
Improved Bounds for Optimal Black Hole Search
with a Network Map

Stefan Dobrev1, Paola Flocchini1, and Nicola Santoro2

1 SITE, University of Ottawa
{sdobrev,flocchin}@site.uottawa.ca

2 School of Computer Science, Carleton University
santoro@scs.carleton.ca

Abstract. A black hole is a harmful host that destroys incoming agents
without leaving any observable trace of such a destruction. The black
hole search problem is to unambiguously determine the location of the
black hole. A team of agents, provided with a network map and executing
the same protocol, solves the problem if at least one agent survives and,
within finite time, knows the location of the black hole.
It is known that a team must have at least two agents. Interestingly, two
agents with a map of the network can locate the black hole with O(n)
moves in many highly regular networks; however the protocols used apply
only to a narrow class of networks. On the other hand, any universal
solution protocol must use Ω(n log n) moves in the worst case, regardless
of the size of the team.
A universal solution protocol has been recently presented that uses a
team of just two agents with a map of the network, and locates a black
hole in at most O(n log n) moves. Thus, this protocol has both optimal
size and worst-case-optimal cost. We show that this result, far from clos-
ing the research quest, can be significantly improved.

In this paper we present a universal protocol that allows a team of
two agents with a network map to locate the black hole using at most
O(n+d log d) moves, where d is the diameter of the network. This means
that, without losing its universality and without violating the worst-case
Ω(n log n) lower bound, this algorithm allows two agents to locate a
black hole with Θ(n) cost in a very large class of (possibly unstructured)
networks.

Keywords: Distributed Algorithms, Distributed Computing, Mobile
Agents, Harmful Host, Undetectable Failure, Size and Cost Optimal Pro-
tocols

1 Introduction

In networked systems that support autonomous mobile agents, a main concern
is how to develop efficient agent-based system protocols; that is, to design pro-
tocols that will allow a team of identical simple agents to cooperatively perform
(possibly complex) system tasks. Example of basic tasks are wakeup, traversal,
rendez-vous, election. The coordination of the agents necessary to perform these

R. Královič and O. Sýkora (Eds.): SIROCCO 2004, LNCS 3104, pp. 111–122, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

112 Stefan Dobrev, Paola Flocchini, and Nicola Santoro

tasks is not necessarily simple or easy to achieve. In fact, the computational
problems related to these operations are definitely non trivial, and a great deal
of theoretical research is devoted to the study of conditions for the solvability of
these problems and to the discovery of efficient algorithmic solutions; e.g., see
[1–8, 13].

At an abstract level, these environments can be described as a collection
E of autonomous mobile agents (or robots) located in a graph G. The agents
have computing capabilities and bounded storage, execute the same protocol,
and can move from node to neighboring node. They are asynchronous, in the
sense that every action they perform (computing, moving, etc.) takes a finite
but otherwise unpredictable amount of time. Each node of the network, also
called host, provides a storage area called whiteboard for incoming agents to
communicate and compute, and its access is held in fair mutual exclusion. The
research concern is on determining what tasks can be performed by such entities,
under what conditions, and at what cost.

At a practical level, in these environments, security is the most pressing
concern, and possibly the most difficult to address. Actually, even the most
basic security issues, in spite of their practical urgency and of the amount of
effort, must still be effectively addressed (for a survey, see [14]).

Among the severe security threats faced in these environments, a particu-
larly troublesome one is a harmful host; that is, the presence at a network site of
harmful stationary processes. This threat is acute not only in unregulated non-
cooperative settings, such as Internet, but also in environments with regulated
access and where agents cooperate towards common goals. In fact, a local (hard-
ware or software) failure might render a host harmful. The problem posed by
the presence of a harmful host has been intensively studied from a software engi-
neering point of view (e.g., see [12, 15, 16]), and recently also from an algorithmic
prospective [9–11].

Obviously, the first step in any solution to such a problem must be to identify,
if possible, the harmful host; i.e., to determine and report its location. Following
this phase, a “rescue” activity would conceivably be initiated to deal with the
destructive process resident there. Depending on the nature of the danger, the
task to identify the harmful host might be difficult, if not impossible, to perform.

A particularly harmful host is a black hole: a host that disposes of visiting
agents upon their arrival, leaving no observable trace of such a destruction. The
task is to unambiguously determine and report the location of the black hole,
and will be called black hole search. The searching agents start from the same
safe site and follow the same set of rules; the task is successfully completed if,
within finite time, at least one agent survives and knows the location of the
black hole. Note that this type of highly harmful host is not rare; for example,
in asynchronous networks, the undetectable crash failure of a site will transform
that site into a black hole.

Black hole search is a non trivial problem, its difficulty aggravated by the
combination of absence of any trace of destruction (outside the black hole) and
asynchrony of the agents. It has been investigated focusing on identifying con-
ditions for its solvability and determining the smallest number of agents needed

Improved Bounds for Optimal Black Hole Search with a Network Map 113

for its solution [9–11]. Some conditions are very simple; for example, the graph
G must be biconnected, the team must consist of at least two agents, and n must
be known. A complete characterization has been provided for ring networks [10].
Our interest is in universal (or generic) solution protocols, i.e. protocols that can
be used in every biconnected network.

The efficiency of a solution protocol is measured first and foremost by the
number of agents used by the solution. This value, called size, depends on many
factors, including the topology of the network, the amount of a priori information
the agents have about the network, etc. In particular, in an arbitrary network,
if the topology of the network is known, two agents suffice ! [11]. Indeed, this
surprising result can be achieved by several protocols. The second efficiency
measure is the number of moves, called cost, performed by the agents. Clearly
the research interest is in the design of size-optimal universal solutions (i.e., using
a team of just two agents) that are also cost-efficient.

Sometimes the network has special properties that can be exploited to obtain
a lower cost network-specific protocol. For example, two agents can locate a black
hole with only O(n) moves in a variety of highly structured interconnection
networks such as hypercubes, square tori and meshes, wrapped butterflies, star
graphs [9]. On the other hand, there are networks where Ω(n log n) moves are
required regardless of the number of agents; such is for example the case of ring
networks [10]. The lower bound for rings implies an Ω(n log n) lower bound on
the worst case cost complexity of any universal protocol.

Indeed, a universal solution protocol has been recently presented that has
both optimal size and worst-case-optimal cost. In fact, it uses a team of just two
agents with a map of the network, and locates a black hole in at most O(n log n)
moves [11]. Surprisingly, this result does not close the research quest.

In this paper, we show that it is possible to considerably improve the bound
on cost without increasing the team size. In fact, we present a universal protocol,
Explore and Bypass, that allows a team of two agents with a map of the network
to locate a black hole with cost O(n + d log d), where d denotes the diameter of
the network.

This means that, without losing its universality and without violating the
worst-case Ω(n log n) lower bound, this algorithm allows two agents to locate
a black hole with Θ(n) cost in a very large class of (possibly unstructured)
networks: those where d = O(n/ log n).

Importantly, there are many networks with O(n/logn) diameter in which
the existing protocols [9, 11] fail to achieve the O(n) bound. A simple example
of such a network is the wheel, a ring with a central node connected to all ring
nodes, where the central node is very slow: those protocols will require O(n log n)
moves.

2 Definitions and Terminology

2.1 Framework

Let G = (V, E) be a simple biconnected graph; let n = |V | be the size of G and
d be its diameter. At each node x, there is a distinct label (called port number)

114 Stefan Dobrev, Paola Flocchini, and Nicola Santoro

associated to each of its incident links (or ports); let λx(x, z) denote the label
associated at x to the link (x, z) ∈ E, and λx denote the overall injective mapping
at x. The set λ = {λx|x ∈ V } of those mappings is called a labelling and we
shall denote by (G, λ) the resulting edge-labelled graph. The nodes of G can be
anonymous (i.e., without unique names).

Operating in (G, λ) is a set A of distinct autonomous mobile agents. The
agents can move from node to neighbouring node in G, have computing capa-
bilities and bounded computational storage, obey the same set of behavioral
rules (the protocol). The agents are asynchronous in the sense that every action
they perform (computing, moving, etc) takes a finite but otherwise unpredictable
amount of time. Initially, the agents are in the same node h, called home base.
Each agent has a map of the labelled graph (G, λ) where the location of the
home base is indicated.

Each node has a bounded amount of storage, called whiteboard; O(log n) bits
suffice for all our algorithms. Agents communicate by reading from and writing
on the whiteboards; access to a whiteboard is gained fairly in mutual exclusion.

2.2 Black Hole Search

A black hole is a node where resides a stationary process that destroys any agent
arriving at that node; no observable trace of such a destruction will be evident
to the other agents. The location of the black hole is unknown to the agents.
The Black Hole Search problem is to find the location of the black hole. More
precisely, the problem is solved if at least one agent survives, and all surviving
agents know the location of the black hole.

The main measure of complexity of a solution protocol P is the number of
agents used to locate the black hole, called the size of P . Clearly, at least two
agents are needed to locate the black hole. On the other hand, two agents with
a map of the network suffice to locate the black hole.

The other measure of complexity of a protocol P is the total number of moves
performed by the agents, called the cost of P .

2.3 Exploration

Let T be a spanning-tree of G rooted in the home base of the agents. For each
node v we define Tv to be the subtree of T rooted at v. We will slightly abuse
the notation and use Tv to mean both the subtree rooted at v and the set of
the nodes of this subtree. For a given Tv we define the components of Tv to be
the connected components of the graph induced in G by the nodes of Tv \ {v}.
Clearly, each component of Tv is a union of one or more of its subtrees (plus
the connecting edges). As usual, |S| means the size of the set S (we will almost
exclusively talk about sets of nodes, sometimes about set of edges). For a given
node v the level of v is defined as its distance (in T) from the root. Given two
nodes v and w, πv,w denotes the unique directed path from v to w in T . For a
given path π we denote by π−1 the reversal of this path. Given a node v and
a set S = {e1, e2, . . . , ek} of edges of T , we denote by Cv \ S the connected
component containing v obtained from T by removing the edges in S.

Improved Bounds for Optimal Black Hole Search with a Network Map 115

We say that a node is unexplored if it has not been visited by an agent. A
node v is explored if all the nodes of Tv have been visited. A node v is safe if it
has been visited, but there are unexplorednodes in Tv.

Similarly, each port can be classified as: (1) unexplored – no agent has yet
arrived/departed via that port; (2) dangerous – an agent has left via this port,
but none has arrived from there; (3) used – an agent arrived via that port and
(4) explored – the port is used and all nodes in the corresponding subtree has
been explored. Obviously, a used port does not lead to black hole; on the other
hand, both unexplored and dangerous ports might lead to it.

To ensure that at least one agent survives, we will not allow an agent to
leave through a dangerous port. To prevent the execution from stalling, we will
require any dangerous port not leading to the black hole to be made used as soon
as possible. This is accomplished using the following technique called Cautious
Walk [9–11]:

Cautious Walk
Whenever an agent a leaves a node u through an unexplored port p (transforming
it into dangerous) leading to a node v, upon its arrival and before proceeding
somewhere else, a returns to u (transforming that port into used). Node u will
be called the last safe node of a until a is back in u to make the port used.
If agent b reaches the last safe node u of a (i.e., a has not returned yet from v), b
will perceive a as being blocked on (u, v) (or simply, blocked at v); this perception
will persist until b becomes aware that a has indeed returned from v.

3 Algorithm Explore and Bypass

The proposed algorithm Explore and Bypass (E&B) is a rather complex protocol
that uses several quite different techniques and strategies; it allows a team of
just two agents with a map of the network to solve the Black Hole Location
using at most O(n + d log d) moves.

In the following we will first describe the overall strategy. The structure of the
main modules and the algorithmic techniques they employ are described next.
The full description can be found in the appendix, as the handling of numerous
cases does not fit in the limited space available. The overall structure and the
major modules of Algorithm E&B are captured in Fig. 1.

In assessing the overall cost, our goal will be to charge the moves caused
by each module to the nodes explored during the execution of that module. As
most of the activities consist of traversals of unexplored nodes (and possibly a
second traversal of newly explored nodes), this works quite well. The activities
that cannot be easily accounted for in this way are counted as overhead and the
cost is charged to a higher level module.

3.1 Overall Strategy

In Algorithm E&B , the two agents, a and b, cooperatively explore the network to
locate the black hole. The exploration is achieved by the two agents performing

116 Stefan Dobrev, Paola Flocchini, and Nicola Santoro

CoExplore() from the root

MainDispatch()

ExploreSmall() BypassNode() BypassHardNode()

terminate Consolidation
CollapsePath() CoExplore()

Fig. 1. The overall structure of the Algorithm E&B.

mainly a cooperative depth-first traversal of a spanning-tree T of the network,
using the other links as bypasses if needed. Special traversal techniques are
employed in some particular cases to avoid an unnecessary increase in the overall
cost of the protocol. The tree T used is a breadth-first spanning-tree rooted in
the home base of the agents; this choice is made for efficiency reasons that will
become apparent later.

The algorithm starts with both agents cooperatively exploring the tree T
(module CoExplore) without passing through non-T edges. Eventually, no more
nodes can be explored without using non-T edges: an agent a arrives at a node
u and discovers that the only non-explored edge is a dangerous edge (u, v) (thus,
b is blocked at v). When this occurs, there are several possible actions that a
may take.

The decision on which action a will take (procedure MainDispatch()) depends
on the structure of the set U of still unexplored nodes: (1) If U is small (|U | ≤ d),
a will execute procedure ExploreSmall(). (2) If the largest unexplored subtree
Tm hanging from v is not too big (|U \ Tm| ≥ d), a will execute procedure
BypassNode(); otherwise (3) a will execute procedure BypassHardNode(). Agent
a informs b about the decided action by leaving a message in the whiteboard
at u.

If agent b returns to u, it will discover a’s decision, and coordinate its ac-
tivity with a. The goal is to re-establish a situation similar to the initial one,
where both agents cooperatively explore a single (sub)tree (and eventually one
of them perceives the other as blocked on a link). Although the goal might not be
achieved, the agents will always return to a configuration when MainDispatch()
can be applied again:

Property UVW: An agent (say, b) is blocked on (u, v), and the other agent
(say, a) is in u. Either the only unexplored nodes are the nodes of Tv, or there
exists a neighbour w of v such that the unexplored nodes are the nodes of Tv \Tw

(if v is a child of u and w is a child of v) or Tv \ Tu (if u is a child of v and v is
a child of w)).

Summarizing, the two agents perform a cooperative depth-first traversal of a
breadth-first spanning-tree of the network, until an agent finds the other blocked

Improved Bounds for Optimal Black Hole Search with a Network Map 117

on a link and all unexplored nodes are on the other side of that link. In this case,
the agent will either execute ExploreSmall() (a procedure that leads the protocol
to terminate without any other call to any other procedure), or will bypass the
blocked agent using either BypassNode() or BypassHardNode(); every time the
latter cases occur, the level (i.e., the distance from the root) in T of the node
being bypassed will become larger, so eventually the ExploreSmall() action will
be chosen.

3.2 Cooperative Exploration of a Tree

Procedure CoExplore() is the principal exploration procedure. The algorithm
starts with both agents executing CoExplore(x) from the home base x. It is
a cooperative depth-first traversal in which each agent avoids the part being
explored by the other (for as long as possible).

When executing CoExplore(Node u), the agent, say a, determines if there is
an unexplored subtree Tv of u. If so, it (recursively) explores Tv using cautious
walk. That is, it will: mark the port from u to v as dangerous; go to v; (if it
survives) mark the port from v to u as safe, return to u, mark the port from u
to v as safe, and check for messages – if any, execute the corresponding code,
otherwise return to v, recursively execute CoExplore(v), and finally mark the
port from u to v as explored. This process is repeated as long as there is an
unexplored subtree of u.

There are now two cases. If all incident edges are explored, the tree Tu does
not contain the black hole; in this case, the recursive call ends. Otherwise, there
is only one non-explored (i.e., safe or dangerous) link left, the one leading to the
subtree where the other agent is still working. Let (u, z) be such a link. If (u, z) is
safe, a goes to z to join the other agent in exploring Tz, executing CoExplore(z).
If (u, z) is dangerous, the co-exploration cannot continue, and the agent executes
MainDispatch(u, z, nil) to decide which action to take.

The cost of CoExplore() is linear in the number of nodes explored, as it is
essentially the traversal of a tree.

3.3 Exploring a Small Forest

When an agent finds the other blocked at a node, the agent executes Procedure
ExploreSmall() if there are at most d unexplored nodes left; i.e. |U | ≤ d. The main
idea is that the unexplored part is so small that it can be efficiently handled by
executing the existing O(n log n) algorithm of [11] on U . However, that algorithm
requires that the graph is biconnected, while U might not be. The main task of
ExploreSmall() is therefore to explore U in such a way that, eventually, the part
U ′ of U still left unexplored satisfies the following property:

Property Small: There is a path π of length O(d) in G \ U ′ such that adding
π to U ′ results in a biconnected graph U ′′.

The description of how to obtain U ′ from U using O(n) moves is rather technical
and can be found in the appendix. When only U ′ is left unexplored, the path π
is identified and the algorithm from [11] is applied to U ′′.

118 Stefan Dobrev, Paola Flocchini, and Nicola Santoro

Since |U | ≤ d, U ′ ⊆ U and |π| ∈ O(d), also |U ′′| ∈ O(d) and the complexity
of applying this algorithm to U ′′ is O(d log d). In other words, ExploreSmall()
requires at most O(n + d log d) moves in total by the two agents.

3.4 Exploring a Forest of Small Components

If agent a finds agent b blocked at a node v, a must be able to bypass v to
continue the exploration. BypassNode() is the branch taken in MainDispatch()
if the largest connected component of U \ {v} is not too big (i.e. there are at
least d other nodes in U).

As a result of BypassNode(), either v is identified as the black hole, or all
unexplored nodes will be located in a single subtree hanging from v; in the
latter case, either PropertyUVW holds or ExploreSmall() is called. We will now
describe its modules in some details.

Main Action – Procedures BypassNode() and ReleasedB(). When agent
a finds agent b blocked on the link (u, v), a must be able to bypass v to continue
the exploration. BypassNode() is the branch taken in MainDispatch() if the
largest connected component of U \ {v} is not too big (i.e. there are at least d
other nodes in U); if/when b returns to u, it executes procedure ReleasedB().

The main idea comes from observing that 1) each unexplored component can
be reached from u by a safe bypass path β (otherwise v would disconnect G)
and 2) |β| ∈ O(d) (from the structure of the explored and unexplored parts).

The trees (i.e., the connected components) in the forest U \ {v} must be
reached by a to be explored. To control the amount of moves to reach each of
those trees, the exploration of the trees will be done in order and with a different
technique, depending on a the size of the tree. More precisely:

1. Agent a first explores the largest components (i.e., the ones containing a sub-
tree of size at least d); the cost of reaching any such tree is O(d), hence it can
be “charged” to the cost of exploring that tree (increasing the multiplicative
constant but not the order of magnitude of that cost).

2. After all these components have been explored (and assuming agent b is still
blocked) a proceeds to explore the smaller ones according to the following
strategy:
a traverses the whole explored part in one sweep and whenever it finds a
link leading to an unexplored component C, a explores C, then returns and
continues with the traversal. If b is still blocked, the only unexplored node
left is v that is identified as the black hole.

What makes the situation complex is the fact that b could become unblocked
at any time; the algorithm must be able to handle correctly and efficiently every
configuration this fact might cause. This goal is achieved by carefully explor-
ing the components using a special technique (procedure ExploreComponent)
described in the next section.

The activity of agent b, when (if) it becomes unblocked and finds the message
<BypassNode>, is prescribed by procedure ReleasedB(): when (if) it is released,

Improved Bounds for Optimal Black Hole Search with a Network Map 119

b follows the trace of a, until it reaches the last safe node visited by a; b then
leaves there a message, telling a to finish its component, and goes on exploring
the remaining unexplored subtrees of v. If a finishes its part, we are exactly
in the situation where the agents continue the co-exploration of Tv as if no
bypassing had happened. However, if b finishes first while a is still working on its
component, the structure of the remaining unexplored part can be quite complex.
In this case, the unexplored part must be consolidated so that PropertyUVW
holds and MainDispatch() can be applied. This is accomplished by procedure
CollapsePath() described later.

ExploreComponent. To simplify the consolidation (without increasing the
complexity), the components are explored in a special manner: Consider the
component graph H where nodes correspond to the subtrees of component C,
and edges correspond to connections (in G) between subtrees. The component
graph H is “visited” using a depth-first traversal, where “visiting a node” in H
means fully exploring the corresponding subtree before going to the next one.

Such an approach guarantees the following property to hold:

Property P1: At any moment there is only one partially explored subtree Tv′

of component C.

This property will allow b, when unblocked, to tell a to finish only the current
subtree Tv′ , not the whole component C.

Consider now the partially explored subtree Tv′ . Let y be the node in which
a entered Tv′ and let πyv′ be the path from y to the root v′. After agent a
enters Tv′ , it performs a DF-traversal of Tv′ starting from y and satisfying the
following restriction: If an edge (h, k) belongs to πyv′ , it will be the last edge
explored from h. Such an approach guarantees that the unexplored part of Tv′

has the following structure:

Property P2: Let w be the last explored node on the path from y to the root
v′, and let w′ be the next node (if w �= v′) on this path. The path from w′ to
v′, together with all subtrees hanging from this path, is unexplored. If a is on
the link from w to w′, then all subtrees hanging from w are explored; otherwise,
a subtree of w contains a and is partially explored, while the other subtrees are
either fully explored, or unexplored.

Notice that, if b has done all its work and a is still in Tv′ , property P2 tells us
that the unexplored part consists just of a path and the trees hanging from this
path. In order to reach a configuration where PropertyUVW is finally satisfied
(and, thus MainDispatch() can be called again), this path is explored using the
procedure CollapsePath() described in the next section.

As each subtree is traversed at most twice, the complexity of ExploreCom-
ponent() is linear in the number of explored nodes.

CollapsePath. Procedure CollapsePath() is called when all subtrees of v except
one have been explored. The remaining unexplored nodes form a path πe with

120 Stefan Dobrev, Paola Flocchini, and Nicola Santoro

unexplored subtrees hanging from this path. The agents divide the remaining
unexplored path πe into two disjoint parts with about equal number of nodes
(the nodes of the hanging unexplored subtrees are counted as well), and each
agent goes on exploring its part. Note that there is a safe bypass path β of
length O(d) connecting the opposite ends of πe : if πe is in the first subtree T ′

of component C, we use as bypass β the path that agent a had used to reach C;
otherwise, β passes through the (already explored) subtree T ′′ from which the
entry point of T ′ was reached (note that T ′′ is connected to the already explored
node v).

The agent that finishes first uses β to reach the other one and split the
workload again. This is repeated until there is a single unexplored node in the
path or the number of unexplored nodes becomes less then d. In the first case,
PropertyUVW is satisfied, in the second case ExploreSmall() is directly executed.

It may happen (because the agents are also exploring the subtrees hanging
from the path) that the whole path is explored. In such a case, both agents end
up co-exploring a single subtree hanging from this path and eventually one of
them will become blocked, creating a configuration corresponding to the first
case of PropertyUVW.

Each round of halving the unexplored path involves traversing a bypass of
length O(d). However, as the number of unexplored nodes is about halved at
each round, and CollapsePath() terminates when there are less then d nodes
left, the number of rounds with less than d newly explored nodes is O(1). In
other words, the overhead of of CollapsePath() is only O(d).

3.5 Exploring a Forest with a Large Component

When agent a must bypass agent b blocked at a node v, if U \ {v} has one
overwhelmingly large subtree Tm, then BypassNode() may be inefficient: It can
happen that an overhead of O(d) is incurred, but the one remaining partially
explored subtree of v is Tm itself but only o(d) new nodes have been explored.
Since in the worst case, this can happen O(d) times, the total overhead would
be an unacceptable O(d2).

To avoid such an overhead, we must make sure there is enough progress; in
this way, while the overhead is not avoided, it has no chance to accumulate. This
is done by procedure BypassHardNode().

Let x be the node dividing T |U = U ∩T (the tree induced in T by the nodes
of U) into components of size at most |U |/2. BypassHardNode() uses the path
πv,x from v to x as the pivot, i.e. after BypassHardNode() there is either a single
unexplored subtree of T |U hanging from the fully explored πv,x, or there is one
unexplored node w ∈ πv,x and the subtrees hanging from it are unexplored.

In this way, we are ensured that the number of unexplored nodes is at least
halved and MainDispatch() can be applied again. Moreover, the number of newly
explored nodes is at least d/2, i.e. there are enough of them to distribute the
O(d) overhead among them.

There is a major problem with this approach: while all components of U \{v}
are reachable from the already explored nodes, the same is not true for the

Improved Bounds for Optimal Black Hole Search with a Network Map 121

components of U \ πv,x. We must make sure that at least some components (or
the path itself) are reachable.

To achieve that, the idea of BypassHardNode() is to proceed along the path
from v to x, taking as long a jump ahead as possible: in other words, a goes
to the furthest reachable subtree Tw′ hanging from πv,x (w is the parent if w′)
and explores from there (first Tw′ , then the path from w to x and the hanging
subtrees), while b (after/if becoming unblocked) will take care of the path (and
hanging subtrees) between v and w. If a finishes first, the remaining unexplored
path between v and w will be collapsed and the number of unexplored nodes is at
least halved. If b finishes first, there are several possible cases but two principal
outcomes:

(1) The unexplored nodes are limited to the subtree Tw′ . The corresponding
unexplored path is collapsed (procedure CollapsPath() is called).

(2) We are essentially in the same situation as we started, but we have moved
along the line from v to x to at least w. The process (bypassing) is repeated until
x is reached and/or the unexplored nodes are limited to a subtree (and possibly
its root) hanging from the path (thus, Collapsepath() can be called to terminate).

In case 2) a new bypass path will be needed to reach a smaller area of unex-
plored nodes. The crucial observation is that the bypass does not go below w,
otherwise T ′

w would not have been the furthest reachable subtree. This means
that the bypass of iteration i > 1 uses only nodes explored in the previous
iteration.

As each bypass path (except in the last iteration, when it is used in Col-
lapsePath()) is used only a constant number of times, the overhead of iteration
i > 1 can be charged to iteration i − 1. We are left with the overhead O(d)
for the first iteration and for the possible CollapsePath() in the last iteration.
Since BypassHardNode() has explored at least d/2 nodes, this overhead can be
distributed among them.

4 Analysis

Due to space constraints, we omit correctness and complexity analysis of Algo-
rithm E&B . Full proofs can be found in the technical report.

References

1. S. Alpern. The Rendezvous search problem. SIAM J. of Control and Optimization
33, 673 - 683, 1995.

2. E. Arkin, M. Bender, S. Fekete, and J. Mitchell. The freeze-tag problem: how to
wake up a swarm of robots. In 13th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’02), pages 568–577, 2002.

3. B. Awerbuch, M. Betke, and M. Singh. Piecemeal graph learning by a mobile robot.
Information and Computation 152, 155–172, 1999.

4. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder
by mobile agents. In 14th ACM-SIAM Symp. on Parallel Algorithms and Archi-
tectures (SPAA ’02), 200-209, 2002.

122 Stefan Dobrev, Paola Flocchini, and Nicola Santoro

5. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Election and rendezvous in
fully anonymous systems with sense of direction. In 10th Colloquium on Structural
Information and Communication complexity (SIROCCO ’03), 17-32, 2003.

6. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. J. of Graph
Theory, 32:265-297, 1999.

7. A. Dessmark, P. Fraigniaud and A. Pelc. Deterministic rendezvous in graphs. In
11th European Symposium on Algorithms (ESA’03) 2003.

8. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little
memory. In 13th ACM-SIAM Symposium on Discrete Algorithms (SODA ’02),
588–597, 2002.

9. S. Dobrev, P. Flocchini, R. Král’ovič, G. Prencipe, P. Ružička, and N. Santoro.
Optimal search for a black hole in common interconnection networks. In Proc. of
Symposium on Principles of Distributed Systems (OPODIS’02), 2002.

10. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile agents searching for
a black hole in an anonymous ring. In Proc. of 15th Int. Symp. on Distributed
Computing (DISC’01), 166-179, 2001.

11. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole
in arbitrary networks: Optimal mobile agent protocols. In Proc. of 21st ACM
Symposium on Principles of Distributed Computing (PODC’02), 153-162, 2002.

12. F. Hohl. A Model of attacks of malicious hosts against mobile agents. In ECOOP
Workshop on Distributed Object Security and 4th Workshop on Mobile Object
Systems, LNCS 1603, 105-120, 1998.

13. E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk. Mobile agent rendezvous
in a ring. In 23rd International Conference on Distributed Computing Systems
(ICDCS’03), 2003.

14. R. Oppliger. Security issues related to mobile code and agent-based systems. Com-
puter Communications 22, 12, 1165-1170, 1999.

15. T. Sander and C. F. Tschudin. Protecting mobile agents against malicious hosts.
In Conf on Mobile Agent Security, LNCS 1419, 44–60, 1998.

16. J. Vitek and G. Castagna. Mobile computations and hostile hosts. In D. Tsichritzis,
editor, Mobile Objects, 241-261. University of Geneva, 1999.

	1 Introduction
	2 Definitions and Terminology
	2.1 Framework
	2.2 Black Hole Search
	2.3 Exploration

	3 Algorithm Explore and Bypass
	3.1 Overall Strategy
	3.2 Cooperative Exploration of a Tree
	3.3 Exploring a Small Forest
	3.4 Exploring a Forest of Small Components
	3.5 Exploring a Forest with a Large Component

	4 Analysis
	References

