118 LEXICAL ANALYSIS SEC. 3.6

Algorithm 3.2. (Subset construction.) Constructing a DFA from an NFA.
Inpur. An NFA N.
Output. A DFA D accepting the same language.

Method. Our algorithm constructs a transition table Dtran for D. Each DFA
state is a set of NFA states and we construct Dtran so that D will simulate ‘‘in
parallel” all possible moves N can make on a given input string.

We use the operations in Fig. 3.24 to keep track of sets of NFA states (s
represents an NFA state and 7 a set of NFA states). )

OPERATION DESCRIPTION

e-closure(s) | Set of NFA states reachable from NFA state s on e-
transitions alone.

e-closure(T) | Set of NFA states reachable from some NFA state s in T
_on e-transitions alone.

move(T, a) | Set of NFA states to which there is a transition on input
symbol a from some NFA state s in T.

Fig. 3.24. Operations on NFA states.

Before it sees the first input symbol, N can be in any of the states in the set
€-closure(sg), where s, is the start state of N. Suppose that exactly the states
in set T are reachable from sq on a given sequence of input symbols, and let a
be the next input symbol. On seeing a, N can move to any of the states in the
set move(T, a). When we allow for e-transitions, N can be in any of the states
in e-closure(move(T, a)), after seeing the a.

initially, e-closure(s,) is the only state in Dstates and it is unmarked;
while there is an unmarked state T in Dstates do begin
mark 7
for ecach input symbol a do begin
U := e-closure(move(T, a));
if U is not in Dstates then
add U as an unmarked state to Dstates;
Dtran|T, a]l .= U
end
end

Fig. 3.25. The subset construction.

We construct Dstrates, the set of states of D, and Ditran, the transition table
for D, in the following manner. Each state of D corresponds to a set of NFA



SEC. 3.6 FINITE AUTOMATA 119

states that N could be in after reading some sequence of input symbols includ-
ing all possible e-transitions before or after symbols are read. The start state
of D-is e-closure(sp). States and transitions are added to D using the algo-
rithm of Fig. 3.25. A state of D is an accepting state if it is a set of NFA
states containing at least one accepting state of N.

push all states in T onto stack;
initialize e-closure(T) to T,
while stack is not empty do begin
pop ¢, the top element, off of stack;
for cach state u with an edge from ¢ to « labeled € do
if u is not in e-closure(T) do begin
add u to e-closure(T);
push « onto stack
end
end

Fig. 3.26. Computation of e-closure.

The computation of e-closure(T) is a typical process of searching a graph for
nodes reachable from a given set of nodes. In this case the states of T are the
given set of nodes, and the graph consists of just the e-labeled edges of the
NFA. A simple algorithm to compute e-closure(T) uses a stack to hold states
whose edges have not been checked for e-labeled transitions. Such a pro-
cedure is shown in Fig. 3.26. o

Example 3.15. Figure 3.27 shows another NFA N accepting the language
(a|b)*abb. (It happens to be the one in the next section, which will be
mechanically constructed from the regular expression.) Let us apply Algo-
rithm 3.2 to N. The start state of the equivalent DFA is e-closure(0), which is
A = {0, 1,2, 4,7}, since these are exactly the states reachable from state 0 via
a path in which every edge is labeled €. Note that a path can have no edges,
so 0 is reached from itself by such a path.

The input symbol alphabet here is {a, b}. The algorithm of Fig. 3.25 tells
us to mark A and then to compute

e-closure(move(A, a)).

We first compute move(A, a), the set of states of N having transitions on a
from members of A. Among the states 0, 1, 2, 4 and 7, only 2 and 7 have
such transitions, to 3 and 8, so

e-closure(move({0, 1, 2, 4, 7}, a)) = e-closure({3, 8h =1{1,2,3,4,6,7,8}

Let us call this set B. Thus, Dtran|A, a] = B.
Among the states in A, only 4 has a transition on b to 5, so the DFA has a
transition on b from A to



120 LEXICAL ANALYSIS SEC. 3.6

Fig. 3.27. NFA N for (a |b)*abb.

C = e-closure({Sh = {1, 2, 4, 5, 6, 7}

Thus, Dtran|A, b] = C.

If we continue this process with the now unmarked sets B and C, we even-
tually reach the point where all sets that are states of the DFA are marked.
This is certain since there are “only” 2!! different subsets of a set of eleven
states, and a set, once marked, is marked forever. The five different sets of
states we actually construct are:

A=1{0,1,2,4,7} D=
B=1{1,2,3,4,6,7,8 E
Cc=1{1,2,4,5,6,7}

State A is the start state, and state E is the only accepting state. The complete
transition table Dtran is shown in Fig. 3.28.

INPUT SYMBOL

STATE

0O ®>
Wy
Amaba|s

Fig. 3.28. Transition table Dtran for DFA.

Also, a transition graph for the resulting DFA is shown in Fig. 3.29. It
should be noted that the DFA of Fig. 3.23 also accepts (a |b)*abb and has one




SEC. 3.7 FROM A REGULAR EXPRESSION TO AN NFA 12]

Fig. 3.29. Result of applying the subset construction to Fig. 3.27.

fewer state. We discuss the question of minimization of the number of states
of a DFA in Section 3.9. 8]

3.7 FROM A REGULAR EXPRESSION TO AN NFA

There are many strategies for building a recognizer from a regular expression,
each with its own strengths and weaknesses. One strategy that has been used
in a number of text-editing programs is to construct an NFA from a regular
expression and then to simulate the behavior of the NFA on an input string
using Algorithms 3.3 and 3.4 of this section. If run-time speed is essential,
we can convert the NFA into a DFA using the subset construction of the pre-
vious section. In Section 3.9, we see an alternative implementation of a DFA
from a regular expression in which an intervening NFA s not explicitly con-
structed. This section concludes with a discussion of time-space tradeoffs in
the implementation of recognizers based on NFA and DFA.

Construction of an NFA from a Regular Expression

We now give an algorithm to construct an NFA from a regular expression.
There are many variants of this algorithm, but here we present a simple ver-
sion that is easy to implement. The algorithm is syntax-directed in that it uses
the syntactic structure of the regular expression to guide the construction pro-
cess. The cases in the algorithm follow the cases in the definition of a regular
expression. We first show how to construct automata to recognize € and any
symbol in the alphabet. Then, we show how to construct automata for expres-
sions containing an alternation, concatenation, or Kleene closure operator.
For example, for the expression r|s, we construct an NFA inductively from
the NFA’s for r and s.

As the construction proceeds, each step introduces at most two new states,
so the resulting NFA constructed for a regular expression has at most twice as
many states as there are symbols and operators in the regular expression.



