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We consider, for the first time, the exploration of dynamic graphs of arbitrary unknown 
topology. We study the number of agents necessary and sufficient to explore such 
graphs under the fully synchronous (Fsync) and the semi-synchronous (Ssync) activation 
schedulers. We prove that, under the minimal assumption on the dynamics, temporal 
connectivity, the number of agents sufficient to perform exploration depends on a 
parameter we call evanescence of the graph, and this number is tight. We then consider 
the stronger well-known assumption of 1-interval connectivity when the number of edges 
missing at each time is bounded. We provide tight bounds also in this setting, proving the 
existence of a difference between Fsync and Ssync, as well as between anonymous and 
non-anonymous agents.

© 2021 Published by Elsevier Inc.

1. Introduction

1.1. Graph exploration

The graph exploration problem (Exploration), first introduced by Shannon [1], is a fundamental problem in theoretical 
computer science, in particular in the field of distributed computing by mobile entities. It requires each node of the graph 
to be visited by one or more mobile computational entities, called agents, a finite number of times (exploration with termi-
nation) or infinitely often (perpetual exploration). In addition to its theoretical importance, Exploration is relevant from a 
practical viewpoint in networked systems supporting mobile entities (e.g., software agents, vehicles, or robots): by visiting 
all nodes, agents can check whether there are some nodes with problems in the network, propagate some data across the 
network, or collect (or search) specific information from the whole network.

This problem has been extensively studied over a variety of assumptions and settings depending on whether the nodes 
have distinct labellings or are anonymous, on whether the agents have Ids or are anonymous, the type of mechanism 
available to the agents for interaction or communication (i.e., whiteboards, tokens, face-to-face, vision), on the degree of 
synchronization (i.e., asynchronous, semi-synchronous, fully-synchronous), on the level of knowledge the agents have about 
the graph, on their memory, etc. (e.g., see [2–10], and [11] for a recent survey). In spite of all the differences, the existing 
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literature has until very recently made a common assumption: the graph is static, i.e., the link structure does not change 
during the exploration. Static graphs are a common representation of traditional networks, where the changes are typically 
due to failures; such graphs however fail to describe the new generation of infrastructure-less highly dynamic networks.

1.2. Dynamic networks

In the recent (and now pervasive) generation of highly dynamic networks, the topological changes are not sporadic or 
anomalous; rather they are extensive, continuous, inherent in the nature of the network. These networks, variously called 
delay-tolerant, disruptive-tolerant, challenged, epidemic, opportunistic, have been long and extensively investigated by the 
engineering community and, more recently, by distributed computing researchers. Various models have been proposed to 
describe some of their aspects, under a variety of names. A unifying model that describes these networks in a simple and 
natural way is the one of time-varying graph (TVG), formally defined in [12], where main classes of systems studied in the 
literature and their computational relationship were identified.

When time is assumed to be discrete (i.e., the system is synchronous), the dynamics of the network can be equivalently 
described as a sequence of static graphs, 〈G0, G1, G2, ...〉, called evolving graph or temporal graph, where Gi describes the 
topology of the network at time t = i; this representation was originally suggested in [13] and first formalized in [14]. Each 
Gi is called a snapshot, while the aggregate graph G = ∪i{Gi} is called the footprint of the temporal graph.

Computations in temporal graphs have been investigated in distributed computing quite extensively. If the dynamics of 
the changes is arbitrary and unrestricted, clearly any non-trivial computation is unfeasible and any non-trivial problem is 
unsolvable. Hence, all the studies are carried out under some assumptions restricting the arbitrariness of the dynamics.

The minimal (i.e., less restrictive) assumption is temporal connectivity: starting at any time, from any node there exists a 
temporal path, called journey, to any other node (e.g., [15–17]). Let us stress that, if temporal connectivity does not hold, 
any non-trivial task and computation is impossible, and any non-trivial problem is unsolvable.

Stronger assumptions include periodicity: the network is temporally connected and there is (a known) p > 1 such that, for 
all i ≥ 0, Gi = Gi+p (e.g., [18–22]); 1-interval connectivity: every Gi is connected (e.g., [23–25]); and T-interval connectivity: for 
every i, the graphs Gi, Gi+1, ..., Gi+(T −1) contain the same spanning-tree (e.g., [22,24]). A classification of the most common 
assumptions was done in [12].

The studies on computations by mobile agents in temporal graphs are rather recent and quite limited (for a recent 
survey see [26]). Investigations have focused on gathering [27,28], scattering [29], and graph exploration (discussed in the 
next section).

1.3. Temporal graph exploration

Many results on Exploration of temporal graphs are centralized (or off-line); that is, they assume that the exploring 
agents have complete a priori knowledge of the topological changes and the times of their occurrence. They include: the 
study of the complexity of computing a foremost exploration schedule under the 1-interval-connectivity assumption [30], 
generalized and extended in [31] and then in [32,33]; the computation of an exploration schedule for rings under the 
stronger T-interval-connectivity assumption [22]; the computation of an exploration schedule for cactuses under the 1-
interval-connectivity assumption [34].

Fewer studies use a decentralized (i.e., distributed) approach. On the probabilistic side, there is an early seminal work on 
random walks [35]. On the deterministic side, exploration has been studied under particular constraints on the network 
connectivity and on its underlying topology. Exploration with termination by a single agent of periodic temporal networks, 
including carrier networks, has been studied in [19–22]. Perpetual exploration by three agents on temporally connected rings
has been studied in [36,15]. Exploration with termination of 1-interval connected rings by two and three agents has been 
studied in [37], where, in addition to the traditional fully-synchronous (Fsync) scheduler (where all the agents are active at 
every round), they considered also the semi-synchronous (Ssync) scheduler where only a subset of the agents is active at 
each round. Exploration with termination by O (n) agents of n × m dynamic tori (n ≤ m), where each column and row is a 
1-interval connected ring, has been investigated in [38]. Exploration with termination by one agent with partial information 
about dynamic changes has been studied in [39] for 1-interval connected rings.

Summarizing, all the existing results on distributed exploration of time-varying graphs have been obtained for temporal 
graphs with very specific topologies (rings, tori, or collections of cycles in the case of carrier networks). In this paper we 
start the investigation of the exploration of temporal graphs with arbitrary and unknown topologies.

1.4. Main contributions

In this paper, we consider perpetual exploration by mobile agents of time varying graphs whose topology is arbitrary and 
unknown to the agents. We focus on solvability of the exploration of such dynamic graphs, and specifically on the number 
of agents that are necessary and sufficient for exploration under the Fsync and Ssync activation schedulers.

Clearly, if the graph is not temporally connected, exploration is trivially impossible to achieve. We thus start our investi-
gation with the class H of temporally connected temporal graphs. We first prove that the number of agents sufficient to 
perform exploration is related to the number of its transient edges, a parameter η(G) we call evanescence of the graph. 
2
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Table 1
Tight bounds on the number of agents.

Anonymous With leader

Temporally connected: H Fsync, Ssync 2η + 1 2η + 1

�-bounded 1-interval: W(�) Ssync 2� + 1 2�

Fsync 2� 2� − 1

More precisely, we prove that any G ∈H can be explored by a team of k ≥ 2η(G) + 1 anonymous agents. We show that this 
bound is tight by proving that there are G ∈H that cannot be explored by 2η(G) agents.

The impossibility holds under very strong conditions: Fsync scheduler, agents and nodes with distinct IDs, knowledge 
on n and k, unbounded-size whiteboards. On the other hand, the proposed exploration algorithm, based on the rotor router 
technique, works under very weak conditions: Ssync scheduler (under the weakest transport condition), anonymous agents, 
no knowledge of topological parameters, and O (log δv) bits whiteboard at node v (where δv denotes the degree of v in the 
footprint of the temporal graph).

We then turn our attention to the stronger assumption on the dynamics of the graph, 1-interval connectivity: the graph 
is always connected. Let W(�) ⊂ H be the class of these always-connected temporal graphs where the number of missing 
edges at each time is at most �.

We start by considering the case of anonymous agents. We first prove a tight bound of 2� + 1 agents under the Ssync

scheduler. The proposed algorithm performs exploration even if the network size and the number of agents are not known, 
and with the weakest transport condition; the impossibility with fewer agents holds even if the network size and the 
number of agents are known and with whiteboards of unbounded-size.

We then prove the existence of a difference between Fsync and Ssync when the network size and the number of agents 
are known. In fact, in this case, we show a tight bound of 2� for Fsync. Moreover, we show that with 2� + 1 agents 
exploration with termination is possible in Fsync.

Finally, we consider the case of non-anonymous agents, assuming the presence of a leader agent. While the lower bound 
on the number of agents needed for the exploration of H holds regardless of the existence of a leader, we prove that 
non-anonymity has an impact on the exploration of W(�). In fact, by exploiting the presence of a leader, the bound on 
the number of agents decreases by one both in Fsync and in Ssync. Moreover, we show that, with a leader, 2� agents can 
explore with termination in Fsync.

These results are summarized in Table 1.
Our results indicate, among other things, that the much weaker condition of semi-synchrony (with respect to full-

synchrony) is enough to undermine the advantages provided by the much stronger connectivity assumption of W (with 
respect to H). Indeed, when considering the class H(�) of temporally connected graphs with at most � transient edges and 
the class W(�) ⊂ H(�) of �-bounded 1-interval connected graph, we have that the bound on the number of agents for H(�)

is the same as the one for W(�) for Ssync, while the two differ in the case of Fsync.

2. The model

2.1. Temporal graph

The highly dynamic network is modeled as a time-varying graph (TVG), G = (V , E, T , ρ), where V is a set of nodes, E is 
a set of edges, T is the temporal domain, and ρ : E ×T → {0, 1}, called presence function, indicates whether a given edge is 
available at a given time. The graph G = (V , E) is called underlying graph (or footprint) of G , with |V | = n and |E| = m. Let 
E(v) denote the set of edges incident on node v in the footprint, let δv = |E(v)| be the degree of node v in the footprint, 
and let � = Maxv {δv} be the maximum degree of G . The nodes in V are anonymous (i.e., they have no IDs). Each edge 
incident to node v is locally labeled (i.e., has a port-number); the labeling function is a bijection λv : E(v) → {0, . . . , δv − 1}
that associate a different label to each edge incident to v; no other assumption is made about the labels.

A journey is a temporal walk in G and it is defined as a sequence of couples J = {(e1, t1), (e2, t2) . . . , (ek, tk)}, such that 
{e1, e2, ..., ek} is a walk in G and ∀i, 1 ≤ i < k, ρ(ei, ti) = 1 and ti+1 > ti . Let J (u, v, t) denote the set of journeys from u to 
v starting at time t′ ≥ t .

In this paper we assume discrete time; that is, T = Z+ . In this case, the TVG G is usually called temporal graph (or 
evolving graph), and can be viewed as a sequence of static graphs: SG = G0, G1, . . . , Gt , . . ., where Gt = (V , Et) is the graph 
induced by the edges present at time t (called snapshot of G at time t). We denote by Ēt = E \ Et (⊆ E) the set of edges 
that do not appear in the snapshot at time t .

An edge e ∈ E is said to be recurrent if ∀t ∈Z+, ∃t′ > t : ρ(e∗, t′) = 1; in other words, a recurrent edge appears infinitely 
often. An edge e ∈ E that is not recurrent is said to be transient; in other words, a transient edge appears only in a 
finite number of snapshots. Let E∗ and E− denote the set of recurrent and of transient edges, respectively; the number 
σ(G) = |E∗| of recurrent edges is called the solidity of G; while the number η(G) = |E−| = |E| − σ(G)) of transient edges is 
called the evanescence of G . Let Gr = (V , E∗), i.e., Gr is a subgraph of G induced by recurrent edges.
3
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2.2. Connectivity

Temporal graphs can be classified in terms of the effect that the dynamic topological changes have on their connectivity.

Definition 1 (Temporally connected). A temporal graph G is temporally connected (or connected over time) if ∀t ∈Z+ , ∀u, v ∈ V , 
J (u, v, t) �= ∅.

Note that temporal connectivity is the minimal condition to be able to perform any global task regardless of the initial 
position of the agents; in particular, any problem requiring every node to be involved (e.g., exploration) is trivially unsolvable 
if G is not temporally connected. Let H denote the class of temporally connected TVGs.

A variety of stronger assumptions have been studied in the literature. In this paper we are interested also in the well-
known class of temporal graphs where connectivity is actually guaranteed at every time, and in particular when the number 
of missing edges at any given time is bounded.

Definition 2 (�-Bounded 1-interval connected). A temporal graph G is 1-interval connected (or always connected) if ∀Gi ∈ SG , 
Gi is connected. Moreover, G is �-bounded 1-interval connected if it is always connected and |Ēt | ≤ �.

Let W(�) ⊂H denote the class of �-bounded 1-interval connected temporal graphs.

2.3. Agents

A set A = {a0, a1, . . . , ak−1} of k agents operates in G , initially occupying arbitrary positions. When the agents are all 
undistinguishable, we say that they are anonymous; if one of them is different from all the others, we say that they have 
a leader (and are not-anonymous). Each agent a ∈ A is a computational entity endowed with private memory (called note-
book), and capable of moving from a node to a neighboring node (provided that edge exists at the time).

When at a node v , an agent has access to the node’s ports and rotor-router mechanism. More precisely, in correspon-
dence of each edge e ∈ E(v), there is in v a port pi where i = λv(e), used by agents (at most one at a time) intending 
to leave v through e. Additionally, v provides a rotor-router mechanism, which indicates one of the ports; this indication 
can be read and modified by the agents; access to this mechanism is in fair mutual exclusion. Note that this mechanism 
can be implemented at a node using more traditional tools for inter-agent communication (e.g., token, whiteboard) offering 
access in fair mutual exclusion; for example, by a single pebble that can be placed in correspondence of one of the ports, 
and moved to another port when necessary; alternatively, by a whiteboard of O (log δv ) bits. In the following, for simplicity, 
our presentation and discussions will be in terms of a whiteboard implementation. More precisely, we assume each node v
has some local storage space, called whiteboard, of size O (log δv ) bits that can be accessed by the agents located at node v . 
Access to the whiteboard is assumed to be done in mutual exclusion.

The agents operate in synchronous rounds, and each round is composed of three phases: Look, Compute, and Move, 
during which they execute the following actions [40]:

LOOK: Agent ai observes the content of its notebook and of the whiteboard of the node where it currently resides; it 
checks the node and its ports to determine if there are other agents at this node and where (e.g., which ports).

COMPUTE: On the basis of the information obtained in the Look phase, ai decides whether to move or not, and it can write 
information on the whiteboard. If it decides to move, it places itself in correspondence of the selected port (if it is 
not occupied by another agent).

MOVE: If ai is at a port, it tries to move; if the corresponding edge exists, ai reaches the other side, otherwise it stays on 
the port. If ai does not occupy a port, it does not move.

Each Look and Compute phase is executed as an atomic action. Atomic actions of agents in the same node are executed 
with mutual exclusion access to the whiteboard. After Look and Compute of all the agents finish, they simultaneously start 
the Move phase. For example, if there are two agents a and b on a node v , a first executes its Look and Compute, then, b
executes its Look and Compute, and finally a and b (and all the other agents) execute Move.

We distinguish between the fully-synchronous activation scheduler (Fsync), when all the agents are activated in every 
round, and the semi-synchronous one (Ssync), when an arbitrary subset of the agents is activated at each round. In Ssync, 
the scheduler is an adversary which knows the algorithm of the agents, has infinite computing capacity, and tries to prevent 
agents from completing their task; however, it must activate every agent infinitely often. An agent which is not activated at 
round t is said to be sleeping at that round. The length of the sleeping time is finite but unbounded.

Under the semi-synchronous scheduler, it is necessary to specify the behavior of the agents that fall asleep on a port 
when the corresponding edge is missing. We consider the weakest condition, eventual transport, according to which the 
agent sleeping at a port will eventually be activated at a time when the edge corresponding to the port is present [37]; this 
prevents the adversary from using semi-synchronicity to block an agent forever on a recurrent edge.
4
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2.4. Configuration and execution

A configuration Ct is defined by: the contents of the whiteboards, the local memory of the agents, and the locations of 
the agents at the start of round t .

An execution E(A) = C0C1 . . . of an algorithm A is an infinite sequence of configurations such that C0 is an initial config-
uration (i.e., a configuration at round 0) and Ct+1 is obtained from Ct by executing one round of algorithm A. This execution 
is subject to two types of adversarial actions: those by the activation scheduler deciding which agents are activated in that 
round, and those of the topological scheduler deciding which edges are missing in that round. When no ambiguity arises, 
we use E instead of E(A).

2.5. Augmented configuration and execution

We use an augmented configuration and an augmented execution in Sections 4.2 and 5.2. To define an augmented configu-
ration, we introduce variable visitedv for all v ∈ V which is written and read only by an external observer. The initial value 
of visitedv is 0. When v is visited, visitedv is set to 1 by the external observer.

Then, an augmented configuration Caug
t is defined by: configuration Ct and the value of visitedv of every node v at round 

t . We say that an augmented configuration is terminal when visitedv = 1 for any node v .
An augmented execution Eaug(A) = Caug

0 Caug
1 . . . Caug

r is a sequence of augmented configurations such that Caug
0 is an 

initial augmented configuration; Caug
t+1 is obtained from Caug

t by executing one round of algorithm A; Caug
r is a unique 

terminal configuration in Eaug . An augmented execution is also subject to the two types of adversarial actions. Note that 
the agents may keep executing A after round r, but augmented configurations after round r are ignored in Eaug . When no 
ambiguity arises, we use Eaug instead of Eaug(A) and an “execution” instead of an “augmented execution”.

2.6. Exploration

We say that a node v is visited at round t if v contains an agent at the beginning of round t . We say that a node v is 
explored by round t if v is visited at round t′ for some t′ (0 ≤ t′ ≤ t). We say that the network is explored by round t if 
every node is explored by round t .

A perpetual exploration algorithm is one where, in every execution, every node is visited at an infinite number of rounds. 
An exploration algorithm with termination is one where, in every execution, all the agents terminate after all nodes have 
been visited at least once. In this paper, we are mainly concerned with perpetual exploration.

3. Exploration of temporally connected TVGs

In this section, we consider the minimal class of explorable temporal graphs: temporally connected TVGs, and we show 
that the feasibility of the exploration of G is related to its evanescence η, providing a tight bound of 2η(G) + 1 agents.

3.1. Impossibility

Let H(�) = {G ∈ H : η(G) ≤ �} be the class of temporally connected TVGs with evanescence at most �. In this section 
we show that it is impossible to perform perpetual exploration of all G ∈ H(�) with 2� agents. The result is quite strong 
as it applies also to TVGs that are connected at every time step, with uniquely labeled nodes and agents, under a fully-
synchronous scheduler, and in presence of topological knowledge.

Theorem 3. There exist temporally connected time-varying graphs G ∈ H(�) that cannot be explored by k = 2� agents. The result 
holds even if nodes and/or agents have distinct IDs, the network is always connected, the agents know n, m and k, and the scheduler is 
fully-synchronous.

Proof. We show the theorem by constructing a graph G ∈H(�) that cannot be explored by 2� agents by any algorithm. The 
main point of this proof is that an agent can eventually have only one of these two behaviors when wishing to traverse an 
edge that is missing: (i) the agent stays permanently on the chosen port, waiting for the appearance of the continuously 
missing edge; (ii) the agent eventually chooses a different edge. The agents of the former type are called (with respect to 
the number of changes of a selected edge) finite agents and those of the latter are infinite agents.

The components for constructing the graph are as follows. For 0 ≤ i ≤ 2� − 1 (= k − 1), let Si be a star with center node 
ci and 3 leaf nodes {b(i,0), b(i,1), b(i,2)}. We construct the graph using Si for 0 ≤ i ≤ 2� − 1 and an additional node u.

Each component is connected as follows. For 0 ≤ i ≤ 2� − 1 and j ∈ {0, 1}, each b(i, j) is connected with u by edge 
(b(i, j), u); and for 0 ≤ i ≤ � − 1, each b(2i,2) connected with b(2i+1,2) by (b(2i,2), b(2i+1,2)). A graph for � = 2 (k = 4) is 
depicted in Fig. 1.

For the constructed graph, we first show that, given any exploration algorithm using 2� agents, the adversary can con-
struct an execution for the algorithm such that in the execution G cannot be explored while the adversary may violate the 
5



T. Gotoh, P. Flocchini, T. Masuzawa et al. Journal of Computer and System Sciences 122 (2021) 1–18
Fig. 1. Example of a graph for � = 2 and k = 2� = 4 that cannot be explored by 2� agents. There are four stars Si for 0 ≤ i ≤ 3 in the figure. Each star Si

has one center node ci and three leaf nodes {b(i,0), b(i,1), b(i,2)}.

restriction of H(�), i.e., η(G) may be more than �. Then, we give a way to convert the execution into another execution 
such that η(G) is at most � in the new execution and the agents cannot distinguish these two executions and thus cannot 
explore G also in the new execution.

We start by showing that, given any exploration algorithm, say A, using 2� agents, the adversary can construct an 
execution E1 of A in which the agents cannot explore G . The adversary puts agent ai on ci for 0 ≤ i ≤ 2� − 1 in the initial 
configuration of E1. During execution E1 of A, the adversary deletes the edge leading to u or the other star whenever ai

is on b(i, j) . Clearly, this prevents any agent executing A from visiting u and thus G is not explored permanently while the 
adversary violates the restriction for the number of transient edges (it is at most 2� in E1).

We now show how the adversary converts E1 into another execution, say E2, so that the agents cannot distinguish E1
and E2 and η(G) is at most � in E2. The adversary first separates the agents into two groups: finite agents and infinite agents
depending on their behavior when faced with a missing edge during E1. Let f (0 ≤ f ≤ k) be the number of finite agents. In 
the following, finite agents are denoted by afin

0 , . . . , afin
f −1. In the initial configuration of E2, each agent (ai ) is put on the same 

node (ci ) as in E1.
Then, the adversary constructs a new assignment of the port labels and the node ID (if any) of nodes so that every agent 

cannot distinguish E1 and E2 as follows. For infinite agents, the adversary does nothing. For finite agents, let afin
i = ai′ and 

b(i′,xi) be the node where afin
i finally waits for a missing edge permanently in E1. For 0 ≤ i ≤ f − 1, the adversary does the 

following: if xi = 2, the adversary does nothing; and otherwise, the adversary swaps the assignment of the port labels and 
the node ID of b(i′,2) and b(i′,xi) and accordingly permutes the port labeling of ci′ .

Execution E2 with the initial configuration, the node ID, and the assignment of port labels is constructed similarly to 
E1: the adversary deletes the edge leading to u or the other star when ai exists on b(i, j) . Obviously, every agent cannot 
distinguish E1 and E2: for all the agents, the node IDs and the port labeling observed in E2 is the same as E1. Thus, G
cannot be explored since u is not visited by any agent also in E2.

Since the edges waited permanently by an agent are only (b(2i,2), b(2i+1,2)) for 0 ≤ i ≤ � − 1, η(G) is at most � in E2. �
3.2. Semi synchronous exploration by 2η(G) + 1 agents

In this section, we show that every temporally connected time-varying graph G ∈ H can be explored by 2η(G) + 1
anonymous agents that do not know the topology. In fact, we propose an exploration algorithm for 2η(G) + 1 anonymous 
agents in an anonymous network, which works under the semi-synchronous scheduler with eventual transport.

The strategy is simple and it is based on the classical rotor router mechanism, which was introduced as a deterministic 
alternative to random walk and was studied in a variety of contexts, including static graph exploration (e.g., [41–45]).

In rotor router, each node v has a variable written on its whiteboard, pointerv , indicating one of its incident ports. When 
an agent a visits node v , a checks each port in ascending order from the port pointed by pointerv . If a finds some unoccupied 
port p, a moves to that port and sets pointerv to p + 1. If a finishes to check all the ports and they all are occupied, a does 
nothing.

Algorithm 1 Computation at node v .
1: if not on a port then
2: i ← 0
3: p ← pointerv
4: while i < δv ∧ port p is occupied do
5: p ← (p + 1) mod δv

6: i ← i + 1
7: if i < δv then
8: pointerv ← (p + 1) mod δv

9: move to port p

We first show that, in any round, there exists at least one agent succeeding to move within finite time (Lemma 4). We 
then show that, 2� + 1 agents achieve perpetual exploration using Algorithm 1 (Theorem 5).
6
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Lemma 4. For any round t, if 2η(G) + 1 agents execute Algorithm 1 in a temporally connected temporal graph G , at least one of them 
eventually moves after t.

Proof. By contradiction, assume that there exists a round t such that every agent never succeeds to move after t . We 
consider two cases: (i) there exists a node v containing more than δv − 1 agents, and (ii) there does not exist such a node.

In the first case, every agent on v is activated within finite time after t because of the fairness of the scheduler, which 
means that every port of v is eventually occupied by an agent. Since at least one of the edges incident to v is a recurrent 
edge, say e, the agent sleeping on the corresponding port of e eventually succeeds to move because of the eventual transport 
rule. This is a contradiction.

Also in the second case, every agent on v is activated within finite time after round t because of the fairness of the 
scheduler. Since there is no node containing more agents than its degree, every agent eventually stays on a port. When this 
happens, at least one of the agents is sleeping at the port of a recurrent edge since the number of agents is 2η(G) + 1 and 
there exist at most 2η(G) ports corresponding to transient edges. This means that, by the eventual transport rule, the agent 
sleeping at the port of a recurrent edge eventually succeeds to move after t; a contradiction. �

Then, the following theorem holds.

Theorem 5. Any G ∈H can be explored by 2η(G) + 1 anonymous agents under the semi-synchronous scheduler.

Proof. Consider Algorithm 1. By the definition of transient edges, there exists a time step te for any transient edge e such 
that ρ(e, t) = 0 for all t > te . Let tE be maxe∈E− te , i.e., a time when all the transient edges have ceased to exist and all the 
edges that appear from this moment are recurrent. In the following, we consider the execution after time tE . Let x(t) be the 
sum of the number of agent moves from a node to another node over all the agents from the beginning of the execution 
up to time t .

We now show that, from an arbitrary initial configuration, 2η(G) + 1 agents following Algorithm 1 visit all the nodes 
infinitely often.

First, note that there exists a node, say v , that is visited infinitely often (for t → ∞) because x(t) goes to infinity (for 
t → ∞) by Lemma 4.

We now show that every neighbor of v connected by a recurrent edge is also visited at an infinite number of rounds. We 
prove it by contradiction. Suppose that a neighbor u of v connected by a recurrent edge is visited at only a finite number 
of times and let t′ be the last round when u is visited at. Since v is visited at an infinite number of rounds and the agents 
execute Algorithm 1 perpetually, some agent a visiting v eventually chooses (v, u) as the edge from which a moves out of 
v after time t′ . Recall that (v, u) is a recurrent edge and the agents are activated by the eventual transport rule. It follows 
that a eventually visits u after round t′; a contradiction.

Since Gr is temporally connected, we can apply inductively the claim (e.g., the neighbors of a neighbor of v are also 
visited infinitely often) to all the nodes, proving the theorem. �

From Theorems 3 and 5, the following Theorem holds.

Theorem 6. Exploration of all temporal graphs in H(�) by k agents is possible iff

k ≥ 2� + 1

Note that, if a graph is temporally connected, then its solidity σ(G) ≥ n − 1; as a consequence, we have:

Theorem 7. Every temporally connected temporal graph with n nodes and whose footprint has m edges can be explored by 2(m −n) +3
agents.

4. Exploration of 1-interval connected TVGs by anonymous agents

In this Section, we turn our attention to the class W(�) of 1-interval connected temporal graphs where the number 
of missing edges is bounded in each round by a constant �. In other words, at any time t the TVG is connected, and no 
more than � edges are missing. We establish tight bounds for the exploration of this class of temporal graphs by anonymous
agents, in Ssync and in Fsync.

4.1. Semi-synchronous model

We first consider �-bounded, 1-interval connected TVGs operating under a semi-synchronous scheduler and we show 
that there exist TVGs that cannot be explored by 2� anonymous agents.
7
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Theorem 8. There exist 1-interval connected time-varying graphs G ∈ W(�) that cannot be explored by k = 2� anonymous agents. 
The result holds even if the agents know n, m and k and whiteboards are of unbounded size.

Proof. We use the same graph G constructed for the proof of Theorem 3. The construction is omitted in this proof.
We first show that, given any exploration algorithm, say A, using 2� agents, the adversary can construct an execution E1

of A, possibly violating the eventual transport rule, in which the agents cannot explore G . We then show that it is always 
possible to convert this execution into another execution E2 that does not violate the eventual transport rule, and where 
the agents cannot explore G .

In execution E1, the adversary puts agent ai on ci for 0 ≤ i ≤ k − 1 = 2� − 1 in the initial configuration of E1. During E1, 
exactly one agent is activated at each round: ai is activated at round t when t ≡ i ( mod k). When the adversary activates ai
and ai exists on b(i, j) , the adversary deletes the edge leading to u or the other star whereas all the other edges are present. 
Note that the agents and the nodes are anonymous and thus either they are all finite (i.e., every agent permanently waits 
for appearance of its selected edge if the edge is permanently missing) or they are all infinite (i.e., every agent eventually 
changes its selected edge if the edge remains missing) in E1.

If the agents are infinite, the eventual transport rule is not violated even in E1 and thus the adversary can prevent the 
agents from completing the exploration in E1.

If the agents are finite, the adversary converts E1 into another execution, say E2, as follows. The adversary first puts ai
(0 ≤ i ≤ k − 1) on ci in the initial configuration of E2. Then, the adversary changes the assignment of the port labels and the 
node ID (if any) of each node in Si in the same way explained in the proof of Theorem 3 (also omitted in this proof). In E2, 
the adversary activates each agent in the same order as in E1 and deletes an edge leading to u or the other star whenever 
ai is on b(i, j) . After some round t from which every agent ai does not change its selected edge, i.e., b(i,2) , and waits at a 
port of b(i,2) forever for 0 ≤ i ≤ 2l, the adversary deletes (b(2 j,2), b(2 j+1,2)) for 0 ≤ j ≤ � − 1 at every round. Obviously, every 
agent cannot distinguish E2 from E1 and G cannot be explored since u is not visited by any agent in E2. It is also clear that 
the eventual transport rule is not violated in E2. �

Clearly, W(�) ⊂ H(�), thus any G ∈W(�) can be explored by Algorithm 1; that is:

Theorem 9. Any G ∈W(�) can be explored by 2� + 1 anonymous agents under the semi-synchronous scheduler with eventual trans-
port.

From Theorems 8 and 9 it follows that:

Theorem 10. Under a semi-synchronous scheduler, exploration of all �-bounded 1-interval connected TVG by k anonymous agents is 
possible iff k ≥ 2� + 1.

4.2. Fully-synchronous model

In this section, we show that, if the network size and the number of agents are known, there exists a difference between
Fsync and Ssync in the exploration of �-bounded 1-interval TVGs. In fact, we show that, G ∈W(�) can be explored if k ≥ 2�, 
while there exist graphs that cannot be explored with 2� − 1 agents.

4.2.1. Impossibility
We now consider �-bounded, 1-interval connected TVGs operating under a fully-synchronous scheduler and we show 

that there exist TVGs that cannot be explored by 2� − 1 agents, even if the agents know n, m, and k.

Theorem 11. There exist �-bounded 1-interval time-varying graphs G ∈ W(�) that cannot be explored by k = 2� − 1 anonymous 
agents in Fsync. The result holds even if the agents know n, m, and k, and whiteboards are of unbounded size.

Proof. Let K2� = (V 2�, E2�) be the complete graph with 2� nodes where V 2� = {v0, v1, . . . , v2�−1}. It is well known that the 
edges of K2� can be colored with 2� − 1 colors, that is, E2� can be partitioned into 2� − 1 disjoint independent edge sets 
(or complete matchings): E(0)

2� , E(1)
2� , . . . , E(2�−2)

2� . For example, the following separation leads to disjoint independent edge 
sets: each E(i)

2� has � edges, (vi, v2�−1), (vi−1, vi+1), (vi−2, vi+2), . . . , (vi−�+1, vi+�−1), see Fig. 2 (for simplicity, mod 2� is 
omitted).

The execution where v2�−1 remains unvisited is constructed as follows. For 0 ≤ i ≤ 2� − 1, the adversary places each 
agent ai on vi and for 0 ≤ j ≤ 2� −2 assigns a label j to the port of vi corresponding to e, if e ∈ E( j)

2� . Note that, since agents 
and nodes are anonymous, all the agents select the port with the same label to move at each round. Thus, the adversary 
can prevent any agent from moving by deleting all the edges of E(i)

2� when the agent selects port i; as a consequence, none 
of the agents can move out of their current nodes. This means that v2�−1 remains unvisited forever.

In this execution, the number of missing edges is always � and the network is obviously kept connected. Thus, the 
theorem holds. �
8
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Fig. 2. Example of a graph for � = 4 and k = 2� − 1 = 7 that cannot be explored by 2� − 1 agents and its coloring. The bold lines are the edges of E(0)
8 .

4.2.2. Bound on exploration time
Let G ∈ W(�). Since W(�) ⊂ H(�), 2� + 1 agents can clearly completes the exploration by Algorithm 1 in graph G . 

Interestingly, when executed on G ∈ W(�), it can be shown that the time complexity of exploration can be bounded under 
the fully-synchronous scheduler. More specifically, we show that within �n(� + 1)k(n − 1)k rounds, all nodes of the graph 
have been visited at least once by a team of k = 2� + 1 agents.

We prove the theorem by a sequence of lemmas. First of all, we can easily show that 2� +1 agents executing Algorithm 1
cannot be all prevented from moving at any given round.

Lemma 12. If 2� + 1 agents activated fully-synchronously execute Algorithm 1 in �-bounded 1-interval TVGs, at least one of them 
succeeds to move at every round.

Proof. There exist two cases as in the proof of Lemma 4: at round t , (i) there exists a node v containing more than δv − 1
agents, and (ii) there does not exist such a node.

In the first case, since there are more than δv − 1 agents at v , every port is occupied by one agent at t since every agent 
is activated. In addition to that, v has at least one adjacent edge present at t by the connectivity of the TVG. This implies 
that at least one agent succeeds to move at round t .

In the second case, each agent occupies one port by assumption and by fully-synchronous activation, which means that 
2� + 1 ports are occupied. Moreover, at most � edges are missing at each round, which means that at most 2� ports are 
blocked at each round. It follows that at least one agent can move at round t also in this case. �

For Eaug of Algorithm 1, the following lemma holds.

Lemma 13. In an augmented execution of Algorithm 1 by 2� + 1 agents, any two augmented configurations are different.

Proof. First note that Lemma 12 precludes the same two consecutive augmented configurations Caug
t and Caug

t+1 in an 
augmented execution Eaug of Algorithm 1 where no agents move between Caug

t and Caug
t+1. Suppose that there exist two 

augmented configurations Caug
t and Caug

t′ for t < t′ in Eaug . Let Eaug
t,t′ = Caug

t Caug
t+1 · · · Caug

t′−1 be a subsequence of Eaug . In this 
case, the adversary can create an infinite augmented execution from Eaug by repeating Eaug

t,t′ , which means that the adver-
sary can create an (augmented) execution where 2� + 1 agents cannot complete the exploration forever. This contradicts 
Theorem 5. Thus, the lemma holds. �

We are now ready to show an upper bound on the exploration time of Algorithm 1, which is obtained by calculating the 
maximum length among all the augmented executions.

Lemma 14. The length of any possible augmented execution by k = 2� + 1 agents is bounded by �n(� + 1)k(n − 1)k.

Proof. Let α be the maximum length among all the possible augmented executions. By Lemma 13, α is bounded by the 
number of possible augmented configurations in an execution.

The number of possible configurations on a fixed node set V ′ ⊆ V is bounded by �|V ′ |(|V ′|(� + 1))k , which corresponds 
to all the combinations of the possible values of pointerv (i.e., �|V ′|) and all of the agents’ locations (i.e., (|V ′|(� + 1))k). 
Notice that only pointerv of each node v is used as a variable in Algorithm 1. Since the number of nodes visited by an agent 
is not decreasing during the exploration, the exploration time is smaller than or equal to the sum of �|V ′|(|V ′|(� + 1))k for 
1 ≤ |V ′| ≤ n − 1, i.e., α ≤ ∑n−1

′ �|V ′ |(|V ′|(� + 1))k ≤ �n(� + 1)k(n − 1)k rounds. �
|V |=1

9
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It then follows that:

Theorem 15. In Fsync, Algorithm 1 executed by k = 2� + 1 anonymous agents explores any �-bounded 1-interval connected TVG 
within �n(� + 1)k(n − 1)k rounds.

Note that, as a consequence, we obtain a terminating exploration algorithm for �-bounded 1-interval connected TVGs.

Theorem 16. In Fsync, with knowledge of n and k, exploration with termination of an arbitrary �-bounded 1-interval connected 
temporal graph W(�) can be achieved in nn+2k rounds by k = 2� + 1 agents.

4.2.3. Exploration by 2� agents
The result of the previous section can be used to obtain a perpetual exploration algorithm of �-bounded 1-interval con-

nected graphs by 2� agents (which know n and k). The solution (Algorithm 2 below) is obtained by applying to Algorithm 1
bounding the waiting time of an agent blocked on a missing edge.

In fact, while an agent keeps waiting for a missing edge forever in Algorithm 1, in Algorithm 2 an agent waits for a 
missing edge up to kT rounds where T is calculated on the basis of the results of Section 4.2.2.

Apart from the waiting time, the rest of the algorithm is the same as in Algorithm 1: each node has pointerv pointing 
at a port. When agent a visits v , a checks each port in ascending order from the port pointed by pointerv . If a finds some 
unoccupied port p, a moves to the port and sets pointerv to p + 1. If a finishes to check all the ports and they all are 
occupied, a does nothing.

Variable Waiting of an agent represents the elapsed time since the last round when the agent moved to the current port.

Algorithm 2 Computation at node v .
1: if on a port then
2: Waiting ← Waiting + 1
3: if Waiting > kT then
4: exit the current port
5: if not on a port then
6: Waiting ← 0
7: i ← 0
8: p ← pointerv
9: while i < δv ∧ port p is occupied do

10: p ← (p + 1) mod δv

11: i ← i + 1
12: if i < δv then
13: pointerv ← (p + 1) mod δv

14: move to the port p

Lemma 17. Let 2� agents execute Algorithm 2. If an agent waits at u for a missing edge e = (u, v) for kT rounds, during this time 
either another agent starts to wait for e at v, or every node is visited by an agent at least once.

Proof. Suppose that an agent a at u starts to wait for a missing edge (u, v) at round t and (u, v) is kept missing for the 
next kT rounds (including t).

We first show that there exist T successive rounds in [t, t +kT ) during which all the agents but a do not satisfy predicate 
Waiting > kT even if their selected edge remains missing.

We show the claim by contradiction. We assume that in any interval of T successive rounds in [t, t + kT ), there is an 
agent that satisfies Waiting > kT .

By assumption, at least k agents other than a must satisfy Waiting > kT , since kT /T = k. This means that at least one 
agent (different from a) satisfies the predicate twice since the number of the agents (excluding a) is k − 1. However, once 
an agent satisfies Waiting > kT at round t′ ∈ [t, t + kT ), the agent never satisfies the predicate again in [t, t + kT ) since the 
length of the interval is kT . This is a contradiction. Thus, there exist T successive rounds in [t, t + kT ) during which all the 
agents (except for a) do not satisfy Waiting > kT even if their chosen edge is kept missing.

Now, we show the lemma, i.e., show that another agent at v starts to wait for e = (u, v) or the exploration is completed. 
Suppose that no agent at v starts to wait for e in these T rounds. Since e is missing during these T rounds, during 
that time the network (without e) can be considered as a (� − 1)-bounded 1-interval connected TVG. By Theorem 15, 
2(� − 1) + 1 = 2� − 1 agents complete the exploration of the (� − 1)-bounded TVGs in these T rounds. This means that 
every node of the network without e is visited at least once by an agent during these T rounds, because none of them 
starts to wait for e at v during that time by assumption. Thus, the lemma holds. �
Theorem 18. In Fsync, any �-bounded 1-interval connected temporal graph G ∈ W(�) can be explored by k = 2� anonymous agents 
with knowledge of n and k.
10
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Fig. 3. Example of a graph for � = 3 and k = 2� − 1 = 5 that cannot be explored by 2� − 1 agents with a leader.

Proof. Executing Algorithm 2, there clearly exists at least a node v that is visited at an infinite number of rounds (e.g., any 
node containing an agent blocked forever waiting for an edge that will never appear). We then show that all the neighbors 
of v are also visited at an infinite number of rounds by agents. We prove it by contradiction. Suppose that a neighbor 
u of v is visited at only a finite number of rounds and let t′ be the last round when u is visited. Since v is visited at an 
infinite number of rounds and the agents execute Algorithm 2, some agent a visiting v eventually chooses (v, u) as the edge 
from which a moves after t′ . If (v, u) appears by the kT -th round since a chooses it, a visits u as soon as (v, u) appears. 
Otherwise, another agent visits u by Lemma 17. It follows that u is eventually visited after t′ , which is a contradiction.

By the connectivity assumption, we can apply inductively the claim (e.g., the neighbors of a neighbor of v are also visited 
at an infinite number of rounds) to all the nodes, proving the theorem. �

From Theorems 11 and 18, we have:

Theorem 19. In Fsync, with knowledge of n and k, the exploration of all �-bounded 1-interval connected TVGs is possible iff k ≥ 2�.

5. Exploration of 1-interval connected graphs with a leader

In this section, we continue to consider the class W(�) of 1-interval connected temporal graphs with bounded missing 
edges, but we turn our attention to the case when one agent, the leader, is distinguishable from the others (the non-leaders). 
Also in this setting, we establish tight bounds for the exploration of this class of temporal graphs in Ssync and in Fsync

showing that the presence of the leader allows the exploration to be performed using one fewer agent.

5.1. Semi-synchronous model

In this section, we show that, if there exists a leader, the bounds decrease by one in the exploration of �-bounded 
1-interval TVGs. In fact, we show that, G ∈ W(�) can be explored by 2� agents with one leader, while there exist graphs 
G ∈W(�) that cannot be explored by 2� − 1 agents with one leader.

5.1.1. Impossibility
We start by showing the impossibility result.

Theorem 20. There exist 1-interval connected time-varying graphs G ∈ W(�) that cannot be explored by k = 2� − 1 agents with a 
leader. The result holds even if the agents know n, m and k, and whiteboards are of unbounded size.

Proof. We construct a graph G′ using a graph similar to the one employed in the proof of Theorem 8, where however we 
use 2� − 2 copies of stars instead of 2�, and we add two new nodes v and w connected to u (see Fig. 3). The subgraph 
corresponding to G (including u) is denoted by G′

1 and the subgraph induced by u, v and w is denoted by G′
2.

Let each non-leader agent ai be on one of the nodes ci , and the leader agent â be on w .
Consider G′

2 and the following behavior of the adversary: whenever â chooses the port corresponding to (v, w) the 
adversary deletes (v, w), otherwise it deletes (u, w). With these dynamics, â never visits u; moreover â has no effect on 
the exploration of G′

1.
Consider now G′

1: we let the adversary delete at most � − 1 edges at each round. Then, by Theorem 8 and since â has 
no effect on the exploration of G′

1, the 2� − 2 = 2(� − 1) non-leader agents are also prevented from visiting u. Clearly, the 
number of missing edges at each round is at most � and the graph is always connected. �
5.1.2. Exploration by 2� agents with a leader

We now describe a strategy for 2� agents (one of which is a leader) to explore �-bounded 1-interval connected graphs. 
The general idea is simple: the leader agent always changes its chosen edge whenever it is blocked by a missing edge, while 
a non-leader agent always waits for its chosen edge to appear.
11
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However, if we implement this strategy using one pointer for each node, like we did in Sections 3 and 4, two problems 
can occur: (i) a broken rotor and (ii) a skipped port.

A broken rotor is a pointer that can be changed by the adversary freely. Since the leader changes a pointer whenever it 
is blocked, the adversary can make the leader choose pointers in such a way that the leader is repeatedly blocked. To avoid 
this situation, we use an additional pointer pointerLv for each node v that only the leader can change.

A skipped port is a port that remains unused. Suppose that a port pv at node v is occupied by the leader. Since non-
leaders skip an occupied port, they continue to skip pv as long as the leader occupies it. Without restrictions, even if the 
leader, finding itself blocked at pv , changes its port and moves away from pv , it might return to v and occupy pv always 
when the edge is missing and whenever a non-leader would be arriving to v , hence the adversary could continue to prevent 
the use of the port and thus the exploration of the node on the other side.

To avoid these two potential problems, (a) pointerLv is changed so that pointerLv points to an occupied port p if and 
only if the agent occupying p is the leader, (b) a non-leader waits for an occupied port to be unoccupied when the port is 
pointed by pointerLv , and (c) the leader, as long as finding an agent not on a port, stays at v .

Algorithm 3 is the exploration algorithm of the leader and Algorithm 4 is the exploration algorithm of the non-leaders. In 
Algorithms 3 and 4, Setting pointerLv to −1 is done to prevent pointerLv from pointing to a port occupied by a non-leader. 
We assume that pointerLv is initialized to −1.

Algorithm 3 Computation of the leader at node v .
1: if on a port then
2: exit the current port
3: if (not on a port) ∧ (all other agents at v are on a port) then
4: i ← 0
5: p ← pointerLv + 1
6: while i < δv ∧ port p is occupied do
7: p ← (p + 1) mod δv

8: i ← i + 1
9: if i < δv then

10: pointerLv ← p
11: move to the port p
12: else
13: pointerLv ← −1

Algorithm 4 Computation of a non-leader at node v .
1: if not on a port then
2: i ← 0
3: p ← pointerv
4: while i < δv ∧ port p is occupied do
5: if p = pointerLv then
6: i ← δv , pointerv ← p
7: break from this loop
8: p ← (p + 1) mod δv

9: i ← i + 1
10: if i < δv then
11: pointerv ← (p + 1) mod δv

12: if p = pointerLv then
13: pointerLv ← −1
14: move to the port p

First, we show that pointerLv behaves correctly.

Lemma 21. Variable pointerLv points at an occupied port if and only if the agent occupying the port is the leader.

Proof. (⇐) When the leader moves to a port p, it changes pointerLv to p.
(⇒) Let us show the contraposition of the claim: if the agent occupying port p is a non-leader, pointerLv never points to 

p. At the beginning, the value of each pointerLv is −1 and thus the claim holds. If a non-leader, say ai , decides to move to a 
port p and pointerLv points to p, then ai changes pointerLv to −1 before moving to p. By induction, pointerLv never points 
to a port occupied by a non-leader. �
Theorem 22. Any �-bounded 1-interval connected temporal graph G ∈ W(�) can be explored by k = 2� agents with a leader under 
the semi-synchronous scheduler with eventual transport.

Proof. Consider the leader executing Algorithm 3 and the 2� − 1 non-leaders executing Algorithm 4. First, we show that 
unless 2� − 1 non-leaders are all blocked forever, the 2� − 1 non-leaders visit all the nodes infinitely often. Note that the 
adversary needs � transient edges to block 2� − 1 non-leaders.
12
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Fig. 4. Example of a graph for � = 5 and k = 2� − 2 = 8 that cannot be explored by 2� − 2 agents with one leader. It is constructed with the graph in Fig. 2
and nodes u and w being connected to v2�−3.

First assume that some non-leader agents can move from a node to another node infinitely often. Let Am be the non 
empty set of such non-leaders, let te be the round such that after te , every agent b /∈ Am is kept blocked forever, and let x(t)
be the total number of agent moves from a node to another node over all the agents in Am from round te of the execution 
up to time t . Since a ∈ Am is never blocked by a transient edge, x(t) goes to infinity (for t → ∞). Thus, there exists a node, 
say v , which is visited at an infinite number of rounds by a ∈ Am . Then, by an argument similar to the one used in the 
proof of Theorem 5, we can show that every neighbor of v connected with a recurrent edge is also visited at an infinite 
number of rounds by a ∈ Am and, inductively, that all the nodes are visited at an infinite number of rounds.

Suppose instead that every non-leader agent is blocked at some port forever after some round, and let t′
e > te be a round 

when they are all blocked and all the 2� transient edges have disappeared forever. In this case, we show that the leader 
completes the exploration. First observe that, since all the non-leaders are blocked at some port, after round t′

e the leader 
is never required to stop to wait for non-leaders to move to a port.

Moreover, since � missing edges are transient and do not exist anymore after time t′
e , from this time, the network can 

be regarded as a static network with 2� unusable ports: the 2� − 1 occupied by non-leaders and one unoccupied. The 
leader, by construction, just skips the ports that are not available. In doing so, it executes the rotor-router algorithm on the 
static network induced by deleting all the transient edges from the footprint of the network. Hence, by the property of the 
rotor-router algorithm, the leader correctly performs the exploration. �

From Theorems 20 and 22, we have:

Theorem 23. In Ssync, with a leader, the exploration of all �-bounded 1-interval connected TVGs is possible iff k ≥ 2�.

5.2. Fully-synchronous model

In this section, we show that, if there exists one leader and the agents are activated in Fsync, the bounds on the number 
of agents for exploration in �-bounded 1-interval TVGs decreases even further. In fact, we show that, with a leader, G ∈W(�)

can be explored by 2� − 1 agents if � ≥ 2 (it is clear that when � = 1 and k = 2� − 1 = 1, the exploration is impossible), 
while there exist graphs G ∈W(�) that cannot be explored by 2� − 2 agents.

5.2.1. Impossibility
We now consider �-bounded, 1-interval connected TVGs operating under a fully-synchronous scheduler and we show 

that there exist TVGs that cannot be explored by 2� − 2 agents with one leader (2� − 3 non-leaders and one leader agent), 
even if the agents know n, m, and k.

Theorem 24. In Fsync, there exist 1-interval connected time-varying graphs G ∈W(�) that cannot be explored by k = 2� − 2 agents 
with one leader. The result holds even if the agents know n, m and k, and whiteboards are of unbounded size.

Proof. We construct a graph K ′
2�−2 by adding two nodes u and w to the graph K2�−2 used in the proof of Theorem 11 and 

connecting them to v2�−3 (see Fig. 4). The subgraph corresponding to K2�−2 (including v2�−3) is denoted by K(1) and the 
subgraph induced by v2�−3, u, and w is denoted by K(2) .

Let each non-leader ai be on each vi and let the leader agent â be on w . Consider K(2) and the following behavior of the 
adversary: whenever â chooses the port corresponding to (v2�−3, w) the adversary deletes (v2�−3, w), otherwise it deletes 
(u, w). With these dynamics, â never visits v2�−3; moreover, â has no effect on the exploration of K(1) .
13
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For K(1) , we let the adversary delete at most � − 1 edges at each round. Then, by Theorem 11 and since â has no effect 
on the exploration of K(1) , the 2� − 3 = 2(� − 1) − 1 non-leaders are also prevented from visiting v2�−3. Clearly, the number 
of missing edges at each round is at most � and the graph is always connected. �
5.2.2. Bound on exploration time

To prove that 2� − 1 agents (one of them the leader) suffice to explore a graph G ∈ W(�), we first establish in this 
subsection an auxiliary result. More precisely, we determine an upper bound on the time sufficient for 2� agents (one of 
them the leader) to explore G using Algorithms 3 and 4 described in Section 5.1.2.

We establish the bound through a sequence of lemmas. We start by showing that the leader executing Algorithm 3 and 
2� − 1 non-leaders executing Algorithm 4 cannot be all prevented from moving or changing their port at any given round.

Lemma 25. If 2� agents activated fully-synchronously execute Algorithms 3 (for the leader) and 4 (for the non-leaders) in �-bounded 
1-interval TVGs, at least one of them succeeds to change its location at every round (i.e., moving to a port or a neighbor, or changing its 
port).

Proof. We have two cases as in the proof of Lemma 4: at round t , (i) there exists a node v containing more than δv − 1
agents, or (ii) there does not exist such a node.

In the first case, we can show the claim by the same argument used in the proof of Lemma 4.
We then consider the second case. If some agent is not on a port, this agent moves to a port or a neighbor. If every 

agent is on a port, the leader tries to change its port by construction. Note that since every node v is occupied by at most 
δv − 1 agents, there is at least one unoccupied port at every node. Thus, the leader succeeds to change its port. �

Using the same argument as the one of the proof of Lemma 13, we have:

Lemma 26. In an augmented execution of Algorithm 3 executed by the leader and Algorithm 4 executed by the 2� − 1 non-leaders, 
any two augmented configurations are different.

Proof. We can show the lemma by the same argument used in the proof of Lemma 13. �
We are now ready to show an upper bound on the exploration time of Algorithms 3 and 4, which is obtained by 

calculating the maximum length among all the augmented executions.

Lemma 27. The length of any possible augmented execution of Algorithm 3 executed by the leader and Algorithm 4 executed by the 
2� − 1 non-leaders is bounded by �n(� + 1)k+n(n − 1)k.

Proof. Let α be the maximum length among all the possible augmented executions. By Lemma 26, α is bounded by the 
number of possible augmented configurations in an execution.

The number of possible configurations on a fixed node set V ′ ⊆ V is bounded by (�(� + 1))|V ′ |(|V ′|(� + 1))k , which 
corresponds to all the combinations of the possible values of pointerv and pointerLv (i.e., (�(� +1))|V ′ |) and all of the agents’ 
locations (i.e., (|V ′|(� + 1))k). Notice that only pointerv and pointerLv of each node v are used as variables in Algorithms 3
and 4. Since the number of visited nodes is not decreasing during the exploration, the exploration time is smaller than 
or equal to the sum of (�(� + 1))|V ′ |(|V ′|(� + 1))k for 1 ≤ |V ′| ≤ n − 1, i.e., α ≤ ∑n−1

|V ′|=1(�(� + 1))|V ′ |(|V ′|(� + 1))k ≤
�n(� + 1)k+n(n − 1)k rounds. �

It then follows that:

Theorem 28. In Fsync, the leader executing Algorithm 3 and 2� − 1 non-leaders executing Algorithm 4 explore any �-bounded 1-
interval connected TVG within �n(� + 1)k+n(n − 1)k rounds.

Note that, as a consequence, we obtain a terminating exploration algorithm for �-bounded 1-interval connected TVGs.

Theorem 29. In Fsync, with knowledge of n and k, and the existence of a leader, exploration with termination of an arbitrary 
�-bounded 1-interval connected temporal graph W(�) can be achieved in n2(n+k) rounds by k = 2� agents.

5.2.3. Exploration by 2� − 1 agents with a leader
The result of the previous section can be used to obtain a perpetual exploration algorithm of �-bounded 1-interval 

connected graphs by 2� −1 agents (which know n and k) one of which is a distinguishable leader. The solution (Algorithm 5
below) is obtained by applying Algorithm 4, appropriately bounding the waiting time of a non-leader blocked on a missing 
edge. The algorithm for the leader is the same as the one used in the previous section (i.e., Algorithm 3).
14
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In fact, while a non-leader keeps waiting for a missing edge forever in Algorithm 4, in Algorithm 5 a non-leader waits 
for a missing edge up to (k − 1)T rounds where T is calculated on the basis of the results of Section 5.2.2.

Apart from the waiting time, Algorithm 5 is the same as Algorithm 4: each node has pointerv pointing at a port and 
pointerLv for the leader. When a non-leader ai visits v , ai checks each port in ascending order from the port pointed by 
pointerv . If ai finds the port occupied by the leader, ai waits till the leader leaves the port. If ai finds an unoccupied port p, 
ai moves to the port and sets pointerv to p + 1 and, if p is equal to pointerLv , it sets pointerLv to −1. If ai finishes to check 
all the ports and they all are occupied, ai does nothing.

Variable Waiting of a non-leader represents the elapsed time since the last round when the non-leader moved to the 
current port.

Algorithm 5 Computation of a non-leader at node v .
1: if on a port then
2: Waiting ← Waiting + 1
3: if Waiting > (k − 1)T then
4: exit the current port
5: if not on a port then
6: Waiting ← 0
7: i ← 0
8: p ← pointerv
9: while i < δv ∧ port p is occupied do

10: if p = pointerLv then
11: i ← δv , pointerv ← p
12: break from this loop
13: p ← (p + 1) mod δv

14: i ← i + 1
15: if i < δv then
16: pointerv ← (p + 1) mod δv

17: if p = pointerLv then
18: pointerLv ← −1
19: move to the port p

Lemma 30. Let the leader execute Algorithm 3 and the 2� − 2 non-leaders execute Algorithm 5. If a non-leader waits at u for a missing 
edge e = (u, v) for (k − 1)T rounds starting from round t, then in [t, t + (k − 1)T ) rounds there exist T successive rounds during 
which all the non-leaders do not satisfy predicate Waiting > (k − 1)T even if their selected edge remains missing.

Proof. Suppose that a non-leader ai at u starts to wait for a missing edge (u, v) at round t and (u, v) is kept missing for 
the next (k − 1)T rounds (including t).

We show the lemma by contradiction. We assume that in any interval of T successive rounds in [t, t + (k − 1)T ), there 
is a non-leader that satisfies Waiting > (k − 1)T .

By assumption, at least k − 1 non-leaders other than ai must satisfy Waiting > (k − 1)T since (k − 1)T /T = k − 1. This 
means that at least one non-leader (different from ai ) satisfies the predicate twice since the number of non-leaders (exclud-
ing ai ) is k − 2. However, once a non-leader satisfies Waiting > (k − 1)T at round t′ ∈ [t, t + (k − 1)T ), the non-leader never 
satisfies the predicate again in [t, t + (k − 1)T ) since the length of the interval is (k − 1)T . This is a contradiction. �
Lemma 31. Let the leader execute Algorithm 3 and the 2� − 2 non-leaders execute Algorithm 5. If a non-leader waits at u for a missing 
edge e = (u, v) for (k − 1)T rounds, during this time either another non-leader starts to wait for e at v, or every node is visited by an 
agent at least once.

Proof. Suppose that a non-leader ai at u starts to wait for a missing edge (u, v) at round t and (u, v) is kept missing for 
the next (k − 1)T rounds (including t).

By Lemma 30, in interval [t, t + (k − 1)T ) there exist T successive rounds, say I , during which all the non-leaders do 
not satisfy predicate Waiting > (k − 1)T even if their selected edge remains missing. Suppose that no non-leader starts to 
wait for e at v in I . Since e is missing during I , the network (without e) can be considered as a (� − 1)-bounded 1-interval 
connected TVG during I . By Theorem 28, 2� − 2 = 2(� − 1) agents with one leader complete the exploration of the (� − 1)-
bounded TVGs in the T successive rounds. This means that every node of the network (without e) is visited by an agent 
during I at least once because none of the non-leaders starts to wait for e at v during that time by assumption. Thus, the 
lemma holds. �
Lemma 32. Let the leader execute Algorithm 3 and the 2� − 2 non-leaders execute Algorithm 5. If there is a node visited at only a finite 
number of rounds (by the leader or non-leaders) and there is another node visited at only a finite number of rounds by non-leaders, 
every node is visited at only a finite number of rounds by non-leaders.
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Proof. Suppose that a node v is visited at only a finite number of rounds by agents and another node u is visited at only a 
finite number of rounds by non-leaders. Let t1 be the last round when v is visited by an agent or u is visited by non-leaders.

We first show that all the neighbors of u are visited at only a finite number of rounds by non-leaders. We prove this 
by contradiction, assuming that a neighbor w of u is visited at an infinite number of rounds by non-leaders. Eventually, an 
agent a1 at w chooses (w, u) to move after t1. Since u is never visited at any time after t1, a1 is kept blocked on w at 
the port of (w, u) for (k − 1)T rounds. By Lemma 31, however, another non-leader visits u or every node is visited by an 
agent at least once after t1. Both cases contradict the assumption and thus all the neighbors of u are visited at only a finite 
number of rounds by non-leaders. Since the network is connected, we can apply inductively the claim to all the nodes, 
proving the lemma. �
Theorem 33. In Fsync, with knowledge of n and k, if � ≥ 2, any �-bounded 1-interval connected temporal graph G ∈ W(�) can be 
explored by k = 2� − 1 agents with one leader.

Proof. Consider the leader executing Algorithm 3 and non-leaders executing Algorithm 5. The proof follows the same lines 
of the one of Theorem 18. There clearly exists at least one node v which is visited at an infinite number of rounds. We 
then show that all the nodes are visited at an infinite number of rounds. Two cases are considered: Case a) v is visited at 
an infinite number of rounds by non-leaders and Case b) v is visited at only a finite number of rounds by non-leaders.

Case a) Suppose that v is visited at an infinite number of rounds by non-leaders. We show that all the neighbors of v
are also visited at an infinite number of rounds by agents. We prove it by contradiction, assuming that a neighbor u of 
v is visited at only a finite number of rounds by agents and letting t1 be the last round when u is visited by an agent. 
Since v is visited at an infinite number of rounds by the non-leaders executing Algorithm 5, some non-leader ai visiting v
eventually chooses (v, u) to move. If (v, u) appears within (k −1)T rounds, ai visits u in the period, which is a contradiction. 
Otherwise, another agent visits u by Lemma 31. It follows that u is eventually visited after t1, which is a contradiction.

Case b) Suppose that v is visited at only a finite number of rounds by non-leaders. We show by contradiction that all the 
neighbor of v are visited at an infinite number of rounds. Assume that a neighbor of v is visited at only a finite number 
of rounds by agents. It follows by Lemma 32 that every node is visited at only a finite number of rounds by non-leaders. 
This means that no non-leader exists in the network by the definition. This is a contradiction since � ≥ 2 and at least two 
non-leaders exist in the network.

In either case, all the neighbors of v are visited at an infinite number of rounds. Since the network is connected, we can 
apply inductively the claim to all the nodes, proving the theorem. �

From Theorems 24 and 33, we have:

Theorem 34. Under the fully-synchronous scheduler, with knowledge of n and k and the existence of a leader, if � ≥ 2, the exploration 
of all �-bounded 1-interval connected TVGs is possible iff k ≥ 2� − 1.

6. Conclusion

In this paper, we considered perpetual exploration of temporal graphs with arbitrary and unknown topology, focusing 
on the number of agents that are necessary and sufficient to perform the task. We considered two common dynamic 
models: temporally connected networks, and 1-interval connected (or always connected) networks with a bounded number 
of missing edges at each round. We derived tight bounds for both models under fully synchronous and semi-synchronous 
settings, both when the agents are anonymous and when there is a leader.

Our algorithms use at each node v a rotor-router mechanism; this can be implemented with either a constant number 
of movable tokens that can be placed on the ports of v , or with a whiteboard of size O (log δv ) bits. It would be interesting 
if the same tight bounds on the number of agents could be obtained using a different (perhaps more complex) mechanism 
requiring less memory.

In this paper the focus has been on optimality in terms of number of agents. The investigation on the amount of time 
and the number of moves required by an agent-optimal solution to visit all the nodes at least once during the perpetual 
exploration, is another open research direction.

This is the first study on distributed exploration of temporal graphs with arbitrary topology, and it has considered so 
far temporally connected and 1-interval connected networks. The investigation of other classes of temporal dynamics in 
networks of arbitrary topology is the main research direction left open.
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