) +

k
∑

i=1

s(Fi),

and radius

rπG
(G) ≤ r(F ) + (d(F ) + 1)rπH

(H).

Moreover, if G has dilation c, then

sπG
(G) ≤ c · sπH

(H) +

k
∑

i=1

s(Fi), rπG
(G) ≤ r(F ) + c · rπH

(H).

Finally, if G has dilation 1, then

rπG
(G) ≤ max{rπH

(H) + d(F1), r(F1)}.

Proof. The proof is constructive. In fact we now show how to build πG
a (the left traversal of

G); πG
b is constructed analogously.

11
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Figure 5: Extending the traversal in Fi.

Assume the vertices of H are ordered v1, . . . , vk according to when they were explored

by πH
a . Consider the moment when πG

a has arrived for the first time to a node u of Vi (the

following works also for i = 1). That corresponds to the first occurrence of vi in πH
a . Let vai

(resp. vbi
) be the node from which vi was reached the first time in πH

a (resp. πH
b ), and let

vj be the node following the first occurrence of vi in πH
a . Clearly j ≤ i + 1, and j = i + 1

exactly if vj has not yet been explored by πH
a . Let u′

i be any node of Vi different from u

which has a neighbor in Vbi
(from the third point of Definition 4.1 we know that such node

must exist) and u′′

i be any node of Vi which has a neighbor in Vj .

We extend πG
a from u first with a u-u′

i traversal of Fi (in πFi

a ), then with a path from u′

i

to u′′

i (if u′

i 6= u′′

i ), and finally with the edge that leads from u′′

i to Vj (see Figure 5). This way

πG
a explores the vertices of Fi in the order of πFi

a , thus allowing a symmetrical construction

of πG
b by using a u′

i-u traversal of Fi (in πFi

b ).

If j = i+1, the last added edge from u′′

i entered a Vj containing only vertices unexplored

by πG
a so far, and the process of extending πG

a continues. If, on the other hand, j 6= i+1, the

node vj has already been visited in πH
a , which also means that all nodes in Vj have already

been visited in πG
a . In this case, let vq be the node in πH

a after vj , and let w be a node

from Vj which has a neighbor in Vq. We extend πG
a by first adding the shortest path (in Fj)

leading to w, and then by adding the link that leads to Vq.

Size: Exploring a component Fi for the first time costs s(Fi); the path from u′

i to u′′

i , if

needed, costs at most d(Fi) < d(F ); finally, the edge added to reach the next component costs

1. Each next occurrence of vi in πH
a (resp. πb(H)) corresponds to an additional traversing of

Fi of length at most d(F ). Summing up over the whole length of πH
a (resp. πb(H)) produces

the result. If G has dilation c, then all traversing can be done with at most c links (including

12



the link for reaching to the next component).

Radius: Consider a node w ∈ Vi, and let ui ∈ Vi be the first node of Vi in πG
a (the

case for πG
b is analogous). The distance between w and ui in Fi is at most r(Fi) ≤ r(F ).

Consider now the nodes in πH between v1 and vi. There are at most rπH
(H) edges in the

path from vi to v1 using only those nodes. Since in πG each edge is replaced by a path of

length at most 1 + d(F ), the total distance between w and u (the first node in πa
G) results

in r(F ) + (d(F ) + 1)rπH
(H).

If G has dilation c then the term d(F ) can be replaced by c− 1. If G has dilation 1 then

each node of Fj is connected to all neighboring components. Hence, we can reach F1 from w

with a path of length at most rπH
(H). Once F1 is reached, we still need to reach u1; hence

the total length is rπH
(H) + d(F1).

Note that, if i = 1, F1 is not yet fully explored; hence the distance between w and the

first node in πa
G is simply r(F1).

Quite often a more limited composition will be sufficient:

Definition 4.2. We say that G is uniform T P-composition of H and F , if G is T P com-

position of H and F1, F2, . . . , Fr, with F = Fi for all 1 ≤ i ≤ r.

Directly applying Lemma 4.1 yields:

Corollary 4.1. Let G be a uniform T P-composition of H and F such that sπ(F ) ≤ c|F |

for some constant c. If there is a T P for H of size sπ(H) ≤ q|H | where q ≥ 2c then there

is a T P for G of size sπ(G) ≤ q(|G| + |H |).

Proof. Lemma 4.1 bounds the size of T P for G to be at most (d(F ) + 1)sπ(H) + ksπ(F ).

Since F is biconnected it holds d(F ) ≤ |F |/2 yielding sπ(G) ≤ q|H |(|F |/2 + 1) + kc|F |. As

|H ||F | = k|F | = |G| we get sπ(G) ≤ q(|G| + |H |).

4.2 Traversal Pairs for Specific Topologies

Lemma 4.1 and Corollary 4.1 can be used to find good traversal pairs in a number of graphs.

Lemma 4.2. Let G be a d-dimensional torus with n vertices and diameter diam(G). Then

G is traversable with a T P of size at most 4n and radius diam(G).

Proof. We denote Zq = Z/qZ and εi the vector with a single 1 at position i. Torus is a

Cayley graph over a group Zdim1
× · · · ×Zdimd

where all dimi > 2, with generators ±εi. As

Cayley graphs are vertex transitive, it is sufficient to show the existence of a T P from one

vertex.

If d = 1 then G is a cycle and there is a traversal of size 2n and radius n/2 = diam(G).

Now consider a d-dimensional torus for d > 1. W.l.o.g we may assume dim1 ≤ dim2 ≤ · · · ≤

dimd. The diameter of G is 1

2

∑d

i=1
dimi. Let F be a cycle in the first dimension, i.e. of

length dim1. F is biconnected and traversable with sπ(F ) = 2dim1 and rπ(F ) ≤ dim1.

We show that G has a uniform T P-composition with dilation 1 of H and F where H is a

(d− 1)-dimensional torus with dimensions dim2, . . . , dimd. The first two conditions in Defi-

nition 4.1 are trivial. The fact that G has dilation 1 follows directly from the commutativity

of the group. Consider a vertex u in a set Vi. The set Vi consists of vertices u + cε1 for all

c. If u has a neighbor in some other component Vk, say, v = u + εj then every u + cε1 has

13
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Figure 6: WBF is a uniform T P-composition of a hypercube and a cycle.

neighbor u + cε1 + εj = v + cε1 in Vk. The third condition of Definition 4.1 is a consequence

of G having a dilation 1.

We prove the bound on the size and radius of the T P by induction on the number of

dimensions. The first step (a ring) is trivial. Following the induction hypothesis, H has a

T P with size sπ(H) = 4|H | and radius rπ(H) = diam(H). Using Corollary 4.1 we conclude

that G has a T P of size at most 4n. To bound the diameter, we combine the fact that

G has dilation 1 with Lemma 4.1 yielding rπ(G) ≤ max{rπ(H) + diam(F ), rπ(F )}. Since

diam(F ) = dim1/2, the term rπ(H) + diam(F ) = 1

2

∑d

i=1
dimi = diam(G). The result

follows from the fact that rπ(F ) ≤ dim1 ≤ dim1/2 + dim2/2.

Lemma 4.3. Let G be a d-dimensional hypercube. Then G is traversable with a T P of size

at most 2d+2 and radius d.

Proof. It is the same as the proof of Lemma 4.2 with all dimi = 2. This time, however,

we set F to be a cycle of length four induced by the first two dimensions and then H is a

(d − 2)-dimensional hypercube. The diam(F ) = 2, rπ(F ) ≤ 4 and diam(H) = d − 2. The

basis of the induction are cases d = 2 and d = 3.

Lemma 4.4. Cube-connected cycles CCC(d) and wrapped butterfly WBF (d) are traversable

with a T P of size O(d2d) and radius O(d2).

Proof. It is sufficient to show that both topologies are uniform T P-compositions of a d-

dimensional hypercube with a cycle of length d. The size then comes from Corollary 4.1

and Lemma 4.3 and radius from Lemma 4.1 as rπ(G) ≤ rπ(F ) + (diam(F ) + 1)rπ(H) ≤

d + (d/2 + 1)d.

To prove the T P-composition property consider the cycles corresponding to a particular

hypercube vertex (i.e. induced by “shift” operations) in both topologies. The only nontrivial

part to show is the condition 3 in Definition 4.1.

CCC: Consider a circle Vi in CCC(d). Every vertex v ∈ Vi has exactly one neighbor

outside Vi, and any two distinct vertices in the circle Vi have their outside neighbors in

different circles (corresponding to neighbors in the hypercube along appropriate dimensions).

The condition 3 follows from the fact that vli 6= vri
.

WBF (d): Condition 3 directly follows from the fact that in each circle Vi and Vj in

WBF (d) there are two different nodes u, v ∈ Vi which have a neighbor in Vj (see Figure 6).

Lemma 4.5. The star graph S(d) has a T P of size at most 3d! and radius at most 2d−1 +1.

14



Proof. The star graph S(d) is a Cayley graph over the symmetric group Sd generated by

the involutions (1, q) for 1 < q ≤ d. Let S(k, d) be a Cayley graph over the coset group

Sd|Sk with generators g ◦ (1, q)[Sk] where g ∈ Sk and k < q ≤ d. Clearly, S(1, d) = S(d) and

S(d−1, d) = Kd is a complete graph with d vertices. We can visualize the vertices of S(k, d)

as strings of length d−k consisting of different symbols from the alphabet {1, 2, . . . , d}. The

edges of S(k, d) connect vertices which differ in exactly one place.

Now we show that S(k, d), 2 ≤ k < d−1 is a uniform T P-composition of H = S(k+1, d)

and F = Kk+1. We have to prove that the three conditions from Definition 4.1 are fulfilled.

The first one is trivial. For the remaining two we show that if there is an edge (vi, vj) ∈ EH ,

there are two pairs of vertices (ui, uj) ∈ E, (u′

i, u
′

j) ∈ E such that ui, u
′

i ∈ Vi and uj , u
′

j ∈ Vj .

Consider an edge (vi, vj) ∈ EH where vi = αaβ, vj = αcβ; here α, β stand for strings. As

k ≥ 2, there are two distinct symbols g, g′ not present in α, β and different from q, c. Let

ui = bαaβ, u′

i = g′αqβ, uj = gαcβ and u′

j = g′αcβ. It is easy to see that (ui, uj) ∈ E and

(u′

i, u
′

j) ∈ E.

As a next step we shall prove that S(k, d), 2 ≤ k < d− 1 has a T P of size at most 3d!/k!

and radius 2d−k − 1. For k = d − 1 the statement clearly holds. As S(k, d) is a uniform

T P-composition of S(k + 1, d) and Kk+1 we get the size and the radius from Lemma 4.1,

as sπG
(G) ≤ (d(F ) + 1)sπH

(H) +
∑k

i=1
s(Fi) = 2sπH

(H) + n
k+1

(k + 1) ≤ d!

k!

∑

i

(

2

k+1

)i

and

rπ(G) ≤ rπ(F ) + (d(F ) + 1)rπ(H) = 1 + 2 · (2d−k−1 − 1) = 2d−k − 1.

In order to finish the proof we have to bridge the gap between S(d) = S(1, d) and S(3, d).

Similar arguments as above lead to conclusion that S(d) is a uniform T P-composition of

S(3, d) and a circle of length 6 and the result follows.

Lemma 4.6. Let G be a d-dimensional mesh with n vertices and diameter diam(G). Then

G is traversable with a T P of size at most 4n and radius diam(G).

Proof. By induction on the number of dimensions. The basis of induction are cases d = 2

and d = 3. The T P for a 2D mesh is depicted in Figure 1. Its size is n for a mesh with at

least one side even, and n + 2 for all sides odd. It is not difficult to see that the radius of

this T P is no more that diam(G) + 1.

The T P for a 3D mesh is depicted in Figure 7. The left traversal starts by going to the

topmost 2D sub-mesh using the (0, 0) column. The 2D meshes are then traversed from the

top to the bottom using a left traversal for 2D mesh from (0, 1), ending at (1, 0), returning

to (0, 1) and going down. The right traversal traverses 2D meshes from the bottom to the

top, and returns by the (0, 0) column. Each 2D mesh is traversed using right traversal for

2D mesh starting at 1, 0) and ending at (0, 1), then returning to (1, 0) and moving one level

up. Again, it is easy to see that the size of this T P is O(n) and its radius is O(diam(G)).

A d dimensional mesh for d ≥ 4 is a uniform T P composition of a 2D mesh F with a

d − 2 dimensional mesh H with dilation 1. The proof (as well as of the result bounds on its

size and diameter) is analogous to the tori and hypercube case.

4.3 Main Theorem

Combining Theorem 3.1 with the results of Section 4.2, yields the main theorem of this

paper:
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πa of a middle 2D mesh

πb of a middle 2D mesh

πa of the top 2D mesh

πb of the bottom 2D mesh

Figure 7: T P for a 3D mesh.

Theorem 4.1. With complete topological knowledge, two agents can locate the black hole in

O(n) moves in the following topologies:

1. hypercubes,

2. CCC,

3. wrapped butterflies,

4. star graphs, and

5. tori and meshes of diameter O(n/ log n).

5 Relaxing the Knowledge Requirements

In deriving our results, we have assumed that the agents have complete topological knowl-

edge; that is, the agents know not only the network topology type and labelling (e.g., torus

with “N-S-E-W” labelling), but also the actual size n of the network and the location of the

home base.

This requirement is somewhat stronger than the assumptions typically used in related

literature, i.e. only the network topology type, not its size, is known to the agents.

In this section we show that our assumptions can be relaxed to match the standard model,

by showing how to compute the network size and the location of the home base for the class

of the networks considered. This is achieved by adding a precomputation phase, in which

agents compute the size of the network and the location of the home base (knowledge of

the topology class e.g. CCC, or mesh is still assumed, as well as a knowledge of globally

consistent labelling, e.g. being able to distinguish between cycle and hypercube edges in

CCC, or identify north, east, south, west in a 2-dimensional mesh).
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Figure 8: Left: Sl and Sr in a CCC. Right: Sl and Sr in a two dimensional mesh.

For vertex symmetric topologies (tori, hypercubes, CCC, wrapped butterflies and star

graphs), the problem of identifying the location of the home base is irrelevant, as all nodes

are alike. For hypercubes and star graphs the size immediately follows from the degree of

nodes; in tori and meshes the number of dimensions can be determined in that way.

We present a general scheme for determining n and location of the home base (if relevant)

for CCC and 2-dimensional meshes, the extensions to wrapped butterflies and multidimen-

sional meshes and tori are quite straightforward.

The general scheme

1. Choose two disjoint sets of vertices in G: Sa and Sb such that Sa ∩ Sb = {v} (v is the

home base) and it is possible to determine the size of the network (and the location of

the home base, if needed) from each of them independently. See Figure 8, left.

2. If no such sets can be found, explore some neighborhood S′ of v in a way that at least

one agent survives. S′ is chosen such that for every |S′| − 1 node subset S′′ of S′ there

exist Sa and Sa such that Sa ∩ Sa ⊂ S′′ and n and location of v can be determined

from each of them. See Figure 8, right, for an example for a 2-dimensional mesh: S′

consists of the four direct neighbors of v. The cross Sb is chosen to intersect Sa in two

neighbors of v which are known to be safe.

3. The agents a and b explore Sa and Sb, respectively, and return to the home base. The

way Sa and Sb were chosen ensures that at least one of them (w.l.o.g. assume that b)

succeeds.

4. b goes to the last safe node visited by a and leaves a mark with the meaning “Stop

exploring Sa, a already know n and location of v. Join me in Algorithm Presto.” and

starts executing Algorithm Presto.

5. Let vi be the node to which a was travelling when b left the message for it. The first

assignment of Va and Vb will not be V [1..bn/2c] and V [bn/2c+1, n− 1], but V [1..i− 1]

and V [i + 1..n − 1]. Furthermore, if a is still blocked at i when b finishes its part, b

will “switch” with a (i.e. b will start exploring from the left, while a will be asked to

explore from the right). This prevents both agents disappearing in i if the black hole

is there.
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Note that the cost of such precomputation is O(|S′|+ |S1|+ |S2|), which is for all relevant

topologies O(n).

6 Conclusions

We have presented a novel concept, traversal pairs of a biconnected graph, and shown how

to use it to obtain a size-optimal black hole searching technique. We have shown that this

technique leads to solutions which are also cost-optimal for all the common interconnection

networks.

The outstanding open question is to determine for what other types of networks Θ(n)

cost can be achieved by two searching agents.

Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Research Council

of Canada, and by “Progetto ALINWEB: Algoritmica per Internet e per il Web”, MIUR

Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale.

References

[1] S. Alberts and M. R. Henzinger. Exploring unknown environments. SIAM Journal on

Computing, 29:1164–1188, 2000.

[2] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The

data grid: Towards an architecture for the distributed management and analysis of large

scientific dataset. J. of Network and Computer Applications, 2002.

[3] E. Arkin, M. Bender, S. Fekete, and J. Mitchell. The freeze-tag problem: how to wake up

a swarm of robots. In 13th ACM-SIAM Symposium on Discrete Algorithms (SODA ’02),

pages 568–577, 2002.

[4] David M. Chess. Security issues in mobile code systems. In Proc. Conf. on Mobile Agent

Security, LNCS 1419, pages 1–14, 1998.

[5] A. Dessmark, P. Fraigniaud, and A. Pelc. Deterministic rendezvous in graphs. In 11th

Annual European Symposium on Algorithms (ESA ’03), pages 184–195, 2003.

[6] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little memory.

In 13th ACM-SIAM Symposium on Discrete Algorithms (SODA ’02), pages 588–597,

2002.

[7] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile agents searching for

a black hole in an anonymous ring. In Proc. of 15th Int. Symposium on Distributed

Computing (DISC 2001), pages 166–179, 2001.

[8] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Finding a black hole in an

arbitrary network: optimal mobile agents protocols. In Proc. of 21st ACM Symposium

on Principles of Distributed Computing (PODC 2002), pages 153–162, 2002.

[9] P. Fraigniaud, L. Ga̧sieniec, D. R. Kowalski, and A. Pelc. Collective tree exploration.

In 6th Latin American Theoretical Informatics Symposium 2004, 2004. to appear.

18



[10] P. Fraigniaud and D. Ilcinkas. Directed graph exploration with little memory. In 21st

Symposium on Theoretical Aspects of Computer Science (STACS 2004), 2004. to appear.

[11] M.S. Greenberg, J.C. Byington, and D. G. Harper. Mobile agents and security. IEEE

Commun. Mag., 36(7):76 – 85, 1998.

[12] N. Hanusse, D. Kavvadias, E. Kranakis, and D. Krizanc. Memoryless search algorithms

in a network with faulty advice. In 2nd IFIP International Conference on Theoretical

Computer Science (TCS ’02), pages 206–216, 2002.

[13] F. Hohl. Time limited blackbox security: Protecting mobile agents from malicious hosts.

In Proc. of Conf on Mobile Agent Security, LNCS 1419, pages 92–113, 1998.

[14] F. Hohl. A framework to protect mobile agents by using reference states. In Proc. of

the 20th Int. Conf. on Distributed Computing Systems (ICDCS 2000), 2000.

[15] L. M. Kirousis, E. Kranakis, D. Krizanc, and Y. Stamatiou. Locating information

with uncertainty in fully interconnected networks. In 14th International Symposium on

Distributed Computing (DISC 2000), LNCS 1914, pages 283–296, 2000.

[16] R. Oppliger. Security issues related to mobile code and agent-based systems. Computer

Communications, 22(12):1165 – 1170, 1999.

[17] P. Panaite and A. Pelc. Exploring unknown undirected graphs. Journal of Algorithms,

33:281–295, 1999.

[18] T. Sander and C. F. Tschudin. Protecting mobile agents against malicious hosts. In

Proc. of Conf on Mobile Agent Security, LNCS 1419, pages 44–60, 1998.

[19] K. Schelderup and J. Ones. Mobile agent security - issues and directions. In Proc. 6th

Int. Conf. on Intelligence and Services in Networks, LNCS 1597, pages 155–167, 1999.

[20] S.K.Ng and K.W. Cheung. Protecting mobile agents against malicious hosts by intention

spreading. In Proc. 1999 Int. Conf. on Parallel and Distributed Processing Techniques

and Applications (PDPTA’99), pages 725–729, 1999.

[21] Jan Vitek and Giuseppe Castagna. Mobile computations and hostile hosts. In

D. Tsichritzis, editor, Mobile Objects, pages 241–261. University of Geneva, 1999.

[22] X. Yu and M. Yung. Agent rendezvous: A dynamic symmetry-breaking problem. In 23rd

International Colloquium on Automata, Languages, and Programming (ICALP ’96),

LNCS 1099, pages 610–621, 1996.

19


