
Journal of Computer and System Sciences 122 (2021) 1–18
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Exploration of dynamic networks: Tight bounds on the

number of agents ✩

Tsuyoshi Gotoh a,∗, Paola Flocchini b, Toshimitsu Masuzawa a, Nicola Santoro c

a Osaka University, Japan
b University of Ottawa, Canada
c Carleton University, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 May 2020
Received in revised form 4 January 2021
Accepted 14 April 2021
Available online 11 May 2021

Keywords:
Distributed algorithm
Mobile agents
Exploration of dynamic networks
Arbitrary footprint

We consider, for the first time, the exploration of dynamic graphs of arbitrary unknown
topology. We study the number of agents necessary and sufficient to explore such
graphs under the fully synchronous (Fsync) and the semi-synchronous (Ssync) activation
schedulers. We prove that, under the minimal assumption on the dynamics, temporal
connectivity, the number of agents sufficient to perform exploration depends on a
parameter we call evanescence of the graph, and this number is tight. We then consider
the stronger well-known assumption of 1-interval connectivity when the number of edges
missing at each time is bounded. We provide tight bounds also in this setting, proving the
existence of a difference between Fsync and Ssync, as well as between anonymous and
non-anonymous agents.

© 2021 Published by Elsevier Inc.

1. Introduction

1.1. Graph exploration

The graph exploration problem (Exploration), first introduced by Shannon [1], is a fundamental problem in theoretical
computer science, in particular in the field of distributed computing by mobile entities. It requires each node of the graph
to be visited by one or more mobile computational entities, called agents, a finite number of times (exploration with termi-
nation) or infinitely often (perpetual exploration). In addition to its theoretical importance, Exploration is relevant from a
practical viewpoint in networked systems supporting mobile entities (e.g., software agents, vehicles, or robots): by visiting
all nodes, agents can check whether there are some nodes with problems in the network, propagate some data across the
network, or collect (or search) specific information from the whole network.

This problem has been extensively studied over a variety of assumptions and settings depending on whether the nodes
have distinct labellings or are anonymous, on whether the agents have Ids or are anonymous, the type of mechanism
available to the agents for interaction or communication (i.e., whiteboards, tokens, face-to-face, vision), on the degree of
synchronization (i.e., asynchronous, semi-synchronous, fully-synchronous), on the level of knowledge the agents have about
the graph, on their memory, etc. (e.g., see [2–10], and [11] for a recent survey). In spite of all the differences, the existing

✩ A preliminary extended abstract of this paper appeared in the proceedings of 23rd International Conference on Principles of Distributed Systems (OPODIS
2019).

* Corresponding author.
E-mail address: t-gotoh@ist.osaka-u.ac.jp (T. Gotoh).
https://doi.org/10.1016/j.jcss.2021.04.003
0022-0000/© 2021 Published by Elsevier Inc.

https://doi.org/10.1016/j.jcss.2021.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2021.04.003&domain=pdf
mailto:t-gotoh@ist.osaka-u.ac.jp
https://doi.org/10.1016/j.jcss.2021.04.003

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
literature has until very recently made a common assumption: the graph is static, i.e., the link structure does not change
during the exploration. Static graphs are a common representation of traditional networks, where the changes are typically
due to failures; such graphs however fail to describe the new generation of infrastructure-less highly dynamic networks.

1.2. Dynamic networks

In the recent (and now pervasive) generation of highly dynamic networks, the topological changes are not sporadic or
anomalous; rather they are extensive, continuous, inherent in the nature of the network. These networks, variously called
delay-tolerant, disruptive-tolerant, challenged, epidemic, opportunistic, have been long and extensively investigated by the
engineering community and, more recently, by distributed computing researchers. Various models have been proposed to
describe some of their aspects, under a variety of names. A unifying model that describes these networks in a simple and
natural way is the one of time-varying graph (TVG), formally defined in [12], where main classes of systems studied in the
literature and their computational relationship were identified.

When time is assumed to be discrete (i.e., the system is synchronous), the dynamics of the network can be equivalently
described as a sequence of static graphs, 〈G0, G1, G2, ...〉, called evolving graph or temporal graph, where Gi describes the
topology of the network at time t = i; this representation was originally suggested in [13] and first formalized in [14]. Each
Gi is called a snapshot, while the aggregate graph G = ∪i{Gi} is called the footprint of the temporal graph.

Computations in temporal graphs have been investigated in distributed computing quite extensively. If the dynamics of
the changes is arbitrary and unrestricted, clearly any non-trivial computation is unfeasible and any non-trivial problem is
unsolvable. Hence, all the studies are carried out under some assumptions restricting the arbitrariness of the dynamics.

The minimal (i.e., less restrictive) assumption is temporal connectivity: starting at any time, from any node there exists a
temporal path, called journey, to any other node (e.g., [15–17]). Let us stress that, if temporal connectivity does not hold,
any non-trivial task and computation is impossible, and any non-trivial problem is unsolvable.

Stronger assumptions include periodicity: the network is temporally connected and there is (a known) p > 1 such that, for
all i ≥ 0, Gi = Gi+p (e.g., [18–22]); 1-interval connectivity: every Gi is connected (e.g., [23–25]); and T-interval connectivity: for
every i, the graphs Gi, Gi+1, ..., Gi+(T −1) contain the same spanning-tree (e.g., [22,24]). A classification of the most common
assumptions was done in [12].

The studies on computations by mobile agents in temporal graphs are rather recent and quite limited (for a recent
survey see [26]). Investigations have focused on gathering [27,28], scattering [29], and graph exploration (discussed in the
next section).

1.3. Temporal graph exploration

Many results on Exploration of temporal graphs are centralized (or off-line); that is, they assume that the exploring
agents have complete a priori knowledge of the topological changes and the times of their occurrence. They include: the
study of the complexity of computing a foremost exploration schedule under the 1-interval-connectivity assumption [30],
generalized and extended in [31] and then in [32,33]; the computation of an exploration schedule for rings under the
stronger T-interval-connectivity assumption [22]; the computation of an exploration schedule for cactuses under the 1-
interval-connectivity assumption [34].

Fewer studies use a decentralized (i.e., distributed) approach. On the probabilistic side, there is an early seminal work on
random walks [35]. On the deterministic side, exploration has been studied under particular constraints on the network
connectivity and on its underlying topology. Exploration with termination by a single agent of periodic temporal networks,
including carrier networks, has been studied in [19–22]. Perpetual exploration by three agents on temporally connected rings
has been studied in [36,15]. Exploration with termination of 1-interval connected rings by two and three agents has been
studied in [37], where, in addition to the traditional fully-synchronous (Fsync) scheduler (where all the agents are active at
every round), they considered also the semi-synchronous (Ssync) scheduler where only a subset of the agents is active at
each round. Exploration with termination by O (n) agents of n × m dynamic tori (n ≤ m), where each column and row is a
1-interval connected ring, has been investigated in [38]. Exploration with termination by one agent with partial information
about dynamic changes has been studied in [39] for 1-interval connected rings.

Summarizing, all the existing results on distributed exploration of time-varying graphs have been obtained for temporal
graphs with very specific topologies (rings, tori, or collections of cycles in the case of carrier networks). In this paper we
start the investigation of the exploration of temporal graphs with arbitrary and unknown topologies.

1.4. Main contributions

In this paper, we consider perpetual exploration by mobile agents of time varying graphs whose topology is arbitrary and
unknown to the agents. We focus on solvability of the exploration of such dynamic graphs, and specifically on the number
of agents that are necessary and sufficient for exploration under the Fsync and Ssync activation schedulers.

Clearly, if the graph is not temporally connected, exploration is trivially impossible to achieve. We thus start our investi-
gation with the class H of temporally connected temporal graphs. We first prove that the number of agents sufficient to
perform exploration is related to the number of its transient edges, a parameter η(G) we call evanescence of the graph.
2

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
Table 1
Tight bounds on the number of agents.

Anonymous With leader

Temporally connected: H Fsync, Ssync 2η + 1 2η + 1

�-bounded 1-interval: W(�) Ssync 2� + 1 2�

Fsync 2� 2� − 1

More precisely, we prove that any G ∈H can be explored by a team of k ≥ 2η(G) + 1 anonymous agents. We show that this
bound is tight by proving that there are G ∈H that cannot be explored by 2η(G) agents.

The impossibility holds under very strong conditions: Fsync scheduler, agents and nodes with distinct IDs, knowledge
on n and k, unbounded-size whiteboards. On the other hand, the proposed exploration algorithm, based on the rotor router
technique, works under very weak conditions: Ssync scheduler (under the weakest transport condition), anonymous agents,
no knowledge of topological parameters, and O (log δv) bits whiteboard at node v (where δv denotes the degree of v in the
footprint of the temporal graph).

We then turn our attention to the stronger assumption on the dynamics of the graph, 1-interval connectivity: the graph
is always connected. Let W(�) ⊂ H be the class of these always-connected temporal graphs where the number of missing
edges at each time is at most �.

We start by considering the case of anonymous agents. We first prove a tight bound of 2� + 1 agents under the Ssync

scheduler. The proposed algorithm performs exploration even if the network size and the number of agents are not known,
and with the weakest transport condition; the impossibility with fewer agents holds even if the network size and the
number of agents are known and with whiteboards of unbounded-size.

We then prove the existence of a difference between Fsync and Ssync when the network size and the number of agents
are known. In fact, in this case, we show a tight bound of 2� for Fsync. Moreover, we show that with 2� + 1 agents
exploration with termination is possible in Fsync.

Finally, we consider the case of non-anonymous agents, assuming the presence of a leader agent. While the lower bound
on the number of agents needed for the exploration of H holds regardless of the existence of a leader, we prove that
non-anonymity has an impact on the exploration of W(�). In fact, by exploiting the presence of a leader, the bound on
the number of agents decreases by one both in Fsync and in Ssync. Moreover, we show that, with a leader, 2� agents can
explore with termination in Fsync.

These results are summarized in Table 1.
Our results indicate, among other things, that the much weaker condition of semi-synchrony (with respect to full-

synchrony) is enough to undermine the advantages provided by the much stronger connectivity assumption of W (with
respect to H). Indeed, when considering the class H(�) of temporally connected graphs with at most � transient edges and
the class W(�) ⊂ H(�) of �-bounded 1-interval connected graph, we have that the bound on the number of agents for H(�)

is the same as the one for W(�) for Ssync, while the two differ in the case of Fsync.

2. The model

2.1. Temporal graph

The highly dynamic network is modeled as a time-varying graph (TVG), G = (V , E, T , ρ), where V is a set of nodes, E is
a set of edges, T is the temporal domain, and ρ : E ×T → {0, 1}, called presence function, indicates whether a given edge is
available at a given time. The graph G = (V , E) is called underlying graph (or footprint) of G , with |V | = n and |E| = m. Let
E(v) denote the set of edges incident on node v in the footprint, let δv = |E(v)| be the degree of node v in the footprint,
and let � = Maxv {δv} be the maximum degree of G . The nodes in V are anonymous (i.e., they have no IDs). Each edge
incident to node v is locally labeled (i.e., has a port-number); the labeling function is a bijection λv : E(v) → {0, . . . , δv − 1}
that associate a different label to each edge incident to v; no other assumption is made about the labels.

A journey is a temporal walk in G and it is defined as a sequence of couples J = {(e1, t1), (e2, t2) . . . , (ek, tk)}, such that
{e1, e2, ..., ek} is a walk in G and ∀i, 1 ≤ i < k, ρ(ei, ti) = 1 and ti+1 > ti . Let J (u, v, t) denote the set of journeys from u to
v starting at time t′ ≥ t .

In this paper we assume discrete time; that is, T = Z+ . In this case, the TVG G is usually called temporal graph (or
evolving graph), and can be viewed as a sequence of static graphs: SG = G0, G1, . . . , Gt , . . ., where Gt = (V , Et) is the graph
induced by the edges present at time t (called snapshot of G at time t). We denote by Ēt = E \ Et (⊆ E) the set of edges
that do not appear in the snapshot at time t .

An edge e ∈ E is said to be recurrent if ∀t ∈Z+, ∃t′ > t : ρ(e∗, t′) = 1; in other words, a recurrent edge appears infinitely
often. An edge e ∈ E that is not recurrent is said to be transient; in other words, a transient edge appears only in a
finite number of snapshots. Let E∗ and E− denote the set of recurrent and of transient edges, respectively; the number
σ(G) = |E∗| of recurrent edges is called the solidity of G; while the number η(G) = |E−| = |E| − σ(G)) of transient edges is
called the evanescence of G . Let Gr = (V , E∗), i.e., Gr is a subgraph of G induced by recurrent edges.
3

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
2.2. Connectivity

Temporal graphs can be classified in terms of the effect that the dynamic topological changes have on their connectivity.

Definition 1 (Temporally connected). A temporal graph G is temporally connected (or connected over time) if ∀t ∈Z+ , ∀u, v ∈ V ,
J (u, v, t) �= ∅.

Note that temporal connectivity is the minimal condition to be able to perform any global task regardless of the initial
position of the agents; in particular, any problem requiring every node to be involved (e.g., exploration) is trivially unsolvable
if G is not temporally connected. Let H denote the class of temporally connected TVGs.

A variety of stronger assumptions have been studied in the literature. In this paper we are interested also in the well-
known class of temporal graphs where connectivity is actually guaranteed at every time, and in particular when the number
of missing edges at any given time is bounded.

Definition 2 (�-Bounded 1-interval connected). A temporal graph G is 1-interval connected (or always connected) if ∀Gi ∈ SG ,
Gi is connected. Moreover, G is �-bounded 1-interval connected if it is always connected and |Ēt | ≤ �.

Let W(�) ⊂H denote the class of �-bounded 1-interval connected temporal graphs.

2.3. Agents

A set A = {a0, a1, . . . , ak−1} of k agents operates in G , initially occupying arbitrary positions. When the agents are all
undistinguishable, we say that they are anonymous; if one of them is different from all the others, we say that they have
a leader (and are not-anonymous). Each agent a ∈ A is a computational entity endowed with private memory (called note-
book), and capable of moving from a node to a neighboring node (provided that edge exists at the time).

When at a node v , an agent has access to the node’s ports and rotor-router mechanism. More precisely, in correspon-
dence of each edge e ∈ E(v), there is in v a port pi where i = λv(e), used by agents (at most one at a time) intending
to leave v through e. Additionally, v provides a rotor-router mechanism, which indicates one of the ports; this indication
can be read and modified by the agents; access to this mechanism is in fair mutual exclusion. Note that this mechanism
can be implemented at a node using more traditional tools for inter-agent communication (e.g., token, whiteboard) offering
access in fair mutual exclusion; for example, by a single pebble that can be placed in correspondence of one of the ports,
and moved to another port when necessary; alternatively, by a whiteboard of O (log δv) bits. In the following, for simplicity,
our presentation and discussions will be in terms of a whiteboard implementation. More precisely, we assume each node v
has some local storage space, called whiteboard, of size O (log δv) bits that can be accessed by the agents located at node v .
Access to the whiteboard is assumed to be done in mutual exclusion.

The agents operate in synchronous rounds, and each round is composed of three phases: Look, Compute, and Move,
during which they execute the following actions [40]:

LOOK: Agent ai observes the content of its notebook and of the whiteboard of the node where it currently resides; it
checks the node and its ports to determine if there are other agents at this node and where (e.g., which ports).

COMPUTE: On the basis of the information obtained in the Look phase, ai decides whether to move or not, and it can write
information on the whiteboard. If it decides to move, it places itself in correspondence of the selected port (if it is
not occupied by another agent).

MOVE: If ai is at a port, it tries to move; if the corresponding edge exists, ai reaches the other side, otherwise it stays on
the port. If ai does not occupy a port, it does not move.

Each Look and Compute phase is executed as an atomic action. Atomic actions of agents in the same node are executed
with mutual exclusion access to the whiteboard. After Look and Compute of all the agents finish, they simultaneously start
the Move phase. For example, if there are two agents a and b on a node v , a first executes its Look and Compute, then, b
executes its Look and Compute, and finally a and b (and all the other agents) execute Move.

We distinguish between the fully-synchronous activation scheduler (Fsync), when all the agents are activated in every
round, and the semi-synchronous one (Ssync), when an arbitrary subset of the agents is activated at each round. In Ssync,
the scheduler is an adversary which knows the algorithm of the agents, has infinite computing capacity, and tries to prevent
agents from completing their task; however, it must activate every agent infinitely often. An agent which is not activated at
round t is said to be sleeping at that round. The length of the sleeping time is finite but unbounded.

Under the semi-synchronous scheduler, it is necessary to specify the behavior of the agents that fall asleep on a port
when the corresponding edge is missing. We consider the weakest condition, eventual transport, according to which the
agent sleeping at a port will eventually be activated at a time when the edge corresponding to the port is present [37]; this
prevents the adversary from using semi-synchronicity to block an agent forever on a recurrent edge.
4

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
2.4. Configuration and execution

A configuration Ct is defined by: the contents of the whiteboards, the local memory of the agents, and the locations of
the agents at the start of round t .

An execution E(A) = C0C1 . . . of an algorithm A is an infinite sequence of configurations such that C0 is an initial config-
uration (i.e., a configuration at round 0) and Ct+1 is obtained from Ct by executing one round of algorithm A. This execution
is subject to two types of adversarial actions: those by the activation scheduler deciding which agents are activated in that
round, and those of the topological scheduler deciding which edges are missing in that round. When no ambiguity arises,
we use E instead of E(A).

2.5. Augmented configuration and execution

We use an augmented configuration and an augmented execution in Sections 4.2 and 5.2. To define an augmented configu-
ration, we introduce variable visitedv for all v ∈ V which is written and read only by an external observer. The initial value
of visitedv is 0. When v is visited, visitedv is set to 1 by the external observer.

Then, an augmented configuration Caug
t is defined by: configuration Ct and the value of visitedv of every node v at round

t . We say that an augmented configuration is terminal when visitedv = 1 for any node v .
An augmented execution Eaug(A) = Caug

0 Caug
1 . . . Caug

r is a sequence of augmented configurations such that Caug
0 is an

initial augmented configuration; Caug
t+1 is obtained from Caug

t by executing one round of algorithm A; Caug
r is a unique

terminal configuration in Eaug . An augmented execution is also subject to the two types of adversarial actions. Note that
the agents may keep executing A after round r, but augmented configurations after round r are ignored in Eaug . When no
ambiguity arises, we use Eaug instead of Eaug(A) and an “execution” instead of an “augmented execution”.

2.6. Exploration

We say that a node v is visited at round t if v contains an agent at the beginning of round t . We say that a node v is
explored by round t if v is visited at round t′ for some t′ (0 ≤ t′ ≤ t). We say that the network is explored by round t if
every node is explored by round t .

A perpetual exploration algorithm is one where, in every execution, every node is visited at an infinite number of rounds.
An exploration algorithm with termination is one where, in every execution, all the agents terminate after all nodes have
been visited at least once. In this paper, we are mainly concerned with perpetual exploration.

3. Exploration of temporally connected TVGs

In this section, we consider the minimal class of explorable temporal graphs: temporally connected TVGs, and we show
that the feasibility of the exploration of G is related to its evanescence η, providing a tight bound of 2η(G) + 1 agents.

3.1. Impossibility

Let H(�) = {G ∈ H : η(G) ≤ �} be the class of temporally connected TVGs with evanescence at most �. In this section
we show that it is impossible to perform perpetual exploration of all G ∈ H(�) with 2� agents. The result is quite strong
as it applies also to TVGs that are connected at every time step, with uniquely labeled nodes and agents, under a fully-
synchronous scheduler, and in presence of topological knowledge.

Theorem 3. There exist temporally connected time-varying graphs G ∈ H(�) that cannot be explored by k = 2� agents. The result
holds even if nodes and/or agents have distinct IDs, the network is always connected, the agents know n, m and k, and the scheduler is
fully-synchronous.

Proof. We show the theorem by constructing a graph G ∈H(�) that cannot be explored by 2� agents by any algorithm. The
main point of this proof is that an agent can eventually have only one of these two behaviors when wishing to traverse an
edge that is missing: (i) the agent stays permanently on the chosen port, waiting for the appearance of the continuously
missing edge; (ii) the agent eventually chooses a different edge. The agents of the former type are called (with respect to
the number of changes of a selected edge) finite agents and those of the latter are infinite agents.

The components for constructing the graph are as follows. For 0 ≤ i ≤ 2� − 1 (= k − 1), let Si be a star with center node
ci and 3 leaf nodes {b(i,0), b(i,1), b(i,2)}. We construct the graph using Si for 0 ≤ i ≤ 2� − 1 and an additional node u.

Each component is connected as follows. For 0 ≤ i ≤ 2� − 1 and j ∈ {0, 1}, each b(i, j) is connected with u by edge
(b(i, j), u); and for 0 ≤ i ≤ � − 1, each b(2i,2) connected with b(2i+1,2) by (b(2i,2), b(2i+1,2)). A graph for � = 2 (k = 4) is
depicted in Fig. 1.

For the constructed graph, we first show that, given any exploration algorithm using 2� agents, the adversary can con-
struct an execution for the algorithm such that in the execution G cannot be explored while the adversary may violate the
5

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
Fig. 1. Example of a graph for � = 2 and k = 2� = 4 that cannot be explored by 2� agents. There are four stars Si for 0 ≤ i ≤ 3 in the figure. Each star Si

has one center node ci and three leaf nodes {b(i,0), b(i,1), b(i,2)}.

restriction of H(�), i.e., η(G) may be more than �. Then, we give a way to convert the execution into another execution
such that η(G) is at most � in the new execution and the agents cannot distinguish these two executions and thus cannot
explore G also in the new execution.

We start by showing that, given any exploration algorithm, say A, using 2� agents, the adversary can construct an
execution E1 of A in which the agents cannot explore G . The adversary puts agent ai on ci for 0 ≤ i ≤ 2� − 1 in the initial
configuration of E1. During execution E1 of A, the adversary deletes the edge leading to u or the other star whenever ai

is on b(i, j) . Clearly, this prevents any agent executing A from visiting u and thus G is not explored permanently while the
adversary violates the restriction for the number of transient edges (it is at most 2� in E1).

We now show how the adversary converts E1 into another execution, say E2, so that the agents cannot distinguish E1
and E2 and η(G) is at most � in E2. The adversary first separates the agents into two groups: finite agents and infinite agents
depending on their behavior when faced with a missing edge during E1. Let f (0 ≤ f ≤ k) be the number of finite agents. In
the following, finite agents are denoted by afin

0 , . . . , afin
f −1. In the initial configuration of E2, each agent (ai) is put on the same

node (ci) as in E1.
Then, the adversary constructs a new assignment of the port labels and the node ID (if any) of nodes so that every agent

cannot distinguish E1 and E2 as follows. For infinite agents, the adversary does nothing. For finite agents, let afin
i = ai′ and

b(i′,xi) be the node where afin
i finally waits for a missing edge permanently in E1. For 0 ≤ i ≤ f − 1, the adversary does the

following: if xi = 2, the adversary does nothing; and otherwise, the adversary swaps the assignment of the port labels and
the node ID of b(i′,2) and b(i′,xi) and accordingly permutes the port labeling of ci′ .

Execution E2 with the initial configuration, the node ID, and the assignment of port labels is constructed similarly to
E1: the adversary deletes the edge leading to u or the other star when ai exists on b(i, j) . Obviously, every agent cannot
distinguish E1 and E2: for all the agents, the node IDs and the port labeling observed in E2 is the same as E1. Thus, G
cannot be explored since u is not visited by any agent also in E2.

Since the edges waited permanently by an agent are only (b(2i,2), b(2i+1,2)) for 0 ≤ i ≤ � − 1, η(G) is at most � in E2. �
3.2. Semi synchronous exploration by 2η(G) + 1 agents

In this section, we show that every temporally connected time-varying graph G ∈ H can be explored by 2η(G) + 1
anonymous agents that do not know the topology. In fact, we propose an exploration algorithm for 2η(G) + 1 anonymous
agents in an anonymous network, which works under the semi-synchronous scheduler with eventual transport.

The strategy is simple and it is based on the classical rotor router mechanism, which was introduced as a deterministic
alternative to random walk and was studied in a variety of contexts, including static graph exploration (e.g., [41–45]).

In rotor router, each node v has a variable written on its whiteboard, pointerv , indicating one of its incident ports. When
an agent a visits node v , a checks each port in ascending order from the port pointed by pointerv . If a finds some unoccupied
port p, a moves to that port and sets pointerv to p + 1. If a finishes to check all the ports and they all are occupied, a does
nothing.

Algorithm 1 Computation at node v .
1: if not on a port then
2: i ← 0
3: p ← pointerv
4: while i < δv ∧ port p is occupied do
5: p ← (p + 1) mod δv

6: i ← i + 1
7: if i < δv then
8: pointerv ← (p + 1) mod δv

9: move to port p

We first show that, in any round, there exists at least one agent succeeding to move within finite time (Lemma 4). We
then show that, 2� + 1 agents achieve perpetual exploration using Algorithm 1 (Theorem 5).
6

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
Lemma 4. For any round t, if 2η(G) + 1 agents execute Algorithm 1 in a temporally connected temporal graph G , at least one of them
eventually moves after t.

Proof. By contradiction, assume that there exists a round t such that every agent never succeeds to move after t . We
consider two cases: (i) there exists a node v containing more than δv − 1 agents, and (ii) there does not exist such a node.

In the first case, every agent on v is activated within finite time after t because of the fairness of the scheduler, which
means that every port of v is eventually occupied by an agent. Since at least one of the edges incident to v is a recurrent
edge, say e, the agent sleeping on the corresponding port of e eventually succeeds to move because of the eventual transport
rule. This is a contradiction.

Also in the second case, every agent on v is activated within finite time after round t because of the fairness of the
scheduler. Since there is no node containing more agents than its degree, every agent eventually stays on a port. When this
happens, at least one of the agents is sleeping at the port of a recurrent edge since the number of agents is 2η(G) + 1 and
there exist at most 2η(G) ports corresponding to transient edges. This means that, by the eventual transport rule, the agent
sleeping at the port of a recurrent edge eventually succeeds to move after t; a contradiction. �

Then, the following theorem holds.

Theorem 5. Any G ∈H can be explored by 2η(G) + 1 anonymous agents under the semi-synchronous scheduler.

Proof. Consider Algorithm 1. By the definition of transient edges, there exists a time step te for any transient edge e such
that ρ(e, t) = 0 for all t > te . Let tE be maxe∈E− te , i.e., a time when all the transient edges have ceased to exist and all the
edges that appear from this moment are recurrent. In the following, we consider the execution after time tE . Let x(t) be the
sum of the number of agent moves from a node to another node over all the agents from the beginning of the execution
up to time t .

We now show that, from an arbitrary initial configuration, 2η(G) + 1 agents following Algorithm 1 visit all the nodes
infinitely often.

First, note that there exists a node, say v , that is visited infinitely often (for t → ∞) because x(t) goes to infinity (for
t → ∞) by Lemma 4.

We now show that every neighbor of v connected by a recurrent edge is also visited at an infinite number of rounds. We
prove it by contradiction. Suppose that a neighbor u of v connected by a recurrent edge is visited at only a finite number
of times and let t′ be the last round when u is visited at. Since v is visited at an infinite number of rounds and the agents
execute Algorithm 1 perpetually, some agent a visiting v eventually chooses (v, u) as the edge from which a moves out of
v after time t′ . Recall that (v, u) is a recurrent edge and the agents are activated by the eventual transport rule. It follows
that a eventually visits u after round t′; a contradiction.

Since Gr is temporally connected, we can apply inductively the claim (e.g., the neighbors of a neighbor of v are also
visited infinitely often) to all the nodes, proving the theorem. �

From Theorems 3 and 5, the following Theorem holds.

Theorem 6. Exploration of all temporal graphs in H(�) by k agents is possible iff

k ≥ 2� + 1

Note that, if a graph is temporally connected, then its solidity σ(G) ≥ n − 1; as a consequence, we have:

Theorem 7. Every temporally connected temporal graph with n nodes and whose footprint has m edges can be explored by 2(m −n) +3
agents.

4. Exploration of 1-interval connected TVGs by anonymous agents

In this Section, we turn our attention to the class W(�) of 1-interval connected temporal graphs where the number
of missing edges is bounded in each round by a constant �. In other words, at any time t the TVG is connected, and no
more than � edges are missing. We establish tight bounds for the exploration of this class of temporal graphs by anonymous
agents, in Ssync and in Fsync.

4.1. Semi-synchronous model

We first consider �-bounded, 1-interval connected TVGs operating under a semi-synchronous scheduler and we show
that there exist TVGs that cannot be explored by 2� anonymous agents.
7

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
Theorem 8. There exist 1-interval connected time-varying graphs G ∈ W(�) that cannot be explored by k = 2� anonymous agents.
The result holds even if the agents know n, m and k and whiteboards are of unbounded size.

Proof. We use the same graph G constructed for the proof of Theorem 3. The construction is omitted in this proof.
We first show that, given any exploration algorithm, say A, using 2� agents, the adversary can construct an execution E1

of A, possibly violating the eventual transport rule, in which the agents cannot explore G . We then show that it is always
possible to convert this execution into another execution E2 that does not violate the eventual transport rule, and where
the agents cannot explore G .

In execution E1, the adversary puts agent ai on ci for 0 ≤ i ≤ k − 1 = 2� − 1 in the initial configuration of E1. During E1,
exactly one agent is activated at each round: ai is activated at round t when t ≡ i (mod k). When the adversary activates ai
and ai exists on b(i, j) , the adversary deletes the edge leading to u or the other star whereas all the other edges are present.
Note that the agents and the nodes are anonymous and thus either they are all finite (i.e., every agent permanently waits
for appearance of its selected edge if the edge is permanently missing) or they are all infinite (i.e., every agent eventually
changes its selected edge if the edge remains missing) in E1.

If the agents are infinite, the eventual transport rule is not violated even in E1 and thus the adversary can prevent the
agents from completing the exploration in E1.

If the agents are finite, the adversary converts E1 into another execution, say E2, as follows. The adversary first puts ai
(0 ≤ i ≤ k − 1) on ci in the initial configuration of E2. Then, the adversary changes the assignment of the port labels and the
node ID (if any) of each node in Si in the same way explained in the proof of Theorem 3 (also omitted in this proof). In E2,
the adversary activates each agent in the same order as in E1 and deletes an edge leading to u or the other star whenever
ai is on b(i, j) . After some round t from which every agent ai does not change its selected edge, i.e., b(i,2) , and waits at a
port of b(i,2) forever for 0 ≤ i ≤ 2l, the adversary deletes (b(2 j,2), b(2 j+1,2)) for 0 ≤ j ≤ � − 1 at every round. Obviously, every
agent cannot distinguish E2 from E1 and G cannot be explored since u is not visited by any agent in E2. It is also clear that
the eventual transport rule is not violated in E2. �

Clearly, W(�) ⊂ H(�), thus any G ∈W(�) can be explored by Algorithm 1; that is:

Theorem 9. Any G ∈W(�) can be explored by 2� + 1 anonymous agents under the semi-synchronous scheduler with eventual trans-
port.

From Theorems 8 and 9 it follows that:

Theorem 10. Under a semi-synchronous scheduler, exploration of all �-bounded 1-interval connected TVG by k anonymous agents is
possible iff k ≥ 2� + 1.

4.2. Fully-synchronous model

In this section, we show that, if the network size and the number of agents are known, there exists a difference between
Fsync and Ssync in the exploration of �-bounded 1-interval TVGs. In fact, we show that, G ∈W(�) can be explored if k ≥ 2�,
while there exist graphs that cannot be explored with 2� − 1 agents.

4.2.1. Impossibility
We now consider �-bounded, 1-interval connected TVGs operating under a fully-synchronous scheduler and we show

that there exist TVGs that cannot be explored by 2� − 1 agents, even if the agents know n, m, and k.

Theorem 11. There exist �-bounded 1-interval time-varying graphs G ∈ W(�) that cannot be explored by k = 2� − 1 anonymous
agents in Fsync. The result holds even if the agents know n, m, and k, and whiteboards are of unbounded size.

Proof. Let K2� = (V 2�, E2�) be the complete graph with 2� nodes where V 2� = {v0, v1, . . . , v2�−1}. It is well known that the
edges of K2� can be colored with 2� − 1 colors, that is, E2� can be partitioned into 2� − 1 disjoint independent edge sets
(or complete matchings): E(0)

2� , E(1)
2� , . . . , E(2�−2)

2� . For example, the following separation leads to disjoint independent edge
sets: each E(i)

2� has � edges, (vi, v2�−1), (vi−1, vi+1), (vi−2, vi+2), . . . , (vi−�+1, vi+�−1), see Fig. 2 (for simplicity, mod 2� is
omitted).

The execution where v2�−1 remains unvisited is constructed as follows. For 0 ≤ i ≤ 2� − 1, the adversary places each
agent ai on vi and for 0 ≤ j ≤ 2� −2 assigns a label j to the port of vi corresponding to e, if e ∈ E(j)

2� . Note that, since agents
and nodes are anonymous, all the agents select the port with the same label to move at each round. Thus, the adversary
can prevent any agent from moving by deleting all the edges of E(i)

2� when the agent selects port i; as a consequence, none
of the agents can move out of their current nodes. This means that v2�−1 remains unvisited forever.

In this execution, the number of missing edges is always � and the network is obviously kept connected. Thus, the
theorem holds. �
8

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
Fig. 2. Example of a graph for � = 4 and k = 2� − 1 = 7 that cannot be explored by 2� − 1 agents and its coloring. The bold lines are the edges of E(0)
8 .

4.2.2. Bound on exploration time
Let G ∈ W(�). Since W(�) ⊂ H(�), 2� + 1 agents can clearly completes the exploration by Algorithm 1 in graph G .

Interestingly, when executed on G ∈ W(�), it can be shown that the time complexity of exploration can be bounded under
the fully-synchronous scheduler. More specifically, we show that within �n(� + 1)k(n − 1)k rounds, all nodes of the graph
have been visited at least once by a team of k = 2� + 1 agents.

We prove the theorem by a sequence of lemmas. First of all, we can easily show that 2� +1 agents executing Algorithm 1
cannot be all prevented from moving at any given round.

Lemma 12. If 2� + 1 agents activated fully-synchronously execute Algorithm 1 in �-bounded 1-interval TVGs, at least one of them
succeeds to move at every round.

Proof. There exist two cases as in the proof of Lemma 4: at round t , (i) there exists a node v containing more than δv − 1
agents, and (ii) there does not exist such a node.

In the first case, since there are more than δv − 1 agents at v , every port is occupied by one agent at t since every agent
is activated. In addition to that, v has at least one adjacent edge present at t by the connectivity of the TVG. This implies
that at least one agent succeeds to move at round t .

In the second case, each agent occupies one port by assumption and by fully-synchronous activation, which means that
2� + 1 ports are occupied. Moreover, at most � edges are missing at each round, which means that at most 2� ports are
blocked at each round. It follows that at least one agent can move at round t also in this case. �

For Eaug of Algorithm 1, the following lemma holds.

Lemma 13. In an augmented execution of Algorithm 1 by 2� + 1 agents, any two augmented configurations are different.

Proof. First note that Lemma 12 precludes the same two consecutive augmented configurations Caug
t and Caug

t+1 in an
augmented execution Eaug of Algorithm 1 where no agents move between Caug

t and Caug
t+1. Suppose that there exist two

augmented configurations Caug
t and Caug

t′ for t < t′ in Eaug . Let Eaug
t,t′ = Caug

t Caug
t+1 · · · Caug

t′−1 be a subsequence of Eaug . In this
case, the adversary can create an infinite augmented execution from Eaug by repeating Eaug

t,t′ , which means that the adver-
sary can create an (augmented) execution where 2� + 1 agents cannot complete the exploration forever. This contradicts
Theorem 5. Thus, the lemma holds. �

We are now ready to show an upper bound on the exploration time of Algorithm 1, which is obtained by calculating the
maximum length among all the augmented executions.

Lemma 14. The length of any possible augmented execution by k = 2� + 1 agents is bounded by �n(� + 1)k(n − 1)k.

Proof. Let α be the maximum length among all the possible augmented executions. By Lemma 13, α is bounded by the
number of possible augmented configurations in an execution.

The number of possible configurations on a fixed node set V ′ ⊆ V is bounded by �|V ′ |(|V ′|(� + 1))k , which corresponds
to all the combinations of the possible values of pointerv (i.e., �|V ′|) and all of the agents’ locations (i.e., (|V ′|(� + 1))k).
Notice that only pointerv of each node v is used as a variable in Algorithm 1. Since the number of nodes visited by an agent
is not decreasing during the exploration, the exploration time is smaller than or equal to the sum of �|V ′|(|V ′|(� + 1))k for
1 ≤ |V ′| ≤ n − 1, i.e., α ≤ ∑n−1

′ �|V ′ |(|V ′|(� + 1))k ≤ �n(� + 1)k(n − 1)k rounds. �
|V |=1

9

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
It then follows that:

Theorem 15. In Fsync, Algorithm 1 executed by k = 2� + 1 anonymous agents explores any �-bounded 1-interval connected TVG
within �n(� + 1)k(n − 1)k rounds.

Note that, as a consequence, we obtain a terminating exploration algorithm for �-bounded 1-interval connected TVGs.

Theorem 16. In Fsync, with knowledge of n and k, exploration with termination of an arbitrary �-bounded 1-interval connected
temporal graph W(�) can be achieved in nn+2k rounds by k = 2� + 1 agents.

4.2.3. Exploration by 2� agents
The result of the previous section can be used to obtain a perpetual exploration algorithm of �-bounded 1-interval con-

nected graphs by 2� agents (which know n and k). The solution (Algorithm 2 below) is obtained by applying to Algorithm 1
bounding the waiting time of an agent blocked on a missing edge.

In fact, while an agent keeps waiting for a missing edge forever in Algorithm 1, in Algorithm 2 an agent waits for a
missing edge up to kT rounds where T is calculated on the basis of the results of Section 4.2.2.

Apart from the waiting time, the rest of the algorithm is the same as in Algorithm 1: each node has pointerv pointing
at a port. When agent a visits v , a checks each port in ascending order from the port pointed by pointerv . If a finds some
unoccupied port p, a moves to the port and sets pointerv to p + 1. If a finishes to check all the ports and they all are
occupied, a does nothing.

Variable Waiting of an agent represents the elapsed time since the last round when the agent moved to the current port.

Algorithm 2 Computation at node v .
1: if on a port then
2: Waiting ← Waiting + 1
3: if Waiting > kT then
4: exit the current port
5: if not on a port then
6: Waiting ← 0
7: i ← 0
8: p ← pointerv
9: while i < δv ∧ port p is occupied do

10: p ← (p + 1) mod δv

11: i ← i + 1
12: if i < δv then
13: pointerv ← (p + 1) mod δv

14: move to the port p

Lemma 17. Let 2� agents execute Algorithm 2. If an agent waits at u for a missing edge e = (u, v) for kT rounds, during this time
either another agent starts to wait for e at v, or every node is visited by an agent at least once.

Proof. Suppose that an agent a at u starts to wait for a missing edge (u, v) at round t and (u, v) is kept missing for the
next kT rounds (including t).

We first show that there exist T successive rounds in [t, t +kT) during which all the agents but a do not satisfy predicate
Waiting > kT even if their selected edge remains missing.

We show the claim by contradiction. We assume that in any interval of T successive rounds in [t, t + kT), there is an
agent that satisfies Waiting > kT .

By assumption, at least k agents other than a must satisfy Waiting > kT , since kT /T = k. This means that at least one
agent (different from a) satisfies the predicate twice since the number of the agents (excluding a) is k − 1. However, once
an agent satisfies Waiting > kT at round t′ ∈ [t, t + kT), the agent never satisfies the predicate again in [t, t + kT) since the
length of the interval is kT . This is a contradiction. Thus, there exist T successive rounds in [t, t + kT) during which all the
agents (except for a) do not satisfy Waiting > kT even if their chosen edge is kept missing.

Now, we show the lemma, i.e., show that another agent at v starts to wait for e = (u, v) or the exploration is completed.
Suppose that no agent at v starts to wait for e in these T rounds. Since e is missing during these T rounds, during
that time the network (without e) can be considered as a (� − 1)-bounded 1-interval connected TVG. By Theorem 15,
2(� − 1) + 1 = 2� − 1 agents complete the exploration of the (� − 1)-bounded TVGs in these T rounds. This means that
every node of the network without e is visited at least once by an agent during these T rounds, because none of them
starts to wait for e at v during that time by assumption. Thus, the lemma holds. �
Theorem 18. In Fsync, any �-bounded 1-interval connected temporal graph G ∈ W(�) can be explored by k = 2� anonymous agents
with knowledge of n and k.
10

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
Fig. 3. Example of a graph for � = 3 and k = 2� − 1 = 5 that cannot be explored by 2� − 1 agents with a leader.

Proof. Executing Algorithm 2, there clearly exists at least a node v that is visited at an infinite number of rounds (e.g., any
node containing an agent blocked forever waiting for an edge that will never appear). We then show that all the neighbors
of v are also visited at an infinite number of rounds by agents. We prove it by contradiction. Suppose that a neighbor
u of v is visited at only a finite number of rounds and let t′ be the last round when u is visited. Since v is visited at an
infinite number of rounds and the agents execute Algorithm 2, some agent a visiting v eventually chooses (v, u) as the edge
from which a moves after t′ . If (v, u) appears by the kT -th round since a chooses it, a visits u as soon as (v, u) appears.
Otherwise, another agent visits u by Lemma 17. It follows that u is eventually visited after t′ , which is a contradiction.

By the connectivity assumption, we can apply inductively the claim (e.g., the neighbors of a neighbor of v are also visited
at an infinite number of rounds) to all the nodes, proving the theorem. �

From Theorems 11 and 18, we have:

Theorem 19. In Fsync, with knowledge of n and k, the exploration of all �-bounded 1-interval connected TVGs is possible iff k ≥ 2�.

5. Exploration of 1-interval connected graphs with a leader

In this section, we continue to consider the class W(�) of 1-interval connected temporal graphs with bounded missing
edges, but we turn our attention to the case when one agent, the leader, is distinguishable from the others (the non-leaders).
Also in this setting, we establish tight bounds for the exploration of this class of temporal graphs in Ssync and in Fsync

showing that the presence of the leader allows the exploration to be performed using one fewer agent.

5.1. Semi-synchronous model

In this section, we show that, if there exists a leader, the bounds decrease by one in the exploration of �-bounded
1-interval TVGs. In fact, we show that, G ∈ W(�) can be explored by 2� agents with one leader, while there exist graphs
G ∈W(�) that cannot be explored by 2� − 1 agents with one leader.

5.1.1. Impossibility
We start by showing the impossibility result.

Theorem 20. There exist 1-interval connected time-varying graphs G ∈ W(�) that cannot be explored by k = 2� − 1 agents with a
leader. The result holds even if the agents know n, m and k, and whiteboards are of unbounded size.

Proof. We construct a graph G′ using a graph similar to the one employed in the proof of Theorem 8, where however we
use 2� − 2 copies of stars instead of 2�, and we add two new nodes v and w connected to u (see Fig. 3). The subgraph
corresponding to G (including u) is denoted by G′

1 and the subgraph induced by u, v and w is denoted by G′
2.

Let each non-leader agent ai be on one of the nodes ci , and the leader agent â be on w .
Consider G′

2 and the following behavior of the adversary: whenever â chooses the port corresponding to (v, w) the
adversary deletes (v, w), otherwise it deletes (u, w). With these dynamics, â never visits u; moreover â has no effect on
the exploration of G′

1.
Consider now G′

1: we let the adversary delete at most � − 1 edges at each round. Then, by Theorem 8 and since â has
no effect on the exploration of G′

1, the 2� − 2 = 2(� − 1) non-leader agents are also prevented from visiting u. Clearly, the
number of missing edges at each round is at most � and the graph is always connected. �
5.1.2. Exploration by 2� agents with a leader

We now describe a strategy for 2� agents (one of which is a leader) to explore �-bounded 1-interval connected graphs.
The general idea is simple: the leader agent always changes its chosen edge whenever it is blocked by a missing edge, while
a non-leader agent always waits for its chosen edge to appear.
11

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
However, if we implement this strategy using one pointer for each node, like we did in Sections 3 and 4, two problems
can occur: (i) a broken rotor and (ii) a skipped port.

A broken rotor is a pointer that can be changed by the adversary freely. Since the leader changes a pointer whenever it
is blocked, the adversary can make the leader choose pointers in such a way that the leader is repeatedly blocked. To avoid
this situation, we use an additional pointer pointerLv for each node v that only the leader can change.

A skipped port is a port that remains unused. Suppose that a port pv at node v is occupied by the leader. Since non-
leaders skip an occupied port, they continue to skip pv as long as the leader occupies it. Without restrictions, even if the
leader, finding itself blocked at pv , changes its port and moves away from pv , it might return to v and occupy pv always
when the edge is missing and whenever a non-leader would be arriving to v , hence the adversary could continue to prevent
the use of the port and thus the exploration of the node on the other side.

To avoid these two potential problems, (a) pointerLv is changed so that pointerLv points to an occupied port p if and
only if the agent occupying p is the leader, (b) a non-leader waits for an occupied port to be unoccupied when the port is
pointed by pointerLv , and (c) the leader, as long as finding an agent not on a port, stays at v .

Algorithm 3 is the exploration algorithm of the leader and Algorithm 4 is the exploration algorithm of the non-leaders. In
Algorithms 3 and 4, Setting pointerLv to −1 is done to prevent pointerLv from pointing to a port occupied by a non-leader.
We assume that pointerLv is initialized to −1.

Algorithm 3 Computation of the leader at node v .
1: if on a port then
2: exit the current port
3: if (not on a port) ∧ (all other agents at v are on a port) then
4: i ← 0
5: p ← pointerLv + 1
6: while i < δv ∧ port p is occupied do
7: p ← (p + 1) mod δv

8: i ← i + 1
9: if i < δv then

10: pointerLv ← p
11: move to the port p
12: else
13: pointerLv ← −1

Algorithm 4 Computation of a non-leader at node v .
1: if not on a port then
2: i ← 0
3: p ← pointerv
4: while i < δv ∧ port p is occupied do
5: if p = pointerLv then
6: i ← δv , pointerv ← p
7: break from this loop
8: p ← (p + 1) mod δv

9: i ← i + 1
10: if i < δv then
11: pointerv ← (p + 1) mod δv

12: if p = pointerLv then
13: pointerLv ← −1
14: move to the port p

First, we show that pointerLv behaves correctly.

Lemma 21. Variable pointerLv points at an occupied port if and only if the agent occupying the port is the leader.

Proof. (⇐) When the leader moves to a port p, it changes pointerLv to p.
(⇒) Let us show the contraposition of the claim: if the agent occupying port p is a non-leader, pointerLv never points to

p. At the beginning, the value of each pointerLv is −1 and thus the claim holds. If a non-leader, say ai , decides to move to a
port p and pointerLv points to p, then ai changes pointerLv to −1 before moving to p. By induction, pointerLv never points
to a port occupied by a non-leader. �
Theorem 22. Any �-bounded 1-interval connected temporal graph G ∈ W(�) can be explored by k = 2� agents with a leader under
the semi-synchronous scheduler with eventual transport.

Proof. Consider the leader executing Algorithm 3 and the 2� − 1 non-leaders executing Algorithm 4. First, we show that
unless 2� − 1 non-leaders are all blocked forever, the 2� − 1 non-leaders visit all the nodes infinitely often. Note that the
adversary needs � transient edges to block 2� − 1 non-leaders.
12

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
Fig. 4. Example of a graph for � = 5 and k = 2� − 2 = 8 that cannot be explored by 2� − 2 agents with one leader. It is constructed with the graph in Fig. 2
and nodes u and w being connected to v2�−3.

First assume that some non-leader agents can move from a node to another node infinitely often. Let Am be the non
empty set of such non-leaders, let te be the round such that after te , every agent b /∈ Am is kept blocked forever, and let x(t)
be the total number of agent moves from a node to another node over all the agents in Am from round te of the execution
up to time t . Since a ∈ Am is never blocked by a transient edge, x(t) goes to infinity (for t → ∞). Thus, there exists a node,
say v , which is visited at an infinite number of rounds by a ∈ Am . Then, by an argument similar to the one used in the
proof of Theorem 5, we can show that every neighbor of v connected with a recurrent edge is also visited at an infinite
number of rounds by a ∈ Am and, inductively, that all the nodes are visited at an infinite number of rounds.

Suppose instead that every non-leader agent is blocked at some port forever after some round, and let t′
e > te be a round

when they are all blocked and all the 2� transient edges have disappeared forever. In this case, we show that the leader
completes the exploration. First observe that, since all the non-leaders are blocked at some port, after round t′

e the leader
is never required to stop to wait for non-leaders to move to a port.

Moreover, since � missing edges are transient and do not exist anymore after time t′
e , from this time, the network can

be regarded as a static network with 2� unusable ports: the 2� − 1 occupied by non-leaders and one unoccupied. The
leader, by construction, just skips the ports that are not available. In doing so, it executes the rotor-router algorithm on the
static network induced by deleting all the transient edges from the footprint of the network. Hence, by the property of the
rotor-router algorithm, the leader correctly performs the exploration. �

From Theorems 20 and 22, we have:

Theorem 23. In Ssync, with a leader, the exploration of all �-bounded 1-interval connected TVGs is possible iff k ≥ 2�.

5.2. Fully-synchronous model

In this section, we show that, if there exists one leader and the agents are activated in Fsync, the bounds on the number
of agents for exploration in �-bounded 1-interval TVGs decreases even further. In fact, we show that, with a leader, G ∈W(�)

can be explored by 2� − 1 agents if � ≥ 2 (it is clear that when � = 1 and k = 2� − 1 = 1, the exploration is impossible),
while there exist graphs G ∈W(�) that cannot be explored by 2� − 2 agents.

5.2.1. Impossibility
We now consider �-bounded, 1-interval connected TVGs operating under a fully-synchronous scheduler and we show

that there exist TVGs that cannot be explored by 2� − 2 agents with one leader (2� − 3 non-leaders and one leader agent),
even if the agents know n, m, and k.

Theorem 24. In Fsync, there exist 1-interval connected time-varying graphs G ∈W(�) that cannot be explored by k = 2� − 2 agents
with one leader. The result holds even if the agents know n, m and k, and whiteboards are of unbounded size.

Proof. We construct a graph K ′
2�−2 by adding two nodes u and w to the graph K2�−2 used in the proof of Theorem 11 and

connecting them to v2�−3 (see Fig. 4). The subgraph corresponding to K2�−2 (including v2�−3) is denoted by K(1) and the
subgraph induced by v2�−3, u, and w is denoted by K(2) .

Let each non-leader ai be on each vi and let the leader agent â be on w . Consider K(2) and the following behavior of the
adversary: whenever â chooses the port corresponding to (v2�−3, w) the adversary deletes (v2�−3, w), otherwise it deletes
(u, w). With these dynamics, â never visits v2�−3; moreover, â has no effect on the exploration of K(1) .
13

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
For K(1) , we let the adversary delete at most � − 1 edges at each round. Then, by Theorem 11 and since â has no effect
on the exploration of K(1) , the 2� − 3 = 2(� − 1) − 1 non-leaders are also prevented from visiting v2�−3. Clearly, the number
of missing edges at each round is at most � and the graph is always connected. �
5.2.2. Bound on exploration time

To prove that 2� − 1 agents (one of them the leader) suffice to explore a graph G ∈ W(�), we first establish in this
subsection an auxiliary result. More precisely, we determine an upper bound on the time sufficient for 2� agents (one of
them the leader) to explore G using Algorithms 3 and 4 described in Section 5.1.2.

We establish the bound through a sequence of lemmas. We start by showing that the leader executing Algorithm 3 and
2� − 1 non-leaders executing Algorithm 4 cannot be all prevented from moving or changing their port at any given round.

Lemma 25. If 2� agents activated fully-synchronously execute Algorithms 3 (for the leader) and 4 (for the non-leaders) in �-bounded
1-interval TVGs, at least one of them succeeds to change its location at every round (i.e., moving to a port or a neighbor, or changing its
port).

Proof. We have two cases as in the proof of Lemma 4: at round t , (i) there exists a node v containing more than δv − 1
agents, or (ii) there does not exist such a node.

In the first case, we can show the claim by the same argument used in the proof of Lemma 4.
We then consider the second case. If some agent is not on a port, this agent moves to a port or a neighbor. If every

agent is on a port, the leader tries to change its port by construction. Note that since every node v is occupied by at most
δv − 1 agents, there is at least one unoccupied port at every node. Thus, the leader succeeds to change its port. �

Using the same argument as the one of the proof of Lemma 13, we have:

Lemma 26. In an augmented execution of Algorithm 3 executed by the leader and Algorithm 4 executed by the 2� − 1 non-leaders,
any two augmented configurations are different.

Proof. We can show the lemma by the same argument used in the proof of Lemma 13. �
We are now ready to show an upper bound on the exploration time of Algorithms 3 and 4, which is obtained by

calculating the maximum length among all the augmented executions.

Lemma 27. The length of any possible augmented execution of Algorithm 3 executed by the leader and Algorithm 4 executed by the
2� − 1 non-leaders is bounded by �n(� + 1)k+n(n − 1)k.

Proof. Let α be the maximum length among all the possible augmented executions. By Lemma 26, α is bounded by the
number of possible augmented configurations in an execution.

The number of possible configurations on a fixed node set V ′ ⊆ V is bounded by (�(� + 1))|V ′ |(|V ′|(� + 1))k , which
corresponds to all the combinations of the possible values of pointerv and pointerLv (i.e., (�(� +1))|V ′ |) and all of the agents’
locations (i.e., (|V ′|(� + 1))k). Notice that only pointerv and pointerLv of each node v are used as variables in Algorithms 3
and 4. Since the number of visited nodes is not decreasing during the exploration, the exploration time is smaller than
or equal to the sum of (�(� + 1))|V ′ |(|V ′|(� + 1))k for 1 ≤ |V ′| ≤ n − 1, i.e., α ≤ ∑n−1

|V ′|=1(�(� + 1))|V ′ |(|V ′|(� + 1))k ≤
�n(� + 1)k+n(n − 1)k rounds. �

It then follows that:

Theorem 28. In Fsync, the leader executing Algorithm 3 and 2� − 1 non-leaders executing Algorithm 4 explore any �-bounded 1-
interval connected TVG within �n(� + 1)k+n(n − 1)k rounds.

Note that, as a consequence, we obtain a terminating exploration algorithm for �-bounded 1-interval connected TVGs.

Theorem 29. In Fsync, with knowledge of n and k, and the existence of a leader, exploration with termination of an arbitrary
�-bounded 1-interval connected temporal graph W(�) can be achieved in n2(n+k) rounds by k = 2� agents.

5.2.3. Exploration by 2� − 1 agents with a leader
The result of the previous section can be used to obtain a perpetual exploration algorithm of �-bounded 1-interval

connected graphs by 2� −1 agents (which know n and k) one of which is a distinguishable leader. The solution (Algorithm 5
below) is obtained by applying Algorithm 4, appropriately bounding the waiting time of a non-leader blocked on a missing
edge. The algorithm for the leader is the same as the one used in the previous section (i.e., Algorithm 3).
14

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
In fact, while a non-leader keeps waiting for a missing edge forever in Algorithm 4, in Algorithm 5 a non-leader waits
for a missing edge up to (k − 1)T rounds where T is calculated on the basis of the results of Section 5.2.2.

Apart from the waiting time, Algorithm 5 is the same as Algorithm 4: each node has pointerv pointing at a port and
pointerLv for the leader. When a non-leader ai visits v , ai checks each port in ascending order from the port pointed by
pointerv . If ai finds the port occupied by the leader, ai waits till the leader leaves the port. If ai finds an unoccupied port p,
ai moves to the port and sets pointerv to p + 1 and, if p is equal to pointerLv , it sets pointerLv to −1. If ai finishes to check
all the ports and they all are occupied, ai does nothing.

Variable Waiting of a non-leader represents the elapsed time since the last round when the non-leader moved to the
current port.

Algorithm 5 Computation of a non-leader at node v .
1: if on a port then
2: Waiting ← Waiting + 1
3: if Waiting > (k − 1)T then
4: exit the current port
5: if not on a port then
6: Waiting ← 0
7: i ← 0
8: p ← pointerv
9: while i < δv ∧ port p is occupied do

10: if p = pointerLv then
11: i ← δv , pointerv ← p
12: break from this loop
13: p ← (p + 1) mod δv

14: i ← i + 1
15: if i < δv then
16: pointerv ← (p + 1) mod δv

17: if p = pointerLv then
18: pointerLv ← −1
19: move to the port p

Lemma 30. Let the leader execute Algorithm 3 and the 2� − 2 non-leaders execute Algorithm 5. If a non-leader waits at u for a missing
edge e = (u, v) for (k − 1)T rounds starting from round t, then in [t, t + (k − 1)T) rounds there exist T successive rounds during
which all the non-leaders do not satisfy predicate Waiting > (k − 1)T even if their selected edge remains missing.

Proof. Suppose that a non-leader ai at u starts to wait for a missing edge (u, v) at round t and (u, v) is kept missing for
the next (k − 1)T rounds (including t).

We show the lemma by contradiction. We assume that in any interval of T successive rounds in [t, t + (k − 1)T), there
is a non-leader that satisfies Waiting > (k − 1)T .

By assumption, at least k − 1 non-leaders other than ai must satisfy Waiting > (k − 1)T since (k − 1)T /T = k − 1. This
means that at least one non-leader (different from ai) satisfies the predicate twice since the number of non-leaders (exclud-
ing ai) is k − 2. However, once a non-leader satisfies Waiting > (k − 1)T at round t′ ∈ [t, t + (k − 1)T), the non-leader never
satisfies the predicate again in [t, t + (k − 1)T) since the length of the interval is (k − 1)T . This is a contradiction. �
Lemma 31. Let the leader execute Algorithm 3 and the 2� − 2 non-leaders execute Algorithm 5. If a non-leader waits at u for a missing
edge e = (u, v) for (k − 1)T rounds, during this time either another non-leader starts to wait for e at v, or every node is visited by an
agent at least once.

Proof. Suppose that a non-leader ai at u starts to wait for a missing edge (u, v) at round t and (u, v) is kept missing for
the next (k − 1)T rounds (including t).

By Lemma 30, in interval [t, t + (k − 1)T) there exist T successive rounds, say I , during which all the non-leaders do
not satisfy predicate Waiting > (k − 1)T even if their selected edge remains missing. Suppose that no non-leader starts to
wait for e at v in I . Since e is missing during I , the network (without e) can be considered as a (� − 1)-bounded 1-interval
connected TVG during I . By Theorem 28, 2� − 2 = 2(� − 1) agents with one leader complete the exploration of the (� − 1)-
bounded TVGs in the T successive rounds. This means that every node of the network (without e) is visited by an agent
during I at least once because none of the non-leaders starts to wait for e at v during that time by assumption. Thus, the
lemma holds. �
Lemma 32. Let the leader execute Algorithm 3 and the 2� − 2 non-leaders execute Algorithm 5. If there is a node visited at only a finite
number of rounds (by the leader or non-leaders) and there is another node visited at only a finite number of rounds by non-leaders,
every node is visited at only a finite number of rounds by non-leaders.
15

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
Proof. Suppose that a node v is visited at only a finite number of rounds by agents and another node u is visited at only a
finite number of rounds by non-leaders. Let t1 be the last round when v is visited by an agent or u is visited by non-leaders.

We first show that all the neighbors of u are visited at only a finite number of rounds by non-leaders. We prove this
by contradiction, assuming that a neighbor w of u is visited at an infinite number of rounds by non-leaders. Eventually, an
agent a1 at w chooses (w, u) to move after t1. Since u is never visited at any time after t1, a1 is kept blocked on w at
the port of (w, u) for (k − 1)T rounds. By Lemma 31, however, another non-leader visits u or every node is visited by an
agent at least once after t1. Both cases contradict the assumption and thus all the neighbors of u are visited at only a finite
number of rounds by non-leaders. Since the network is connected, we can apply inductively the claim to all the nodes,
proving the lemma. �
Theorem 33. In Fsync, with knowledge of n and k, if � ≥ 2, any �-bounded 1-interval connected temporal graph G ∈ W(�) can be
explored by k = 2� − 1 agents with one leader.

Proof. Consider the leader executing Algorithm 3 and non-leaders executing Algorithm 5. The proof follows the same lines
of the one of Theorem 18. There clearly exists at least one node v which is visited at an infinite number of rounds. We
then show that all the nodes are visited at an infinite number of rounds. Two cases are considered: Case a) v is visited at
an infinite number of rounds by non-leaders and Case b) v is visited at only a finite number of rounds by non-leaders.

Case a) Suppose that v is visited at an infinite number of rounds by non-leaders. We show that all the neighbors of v
are also visited at an infinite number of rounds by agents. We prove it by contradiction, assuming that a neighbor u of
v is visited at only a finite number of rounds by agents and letting t1 be the last round when u is visited by an agent.
Since v is visited at an infinite number of rounds by the non-leaders executing Algorithm 5, some non-leader ai visiting v
eventually chooses (v, u) to move. If (v, u) appears within (k −1)T rounds, ai visits u in the period, which is a contradiction.
Otherwise, another agent visits u by Lemma 31. It follows that u is eventually visited after t1, which is a contradiction.

Case b) Suppose that v is visited at only a finite number of rounds by non-leaders. We show by contradiction that all the
neighbor of v are visited at an infinite number of rounds. Assume that a neighbor of v is visited at only a finite number
of rounds by agents. It follows by Lemma 32 that every node is visited at only a finite number of rounds by non-leaders.
This means that no non-leader exists in the network by the definition. This is a contradiction since � ≥ 2 and at least two
non-leaders exist in the network.

In either case, all the neighbors of v are visited at an infinite number of rounds. Since the network is connected, we can
apply inductively the claim to all the nodes, proving the theorem. �

From Theorems 24 and 33, we have:

Theorem 34. Under the fully-synchronous scheduler, with knowledge of n and k and the existence of a leader, if � ≥ 2, the exploration
of all �-bounded 1-interval connected TVGs is possible iff k ≥ 2� − 1.

6. Conclusion

In this paper, we considered perpetual exploration of temporal graphs with arbitrary and unknown topology, focusing
on the number of agents that are necessary and sufficient to perform the task. We considered two common dynamic
models: temporally connected networks, and 1-interval connected (or always connected) networks with a bounded number
of missing edges at each round. We derived tight bounds for both models under fully synchronous and semi-synchronous
settings, both when the agents are anonymous and when there is a leader.

Our algorithms use at each node v a rotor-router mechanism; this can be implemented with either a constant number
of movable tokens that can be placed on the ports of v , or with a whiteboard of size O (log δv) bits. It would be interesting
if the same tight bounds on the number of agents could be obtained using a different (perhaps more complex) mechanism
requiring less memory.

In this paper the focus has been on optimality in terms of number of agents. The investigation on the amount of time
and the number of moves required by an agent-optimal solution to visit all the nodes at least once during the perpetual
exploration, is another open research direction.

This is the first study on distributed exploration of temporal graphs with arbitrary topology, and it has considered so
far temporally connected and 1-interval connected networks. The investigation of other classes of temporal dynamics in
networks of arbitrary topology is the main research direction left open.

CRediT authorship contribution statement

All authors have contributed to all aspects of the paper: design, ideas, writing, revisions.
16

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This research was partly supported by NSERC through the Discovery Grant program Grant numbers A2415 and 203254,
and by JSPS KAKENHI Grant Number 19H04085.

References

[1] C. Shannon, Presentation of a maze-solving machine, in: Proc. of the 8th Conf. of the Josiah Macy Jr. Foundation (Cybernetics), 1951, pp. 173–180.
[2] S. Albers, M. Henzinger, Exploring unknown environments, SIAM J. Comput. 29 (4) (2000) 1164–1188.
[3] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg, Label-guided graph exploration by a finite automaton, ACM Trans. Algorithms 4 (4) (2008)

1–18.
[4] J. Chalopin, P. Flocchini, B. Mans, N. Santoro, Network exploration by silent and oblivious robots, in: Proc. of 36th International Workshop on Graph

Theoretic Concepts in Computer Science (WG), 2010, pp. 208–219.
[5] X. Deng, C.H. Papadimitriou, Exploring an unknown graph, J. Graph Theory 32 (3) (1999) 265–297.
[6] Y. Dieudonné, A. Pelc, Deterministic network exploration by anonymous silent agents with local traffic reports, ACM Trans. Algorithms 11 (2) (2014)

1–29.
[7] S. Dobrev, L. Narayanan, J. Opatrny, D. Pankratov, Exploration of high-dimensional grids by finite automata, in: Proc. 46th Int. Colloquium on Automata,

Languages, and Programming (ICALP), 2019, pp. 1–16.
[8] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, D. Peleg, Graph exploration by a finite automaton, Theor. Comput. Sci. 345 (2–3) (2005) 331–344.
[9] P. Fraigniaud, D. Ilcinkas, A. Pelc, Impact of memory size on graph exploration capability, Discrete Appl. Math. 156 (12) (2008) 2310–2319.

[10] P. Panaite, A. Pelc, Exploring unknown undirected graphs, J. Algorithms 33 (1999) 281–295.
[11] S. Das, Graph Exploration with Mobile Agents, Chapter 16 of [40] (2019) 403–422.
[12] A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-varying graphs and dynamic networks, Int. J. Parallel Emerg. Distrib. Syst. 27 (5) (2012)

387–408.
[13] F. Harary, G. Gupta, Dynamic graph models, Math. Comput. Model. 25 (7) (1997) 79–88.
[14] A. Ferreira, Building a reference combinatorial model for MANETs, IEEE Netw. 18 (5) (2004) 24–29.
[15] M. Bournat, S. Dubois, F. Petit, Computability of perpetual exploration in highly dynamic rings, in: Proc. IEEE 37th Int. Conference on Distributed

Computing Systems (ICDCS), 2017, pp. 794–804.
[16] A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Deterministic computations in time-varying graphs: broadcasting under unstructured mobility, in: Proc.

of IFIP International Conference on Theoretical Computer Science (TCS), 2010, pp. 111–124.
[17] A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Measuring temporal lags in delay-tolerant networks, IEEE Trans. Comput. 63 (2) (2014) 397–410.
[18] T. Erlebach, J.T. Spooner, A game of cops and robbers on graphs with periodic edge-connectivity, in: 46th International Conference on Current Trends

in Theory and Practice of Informatics (SOFSEM), 2020, pp. 64–75.
[19] P. Flocchini, M. Kellett, P. Mason, N. Santoro, Searching for black holes in subways, Theory Comput. Syst. 50 (1) (2012) 158–184.
[20] P. Flocchini, B. Mans, N. Santoro, On the exploration of time-varying networks, Theor. Comput. Sci. 469 (2013) 53–68.
[21] D. Ilcinkas, A. Wade, On the power of waiting when exploring public transportation systems, in: Proc. 15th International Conference on Principles of

Distributed Systems (OPODIS), 2011, pp. 451–464.
[22] D. Ilcinkas, A. Wade, Exploration of the T-interval-connected dynamic graphs: the case of the ring, Theory Comput. Syst. 62 (4) (2018) 1144–1160.
[23] B. Haeupler, F. Kuhn, Lower bounds on information dissemination in dynamic networks, in: Proc. 26th International Symposium on Distributed Com-

puting (DISC), 2012, pp. 166–180.
[24] F. Kuhn, N.A. Lynch, R. Oshman, Distributed computation in dynamic networks, in: Proc. 42nd ACM Symposium on Theory of Computing (STOC), 2010,

pp. 513–522.
[25] F. Kuhn, R. Oshman, Coordinated consensus in dynamic networks, in: Proc. 30th Symposium on Principles of Distributed Computing (PODC), 2011,

pp. 1–10.
[26] G. Di Luna, Mobile Agents on Dynamic Graphs, Chapter 20 of [40] (2019) 549–584.
[27] M. Bournat, S. Dubois, F. Petit, Gracefully degrading gathering in dynamic rings, in: 20th International Symposium on Stabilization, Safety, and Security

of Distributed Systems, 2018, pp. 349–364.
[28] G. Di Luna, P. Flocchini, L. Pagli, G. Prencipe, N. Santoro, G. Viglietta, Gathering in dynamic rings, Theor. Comput. Sci. 811 (2020) 79–98.
[29] A. Agarwalla, J. Augustine, W. Moses, S. Madhav, A. Sridhar, Deterministic dispersion of mobile robots in dynamic rings, in: 19th International Confer-

ence on Distributed Computing and Networking, 2018, pp. 19:1–19:4.
[30] O. Michail, P. Spirakis, Traveling salesman problems in temporal graphs, Theor. Comput. Sci. 634 (2016) 1–23.
[31] T. Erlebach, M. Hoffmann, F. Kammer, On temporal graph exploration, in: Proc. of 42nd International Colloquium on Automata, Languages, and Pro-

gramming (ICALP), 2015, pp. 444–455.
[32] T. Erlebach, J.T. Spooner, Faster exploration of degree-bounded temporal graphs, in: Proc. of 43rd International Symposium on Mathematical Founda-

tions of Computer Science (MFCS), 2018, pp. 1–13.
[33] T. Erlebach, F. Kammer, K. Luo, A. Sajenko, J. Spooner, Two moves per time step make a difference, in: Proc. 46th International Colloquium on Automata,

Languages, and Programming (ICALP), vol. 141, 2019, pp. 1–14.
[34] D. Ilcinkas, R. Klasing, A. Wade, Exploration of constantly connected dynamic graphs based on cactuses, in: Proc. 21st International Colloquium Struc-

tural Information and Communication Complexity (SIROCCO), 2014, pp. 250–262.
[35] C. Avin, M. Koucky, Z. Lotker, How to explore a fast-changing world, in: Proc. of the 35th Int. Colloquium on Automata, Languages and Programming

(ICALP), 2008, pp. 121–132.
[36] M. Bournat, A. Datta, S. Dubois, Self-stabilizing robots in highly dynamic environments, Theor. Comput. Sci. 772 (2019) 88–110.
[37] G. Di Luna, S. Dobrev, P. Flocchini, N. Santoro, Distributed exploration of dynamic rings, Distrib. Comput. 33 (2020) 41–67.
[38] T. Gotoh, Y. Sudo, F. Ooshita, H. Kakugawa, T. Masuzawa, Group exploration of dynamic tori, in: Proc. IEEE 38th International Conference on Distributed

Computing Systems (ICDCS), 2018, pp. 775–785.
[39] T. Gotoh, Y. Sudo, F. Ooshita, T. Masuzawa, Exploration of dynamic ring networks by a single agent with the h-hops and s-time steps view, in:

International Symposium on Stabilizing, Safety, and Security of Distributed Systems, Springer, 2019, pp. 165–177.
17

http://refhub.elsevier.com/S0022-0000(21)00041-6/bibB7B8B57EC8C45A7401C3A27A1F53474Ds1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib4E290ABF36782A31548598F4B0254456s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib33AE0B286B757F031F642224188DDBADs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib33AE0B286B757F031F642224188DDBADs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib2D3C2299A952576622934A0A7510CA51s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib2D3C2299A952576622934A0A7510CA51s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib8CDEA9C7AD30225C997409E81F616875s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib56E6BBD3FA33008E8F3E2101F295DF3Fs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib56E6BBD3FA33008E8F3E2101F295DF3Fs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib8F60B195398689BDA187D58F2063878Ds1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib8F60B195398689BDA187D58F2063878Ds1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib0A872594B2DAF6DADFAB58A1416C538Fs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibCC6003A1AB4350CD39B7017A2BC23C36s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibD4C85CA158A10BACC863CB0C4DEEBD84s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibBF37BDA8DCB692D5438B21FF0D90A7EEs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibBF37BDA8DCB692D5438B21FF0D90A7EEs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibC0122B841872CE7FECA40E04D449E776s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib786E096B4207E2B9F55B04A2E683E722s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib5A5C573748335874279ED939DFE762A9s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib5A5C573748335874279ED939DFE762A9s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib6D9CF8BD04F5326C4C2CD82A84B347D8s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib6D9CF8BD04F5326C4C2CD82A84B347D8s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib059C02CE2EC0DAA243C479CBDAED67A5s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib3A6464D62CB7A3A72E27EC009D7B947As1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib3A6464D62CB7A3A72E27EC009D7B947As1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibE9C5D84691253C2D6211538AC238E7F8s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib0FD783B25FC9DB1B9CD82F09B4505965s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibB5D3CD7E86C3A014E6896826D1092FDDs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibB5D3CD7E86C3A014E6896826D1092FDDs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib0FA51F6B400F8F3EA1B8D27A6FADD329s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib888246E6617171EAE30CD7F3CC9A88EBs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib888246E6617171EAE30CD7F3CC9A88EBs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibE15502129F86EB1E0FB7FF74931C4871s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibE15502129F86EB1E0FB7FF74931C4871s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib3C5A09358711C99D11DE0E156BD8C620s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib3C5A09358711C99D11DE0E156BD8C620s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibC2EBFA651F88F99BE957AE656B6F0F19s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibC2EBFA651F88F99BE957AE656B6F0F19s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib9ACB80D037626C492E7D45AFE8907C86s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib93B17C258B31B3CBEB18789AC9CDCAE0s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib93B17C258B31B3CBEB18789AC9CDCAE0s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib3F4529055C4AA4080E8E38B4B00FC7CCs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibC6F8A5C82044825D788B960FBDD5C603s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibC6F8A5C82044825D788B960FBDD5C603s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibDB2B7B16471470902620CC3445321A50s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibDB2B7B16471470902620CC3445321A50s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib83D60FD8A328F0E50A59F203E7F38C3As1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib83D60FD8A328F0E50A59F203E7F38C3As1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibA512934A306585B77F4A84DD308A935Cs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibA512934A306585B77F4A84DD308A935Cs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib85C7636360E54A26408876A382CE76ACs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib85C7636360E54A26408876A382CE76ACs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibC3778521FC682771FF662D3180B116F8s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibB41DCD431ED23ACE2CA90CBC34D8CC3Bs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibC15D0C3E4E5842FFA54293A3B11BECBEs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibC15D0C3E4E5842FFA54293A3B11BECBEs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibC6CAC4FE43C356D4427E00DDEBC17875s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibC6CAC4FE43C356D4427E00DDEBC17875s1

T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
[40] P. Flocchini, G. Prencipe, N.S. (Eds.), Distributed Computing by Mobile Entities, Springer, 2019.
[41] Y. Afek, E. Gafni, Distributed algorithms for unidirectional networks, SIAM J. Comput. 23 (6) (1994) 1152–1178.
[42] E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, A. Kosowski, T. Radzik, Robustness of the rotor-router mechanism, Algorithmica 78 (3)

(2017) 869–895.
[43] A.S. Fraenkel, Economic traversal of labyrinths, Math. Mag. 43 (1970) 125–130.
[44] A. Kosowski, D. Pajak, Does adding more agents make a difference? A case study of cover time for the rotor-router, J. Comput. Syst. Sci. 106 (2019)

80–93.
[45] V. Yanovsky, A. Bruckstein, I. Wagner, A distributed ant algorithm for efficiently patrolling a network, Algorithmica 37 (3) (2003) 165–186.
18

http://refhub.elsevier.com/S0022-0000(21)00041-6/bibB77C0996FB11EBB747CB0C2F98C11068s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibFFA9F510AAF45D2CEA763160F810C3EBs1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib567036EBBC2788D4BF496BFF162644C4s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib567036EBBC2788D4BF496BFF162644C4s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib3390F92CAAC9530E8D1A61995DCF4F8Ds1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibDA3CAF86EBAF507C603877BA774AFC02s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bibDA3CAF86EBAF507C603877BA774AFC02s1
http://refhub.elsevier.com/S0022-0000(21)00041-6/bib4A3F52B6D87268BDDAD00E791369061Bs1

	Exploration of dynamic networks: Tight bounds on the number of agents
	1 Introduction
	1.1 Graph exploration
	1.2 Dynamic networks
	1.3 Temporal graph exploration
	1.4 Main contributions

	2 The model
	2.1 Temporal graph
	2.2 Connectivity
	2.3 Agents
	2.4 Configuration and execution
	2.5 Augmented configuration and execution
	2.6 Exploration

	3 Exploration of temporally connected TVGs
	3.1 Impossibility
	3.2 Semi synchronous exploration by 2η(G)+1 agents

	4 Exploration of 1-interval connected TVGs by anonymous agents
	4.1 Semi-synchronous model
	4.2 Fully-synchronous model
	4.2.1 Impossibility
	4.2.2 Bound on exploration time
	4.2.3 Exploration by 2l agents

	5 Exploration of 1-interval connected graphs with a leader
	5.1 Semi-synchronous model
	5.1.1 Impossibility
	5.1.2 Exploration by 2l agents with a leader

	5.2 Fully-synchronous model
	5.2.1 Impossibility
	5.2.2 Bound on exploration time
	5.2.3 Exploration by 2l−1 agents with a leader

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

