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Abstract. Consider a set of mobile computational elements, called robots,
that are viewed as points, and operate in the Euclidean plane in syn-
chronous rounds. The robots are oblivious (they forget all computations
performed in previous rounds), silent (unable of direct communication),
and anonymous (indistinguishable from the outside). Each robot is pro-
vided with a private coordinate system, and can determine the position
of the other robots (performing a Look operation); it has an algorithm,
which it executes (performing a Compute operation) to determine a des-
tination point; and it can move towards the destination (performing a
Move operation).
The k-Grouping problem requires the robots, starting from an arbitrary
initial configuration in the plane, to gather at k distinct locations, not
chosen in advance, by performing Look-Compute-Move cycles, and no
longer move. This simple problem is however unsolvable if all the robots
execute the same algorithm. It has been recently shown that, were differ-
ent subgroups of the robots to execute different algorithms, the problem
remains still unsolvable if the number of the algorithms is less than k.
In this paper we prove that this number is minimum: we design k distinct
algorithms and prove that, if each is executed by an arbitrary non-empty
subset of the robots, they will collectively be able to solve the problem;
furthermore, they are able to do so under a weak assumption on the level
of agreement among the local coordinate systems. We further prove that,
without any agreement, the problem becomes unsolvable even with k+1
different algorithms. However, if an unbounded number of algorithms are
allowed such that each robot has a unique algorithm, then we can solve
k-Grouping without any agreement.

Keywords: Autonomous mobile robot, Minimum algorithm size, Scattering,
Gathering, Pattern formation.

1 Introduction

1.1 Framework, Background, and Motivation

Consider a collection R of mobile computational entities, called robots, viewed
as points, operating in synchronous rounds in the Euclidean plane. Time is di-
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vided into discrete intervals, called rounds; in each round a non-empty subset of
robots is activated. All activated robots perform a Look-Compute-Move (LCM)
cycle, consisting of three phases, in perfect synchrony: in the Look phase, each
robot takes a snapshot of the environment, returning the positions of the other
robots in its own local coordinate system; in the Compute phase, it executes its
pre-programmed algorithm to compute a destination point; in the Move phase,
it moves towards the destination. The decision of which robots are activated in
a given round is under the control of an adversarial scheduler. Under the weak-
est adversarial scheduler, called fully-synchronous (FSYNC), the entire set of
robots is activated in every round. Under the strong adversary, called semi-
synchronous (SSYNC), the activated subset is arbitrary (provided that every
robot is activated infinitely often).

Since its introduction in the distributed computing community [16], this set-
ting has been extensively investigated, and the primary direction of research has
been on determining the minimal assumptions on the robots’ capabilities under
which they are collectively capable to solve a given problem or to successfully
perform a given task.

In the weakest (de-facto standard) model, OBLOT , the robots are oblivious
(i.e., have no memory of previous cycles), silent (i.e., have no means of direct
communication), and disoriented (i.e., do not necessarily agree on a common
coordinate system). They are also generally assumed to be anonymous (i.e. do
not have distinct identifiers or visible markers) and homogeneous (i.e., execute
the same algorithm – compute the same function) [?].

Within this model, the research has been focused on the computability and
complexity aspects of basic fundamental tasks, in particular the class of Pattern
Formation problems, requiring the robots to move from the configuration of
their initial (arbitrary) positions in the plane to one congruent with a geometric
shape (the pattern) given in input (e.g., see [1,4,5,6,9,11,10,16,17], as well as [13]
and chapters therein). An extensive amount of research has been dedicated on
identifying the impact that specific factors have on the solvability of these basic
problems. These are, for instance, the studies on the impact of capabilities such
as multiplicity detection (i.e. ability in the Look phase to determine the number
of robots at the same point at the same time), some agreement on the coordinate
system (e.g., compass, chirality, ...), rigidity (e.g., ability in the Move phase to
always reach the computed destination), etc.

Because of the stringent limitations imposed by the model on the computa-
tional power of the robots, several problems remain unsolvable even in presence
of some of these additional capabilities. For example, it is impossible to form an
asymmetric pattern starting from a symmetric initial configuration, even if the
robots are rigid, have chirality and multiplicity detection, and the scheduler is
fully synchronous [16].

Consider the case where there is no single algorithm A that would allow the
robots to solve a given problem P under a given set of conditions. It might
be however possible to solve the problem by designing two (or more) distinct
algorithms, say A1 and A2, programming some robots R1 ⊂ R with A1 while
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the others R2 = R \ R1 with A2, and having each robot execute its algorithm
unaware of the composition of the two sets.

This observation, recently made in [2], leads to the following interesting re-
search question:

Given a problem P in a given setting, what is the minimum number of
distinct algorithms that would allow a set R of robots to solve it?

We shall denote such a measure, called the minimum algorithm size in [2], by
Φ(P), and investigate it for a basic family of Pattern Formation problem.

1.2 Problem and Contributions

The class of problems we are investigating, called k-Grouping, requires the
robots to gather within finite time, at k distinct points, not chosen in advance,
and no longer move; this has to be done regardless of the number of robots (pro-
vided k ≤ |R|) and of their initial configuration C(0) (i.e., location of the robots
at time t = 0).

In other words, for every R with |R| ≥ k, any solution algorithm must satisfy
the following temporal geometric predicate in every possible execution:

k-Grouping ≡ {∃t̂ ≥ 0 {(|C(t̂)| = k) and (∀t′ ≥ t̂, (C(t′) = C(t̂))}}

where |C(t)| denotes the number of distinct points occupied by the robots at
time t.

Observe that the special case 1-Grouping is precisely one of the most impor-
tant and investigated problem in the field, called Gathering (or Rendezvous)
(e.g., see [1,3,8,12,14,15]). Another special case of k-Grouping is the subclass of
the Scattering family of problems, called k-Scattering, which assumes that,
in the initial configuration C(0), all robots are co-located in the same point (e.g.,
see [2,7]).

An interesting aspect of k-Grouping is that, in spite of its apparent sim-
plicity, it is generally unsolvable in OBLOT (i.e., with a single algorithm). This
impossibility is very easy to verify; e.g., consider forming two groups starting
from an initial configuration C(0) where all robots are co-located in the same
point. Furthermore, this impossibility holds true even if the robots are very pow-
erful and the adversary very weak; in particular, it holds also when the robots
share a common orientation and direction of the axes (i.e., they have a compass),
have strong multiplicity detection, movements are rigid, and the scheduler is fully
synchronous FSYNC.

Hence the need to determine Φ(k-Grouping), i.e., the minimum algorithm
size of k-Grouping. A recent result of [2] implies that

Φ(k-Grouping) ≥ k

even if the robots are very powerful and the adversary is very weak (see above).
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The following questions thus naturally arise: is this bound tight? can it be
achieved under less stringent conditions (i.e., with weaker robots and under a
stronger adversary)?

In this paper, we first of all provide an affirmative answer to both questions.
We prove that the lower-bound is tight, and indeed k distinct algorithms are
sufficient; the proof is constructive. This result holds even if the robots agree
only on the direction of a single axis, have no multiplicity detection, movements
are non-rigid (i.e., they can be stopped in their movement) and the adversarial
scheduler is the stronger SSYNC.

We then investigate whether such a result can be achieved in an even weaker
setting: specifically, without any agreement among the local coordinate systems.
We prove that the answer is negative: in this case, k-Grouping is unsolvable
even if the robots had k + 1 algorithms, and the other conditions were the best
possible (strong multiplicity detection, rigid movements, and fully synchronous
scheduler).

Finally we show that the problem is always solvable, even without any agree-
ment among the local coordinate systems, if the number of algorithms is un-
bounded in number; indeed it suffices with a distinct algorithm for each robot.

See Table 1 for a summary of the results.

k-Grouping Algorithms Axis Rigidity Scheduler Reference
unsolvable < k 2 Yes FSYNC [2]

solvable k 1 No SSYNC this paper
unsolvable k + 1 No Yes FSYNC this paper

solvable |R| No No SSYNC this paper
Table 1. Summary of results

1.3 Organization

The paper is organized as follows. In Section 2, we describe the model under con-
sideration. In Section 3.1, we show that the bound on the number of algorithms
is tight with partial agreement on axes, and in Section 3.2 show impossibil-
ity without agreement even with a collective algorithm of size k + 1. Further,
in Section 3.2, we show a possibility if the algorithm size is unbounded before
concluding in Section 4. Due to space limitations, some proofs and details are
omitted.

2 Model and Terminology

The system consists of a set R = {r1, r2, . . . , rn} of mobile computational enti-
ties, called robots, modeled as geometric points, that operate in R2. The robots
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are autonomous without a central control. Each robot has its own local coordi-
nate system, and is equipped with devices that allow it to observe the positions
of the other robots in its local coordinate system.

The robots operate in Look-Compute-Move (LCM) cycles. When activated,
a robot executes a cycle by performing the following three operations:

1. Look: The robot obtains a snapshot of the positions occupied by robots ex-
pressed with respect to its own coordinate system; this operation is assumed
to be instantaneous.

2. Compute: The robot executes the algorithm using the snapshot as input; the
result of the computation is a destination point.

3. Move: The robot moves towards the computed destination. If the destination
is the current location, the robot stays still.

The robots are silent: they have no explicit means of communication; fur-
thermore they are oblivious: at the start of a cycle, a robot has no memory of
observations and computations performed in previous cycles.

The system is synchronous; that is, time is divided into discrete intervals,
called rounds. In each round a robot is either active or inactive. The robots
active in a round perform their LCM cycle in perfect synchronization; if not
active, the robot is idle in that round. All robots are initially idle.

The decision of which robots are activated in a given round is under the
control of an adversarial scheduler. The weakest adversarial scheduler, called
fully-synchronous (FSYNC), activates the entire set of robots in every round.
Under the strong adversary, called semi-synchronous (SSYNC), the activated
subset is arbitrary; however, every robot is activated infinitely often. In the
following, we use round and time interchangeably.

Let ri(t) denote the location of robot ri at time t in some global coordi-
nate system (possibly unknown to the robots); let C(t) = {p1, p2, . . . , pn}, called
configuration at time t, be the multi-set of robot positions pi = ri(t), and let
Q = {q1, q2, . . . , qm} be the corresponding set of points occupied by the robots.
Observe that |Q| = m ≤ n since some robots might be at the same locations,
called multiplicity points. The robots are said to have strong/weak/no multi-
plicity detection capability if they are able to detect in a given point the exact
number of robots, only whether or not there is more than one robot, or have no
such a capability, respectively

Movements are said to be rigid if the robots always reach their destination.
They are said to be non-rigid if they may be unpredictably stopped by an ad-
versary whose only limitation is the existence of δ > 0, unknown to the robots,
such that if the destination is at distance at most δ the robot will reach it, else
it will move at least δ towards the destination.

As for their private coordinate systems, the robots are said: to have complete
agreement if they all share the same orientation and direction of both axes; to
have one-axis agreement if they all share the orientation and direction of just
one axes (say the Y axis); to have no agreement (or to be disoriented) if they
might disagree on the orientation and direction of the axes. In all cases, there
might to be agreement on the unit of distance.
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As discussed in Section 1.2, the class of k-Grouping problems requires the
robots to gather within finite time, at k distinct points, not chosen in advance,
and no longer move; this has to be done regardless of the number of robots
(provided k ≤ |R|) and of their initial configuration C(0) (i.e., location of the
robots at time t = 0).

A collective solution algorithm for k-Grouping of size s ≥ k is any set A =
{A1, ..., As} of s ≥ k distinct algorithms such that: for any set of robots R with
|R| ≥ k and any partition P (R) =< R1, ..., Rs > of R in s non-empty subsets, if
each element of Ri is programmed with and executes Ai, then, without knowing
which algorithm is being executed by the other robots and starting from any
initial configuration, within finite time all robots gather at k distinct points, and
no longer change position.

The smallest value of s among all collective solution algorithms is called the
minimum algorithm size and denoted by Φ(k-Grouping).

3 k-Grouping

In this section, first, we determine Φ(k-Grouping) constructively by providing
a set of k algorithms that solve k-Grouping when the robots have agreement on
the orientation of one axis. Then we investigate the solvability of k-Grouping
in absence of any agreement on the coordinate system; we prove that, without
any agreement on the coordinate system, no set of k + 1 algorithms can solve
k-Grouping. On the other hand, the problem becomes solvable if every robot
has a different algorithm.

3.1 Partial Agreement.

First, we consider robots with agreement in the orientation of one-axis. They
may not agree on the chirality. In other words, without loss of generality all
robots agree on the direction of positive y-axis, but they may disagree on the
direction of positive x-axis. The algorithm presented here is a general strategy
that works for any k ≥ 2. For k = 1, we refer the readers to the paper by
Bhagat et al. [3], where they present an algorithm for 1-grouping (also known
as Gathering) of robots with one-axis agreement.

General Strategy.
At a high level, the proposed collective algorithm A = {A1, A2, . . . , Ak},

for k > 1, has each robot determine in its Look phase the smallest enclosing
rectangle (SER) of the observed configuration, where the sides of the rectangle
are parallel to the axes, and use it as an input in the execution of its algorithm.

Informally, the general strategy of the collective algorithm A consists on
having all the robots that execute the same algorithm Ai to eventually move to
the same line Li perpendicular to the y axis, and eventually gather at a single
point Mi on Li. The location of the destination lines is totally dynamic and may
change several times during the executions of the robots’ algorithms. Eventually,
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as we will show, the top line L1 and the bottom line Lk will no longer change,
so neither will the height of the SER. Once this occurs (let us stress that the
robots might be unaware of this fact), also the location of line Li (1 < i < k) is
determined as being at distance di = (i − 1)h/(k − 1) from L1, where h is the
height of the SER, and no longer change. Then the robots executing algorithms
Ai eventually form a point Mi on Li at distance di from M1.

The algorithm terminates once the observed configuration is composed of k
equidistant points on a vertical axis.

In what follows, we describe the algorithm in detail; the pseudocode is pre-
sented in Algorithm 1.

Basic Concepts and Terminology.
Before starting the description, let us introduce some important concepts

and terminology. In the following (including the algorithm description) all the
geometric objects are expressed in terms of the local coordinate system of the
observing robot. Let us stress that, since we are considering the weak setting
where the local coordinate systems might disagree on the direction of the x-axis,
the notion of “left" and “right" of this robot is possibly opposite that of other
robots.

Consider the configuration C(t) observed by a robot active at time t; let Q =
{q1, ..., qm} be the distinct positions occupied by the robots in that configuration,
where qj = (xj , yj) (1 ≤ j ≤ m).

Fig. 1. Smallest Enclosing Rectangle of a
configuration C(t)

Given Q, let lx = min
j

(xj), rx =

max
j

(xj), by = min
j

(yj), and ty =

max
j

(yj), where 1 ≤ j ≤ m ≤ n.

Then the smallest enclosing rectan-
gle SER(Q) is uniquely determined
by the four corners (lx, by), (lx, ty),
(rx, ty), and (rx, by) (ref. Fig. 1).

The rectangle SER(Q) is said to
be improper if it is a horizontal line or
a point (i.e., if ty = by), proper other-
wise. Let h be the height of a proper
SER(Q), i.e., h = ty − by.

In a proper SER(Q), the parallel lines Li (1 ≤ i ≤ k) are defined as follows:
L1 is the line passing through (lx, ty) and (rx, ty); Lk is the line passing through
(lx, by) and (rx, by); Lj (1 < j < k) is the line passing through (lx, lj) and (rx, lj),
where lj = ((j − 1)by + (k− j)ty)/(k− 1). Notice that the distance between two
successive lines is h/(k−1). Let M1 be the midpoint of the segment of L1 between
(lx, ty) and (rx, ty).

The final configuration Cf is the configuration where all the robots are located
on a line parallel to the y-axis, |Q| = k, and the distance between consecutive
points in Q is h/(k − 1).
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Algorithm 1: k-grouping
Input: k, set of points Q, robot position (px, py)
Output: Destination of the robot

1 Algorithm A1:
2 if Q = Cf then
3 destination ← (px, py)
4 terminate
5 else
6 compute SER(Q)
7 if ty = by then
8 destination ← (px, py + 1)
9 else

10 if if there is only one robot position (qx, qy) on L1 then
11 destination ← (qx, qy)
12 else
13 if py = ty then
14 destination ← ((lx + rx)/2, py)
15 else
16 destination ← (px, ty)

17 Algorithm Ai: where 1 < i ≤ k
18 if Q = Cf then
19 destination ← (px, py)
20 terminate
21 else
22 compute SER(Q)
23 if ty = by then
24 destination ← (px, py)
25 else
26 Let li = ((i− 1)by + (k − i)ty)/(k − 1)
27 if if there is only one robot position (qx, qy) on L1 then
28 if py = mi then
29 destination ← (qx, py)
30 else
31 destination ← (px, li)

32 else
33 destination ← (px, li)

Detailed Description.
Let us now describe the algorithm in some details. In each round t, a robot

activated by the scheduler, in the Look operation, observes the current config-
uration C(t) as the set of positions Q. Based on this information, the robot,
located at (px, py), proceeds as follows.

(1) If Q = Cf , then it does not move, and terminates.
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(2) If Q ̸= Cf , it computes the smallest enclosing rectangle SER(Q) of Q. What
happens next depends on whether SER(Q) is proper or not.

(3) Let SER(Q) be proper; then both L1 and Lk are defined. What does the
robot do depends on its algorithm.
• If the robot is executing A1 and there is only one point (qx, qy) on L1,

then that point becomes its destination M1 in this round. If instead there
is more than one point on L1, the robot moves to M1 = ((lx+rx)/2, py) if
it is on L1, otherwise it moves parallel to y-axis to reach L1, specifically,
to the point (px, ty).

• If the robot is executing algorithm Ai, i ̸= 1, first it computes the location
of line Li perpendicular to the y-axis. If the robot is not on Li, then it
moves to Li by moving parallel to y-axis. If the robot is already located
on Li and there exists exactly one point q = (qx, qy) on L1, then the
robot moves to the point (qx, py).

(4) Finally, let SER(Q) be improper; that is, SER(Q) is a horizontal line or
a point. In this case, if the active robot is executing A1, it moves one unit
distance4 towards positive y-axis, otherwise it does nothing.

Correctness.
We now show that our algorithm solves k-Grouping in finite time. This is

done through a sequence of Lemmas; due to space limitations, these proofs are
omitted. Let C(t0) be the initial configuration. We state the following lemmata
with respect to t0.

Lemma 1. There exists t′0,≥ t0, such that smallest enclosed rectangle SER(Q)
of C(t′0) is proper.

Observe that if SER(Q) is proper, for that configuration all the lines Li are
uniquely defined 1 ≤ i ≤ k.

Lemma 2. There exists t1 ≥ t0 such that L1 and Lk remain invariant there
after.

Lemma 3. There exists t2 ≥ t1 such that M1 remains invariant there after.

Lemma 4. There exists t3 ≥ t1 such that all robots executing Ai, for 1 < i ≤ k
remain on Li there after.

Lemma 5. There exists t4 ≥ max(t2, t3) such that all robots executing Ai, for
1 < i ≤ k remain at Mi there after.

Theorem 1. The proposed algorithm solves k-Grouping in finite time with one-
axis agreement under a SSYNC scheduler with non-rigid movements.

4 The robots do not share a common measure of unit distance; hence, the unit distances
of robots executing A1 may be different from each other.
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The finite amount of time elapsed from the start of the algorithm to the
reaching of a final configuration can be easily determined. Under the SSYNC
adversarial scheduler, time is measured in terms of epochs, where an epoch is a
time interval over which all the robots are activated at least once. We have the
following corollary.

Corollary 1. The collective algorithm A solves k-Grouping in O(1) epochs un-
der a SSYNC scheduler if the robots have rigid movement and one-axis agree-
ment, and in O(hmax/δ) epochs when the robots have non-rigid movement, where
hmax = max(ty − by, rx − lx).

3.2 No Agreement.

In this section, we show that robots without agreement on axes fail to achieve
k-Grouping even with k+1 distinct algorithms. We also show that it is possible
to achieve k-Grouping with an unbounded number of algorithms, specifically
with each robot executing a different algorithm.

Impossibility of k-Grouping.
Let O be the center of the Smallest Enclosing Circle(SEC) of a set of point

Q. Let θ be the smallest angle such that rotating the set of points Q by θ about
O results in the same configuration. We define rotational symmetry, ρ(Q) as
2π/θ.

Theorem 2. With no agreement on the axes, k-Grouping is not always solvable
under FSYNC with rigid movements even with k + 1 distinct algorithms.

Proof. By contradiction, let there exist, for any n and k, a set of k + 1 solu-
tion algorithms A = {A1, A2, . . . , Ak, Ak+1} which, for any initial configuration,
allows the n robots to form within finite time a configuration consisting of k
points, and no longer move.

Given a configuration C(t), let Ci be the subset of the robots executing
algorithm Ai, and let Qi be the set of points occupied by them.

First, we define a special class Ck+1 of configurations, where n > 2 and k ≥ 2.
A configuration C(t) belongs to Ck+1, when |Ci| = k+1 and either (C1) or (C2)
holds for each i.

(C1) If |Qi| = 1, then all the robots executing Ai are located at the center of
SEC(Q).

(C2) If |Qi| > 1, then ρ(Qi) = k + 1, i.e., Qi forms a regular k + 1-gon and the
center of the polygon is the center of SEC(Q).

Observe that, by definition, n must be a multiple of k + 1.
Consider now the execution of A starting from a configuration C in the

class Ck+1. Let us stress that, since the robots are oblivious, the action of an
activated robot r depends only on the observed set of points Q, its location
p = (px, py) ∈ Q, and the algorithm Ai it is executing. Let u be the computed
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destination point. Observe that the same action will be performed by all robots
executing Ai that are in the same symmetry class of p = (px, py), denoted as
ρ(p). We have the following cases, depending on the computed destination u ̸= p.

(1) u = O: All robots in ρ(p) reach the center of SEC. In fact, since p ̸= O, by
condition (C2), the robots are located at the corners of the regular k+1-gon,
they have the same view and thus the same destination O.

(2) p = O: Qi becomes a regular k+1-gon in C(t+1). In fact, because of condition
(C1), all robots executing Ai are located at O. Let the local coordinate
system of each robot be rotated by 2π/(k+ 1), then every robot moves to a
different point at distance d from O, forming a regular k+1-gon in C(t+1).

(3) p ̸= O and u ̸= O: A new regular k + 1-gon Qi is created. In fact, take the
k+1-gon formed by the robots executing Ai. Let the local coordinate system
of each of those robots be rotated by 2π/(k+1), then the destinations u and
u′ of any two robots on consecutive corners p and p’ of the original k+1-gon
will be also at an angle 2π/(k + 1) with each other from the center, since
their view were the same. Thus, the resulting Qi in C(t+1) is again a regular
k + 1-gon.

Observation 1. The rotational symmetry of the union of concentric regular
k + 1-gons is a multiple of k + 1.

Since each of the actions by any of the algorithms from the collection A
results in another configuration with rotational symmetry j(k + 1) for some
integer j ≥ 0, the configurations never have a set Q with |Q| = k, contradicting
the assumed correctness of A.

Unbounded Possibility.
Here we present a collective solution algorithm A = {A1, A2, . . . , An}, that

solves k-Grouping for n robots under SSYNC scheduler with non-rigid move-
ment.

γ/2

γ

Fig. 2. Smallest Enclosing Annulus of a
configuration C(t)

Given a configuration C(t) with
the corresponding set of points Q,
SEC(Q) is the Smallest enclosing cir-
cle of the set of points. Let γ be the
radius, and O be the center of the
SEC. We define the Smallest Enclos-
ing Annulus (SEA) of the configura-
tion as the area between the SEC and
another circle with center O and ra-
dius γ/2 (see Fig. 2).

At a high level, the collective al-
gorithm aims to form a configuration
where the robots executing algorithms
A1, . . . , Ak−1 move to the SEC (remain in the SEA, perhaps due to non-rigid
movements), while the robots executing algorithms Ai, for k ≤ i ≤ n move to
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Algorithm 2: k-Grouping with no agreement
Input: A set of points Q, robot position p, and k
Output: Destination of the robot

1 Algorithm Ai, where 1 ≤ i < k:
2 if p ∈ SEA(Q) then
3 count ← |SEA(Q)|, i.e., the number of robot positions in SEA(Q)
4 if count ≥ k − 1 then
5 destination ← p
6 else
7 θ ← smallest incident angle at p
8 θi ← iθ/2k
9 Let u be the point on SEC(Q) such that ∠pOu = θi

10 destination ← u

11 else
12 u← the radial projection of p on SEC(Q)
13 destination ← u

14 Algorithm Ai where k ≤ i ≤ n:
15 O ← center of SEC(Q)
16 destination ← O

the center of the SEC. This achieves k-Grouping by having k−1 robot positions
on the SEA and one at the center.

The pseudocode for the algorithm is present in Algorithm 2.

4 Conclusion

In this paper, we investigated the problem of k-Grouping when robots are al-
lowed to have multiple algorithms. We showed that under partial agreement of
axes, such as agreeing on the direction and orientation of one-axis, k different
algorithms are sufficient to solve k-Grouping, while it is impossible without
agreement on the axes even when the robots have k+1 algorithms. Further, we
show that given |R| algorithms, it is possible to solve k-Grouping even without
agreement on axes.

We leave as an conjecture that our algorithms also work under an asyn-
chronous scheduler, possibly even when the movement of robots are non-rigid.
We also conjecture that n−1 algorithms are insufficient for k-Grouping without
agreement on axes.

Observe that the problem of k-Grouping studied here makes no requirement
on the k gathering points except that they are distinct. An interesting open prob-
lem is the variation requiring the k distinct points to satisfy a specific geometric
pattern, such as a circle or convex hull.
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