122 LEXICAL ANALYSIS SEC. 3.7

Algorithm 3.3. (Thompson’s construction.) An NFA from a regular expres-
sion.

Input. A regular expression r over an alphabet Z.
Output. An NFA N accepting L(r).

Method. We first parse r into its constituent subexpressions. Then, using
rules (1) and (2) below, we construct NFA’s for each of the basic symbols in r
(those that are either € or an alphabet symbol). The basic symbols correspond
to parts (1) and (2) in the definition of a regular expression. It is important
to understand that if a symbol a occurs several times in r, a separate NFA is
constructed for each occurrence.

Then, guided by the syntactic structure of the regular expression r, we com-
bine these NFA'’s inductively using rule (3) below until we obtain the NFA for
the entire expression. Each intermediate NFA produced during the course of
the construction corresponds to a subexpression of r and has several important
properties: it has exactly one final state, no edge enters the start state, and no
edge leaves the final state.

1. For €, construct the NFA

start . € .
Here i is a new start state and f a new accepting state. Clearly, this NFA
recognizes {e}.

2. For a in 2, construct the NFA

start . a .
Again i is a new start state and f a new accepting state. This machine
recognizes {a}.
3. Suppose N(s) and N(¢) are NFA’s for regular expressions s and ¢.

a) For the regular expression s|¢, construct the' following composite
NFA N(s|t):




SEC. 3.7

b)

©)

d)

-

FROM A REGULAR EXPRESSION TO AN NFA 123

Here i is a new start state and f a new accepting state. There is a
transition on e from i to the start states of N(s) and N(¢). There is
a transition on € from the accepting states of N(s) and N(¢) to the
new accepting state f. The start and accepting states of N(s) and
N(t) are not start or accepting states of N(s|t). Note that any path
from i to f must pass through either N(s) or N(¢) exclusively. Thus,
we see that the composite NFA recognizes L (s) U L(¢).

For the regular expression sz, construct the composite NFA N (st):

N()

The start state of N (s) becomes the start state of the composite NFA
and the accepting state of N(z) becomes the accepting state of the
composite NFA. The accepting state of N(s) is merged with the
start state of N(¢); that is, all transitions from the start state of N (¢)
become transitions from the accepting state of N(s). The new
merged state loses its status as a start or accepting state in the com-
posite NFA. A path from i to f must go first through N(s) and then
through N (), so the label of that path will be a string in L (s)L(¢).
Since no edge enters the start state of N(z) or leaves the accepting
state of N(s), there can be no path from i to f that travels from N (z)
back to N(s). Thus, the composite NFA recognizes L (s)L(t).

For the regular expression s*, construct the composite NFA N (s*):

Here i is a new start state and f a new accepting state. In the com-
posite NFA, we can go from i to f directly, along an edge labeled e,
representing the fact that e is in (L(s))*, or we can go from i to f
passing through N(s) one or more times. Clearly, the composite
NFA recognizes (L (s))*.

For the parenthesized regular expression (s), use N(s) itself as the
NFA.




124 LEXICAL ANALYSIS SEC. 3.7

Every time we construct a new state, we give it a distinct name. In this way,
no two states of any component NFA can have the same name. Even if the
same symbol appears several times in r, we create for each instance of that
symbol a separate NFA with its own states. ‘ (|

We can verify that each step of the construction of Algorithm 3.3 produces
an NFA that recognizes the correct language. In addition, the construction
produces an NFA N (r) with the following properties.

1. N(r) has at most twice as many states as the number of symbols and
operators in r. This follows from the fact each step of the construction
creates at most two new states.

2. N(r) has exactly one start state and one accepting state. The accepting
state has no outgoing transitions. This property holds for each of the
constituent automata as well.

3. Each state of N(r) has either one outgoing transition on a symbol in X or
at most two outgoing e-transitions.

rn

7N
ry o
PN [
rqg rg b
PN |
rs re b
PN I
r, * a
7N
rs )
P N :
r | 'lz N
a b

Fig. 3.30. Decomposition of (a|b)*abb.

Example 3.16. Let.us use Algorithm 3.3 to construct N(r) for the regular
expression r = (a|b)*abb. Figure 3.30 shows a parse tree for r that is analo-
gous to the parse trees constructed for arithmetic expressions in Section 2.2.
For the constituent r, the first a, we construct the NFA

start . a .
start . b .

We can now combine N(r;) and N(r,) using the union rule to obtain the

For r, we construct




SEC. 3.7 FROM A REGULAR EXPRESSION TO AN NFA 125

NFA for r3 = ry|r,

The NFA for rg=a is

start . fz .

To obtain the automaton for rsrg,, we merge states 7 and 7', calling the
resulting state 7, to obtain

Continuing in this fashion we obtain the NFA for ry; = (a|b)*abb that was
first exhibited in Fig. 3.27. a



