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ABSTRACT 

It has been proposed, by E. W. Dijkstra and others, 
that the $oto statement in programming language is 
a principal culprit in programs which are diffi- 
cult to understand, modify, and debug. More cor- 
rectly, the argument is that it is possible to 
use the sot 0 to synthesize program structures with 
these undesirable properties. Not all uses of the 
$oto are to be considered harmful; however, it is 
further argued that the "good" uses of the $oto 
fall into one of a small number of specific cases 
which may be handled by specific language con- 
structs. This paper summarizes the arguments in 
favor of eliminating the $oto statement and some 
of the theoretical and practical implications of 
the proposal. 

KEY WORDS AND PHRASES: programming, programming 
languages, goto-less programming, structured pro- 
gramming 
CR CATEGORIES: 4.2, 4.22, 5.24 

INTRODUCTION 

It has been suggested that the use of the 
$oto construct is undesirable, is bad programming 
practice, and that at least one measure of the 
'quality' of a program is inversely related to 
the number of $oto statements contained in it. 
The rationale behind this suggestion is that it 
is possible to use the $oto in ways which obscure 
the logical structure of a program, thus making 
it difficult to understand, modify, debug, and/or 
prove its correctness. It is quite clear that not 
all uses of the $oto are obscure, but the hypoth- 
esis is that these situations fall into one of a 
small number of cases and therefore explicit and 
inherently well-structured language constructs 
may be introduced to handle them. Although the 
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suggestion to ban the $oto appears to have been a 
part of the computing folklore for several years, 
to this author's knowledge the suggestion was 
first made in print by Professor E. W. Dijkstra in 
a letter to the editor of the Communications of 
the ACM in 1968 (I). 

In this paper we shall examine the rationale 
for the elimination of the $oto in programming 
languages, and some of the theoretical and practi- 
cal implications of its (total) elimination. 

RATIONALE 

At one level, the rationale for eliminating 
the $oto has already been given in the introduc- 
tion. Namely, it is possible to use the $oto in a 
manner which obscures the logical structure of a 
program to a point where it becomes virtually im- 
possible to understand (1,3,4)o It is not claimed 
that every use of the $oto obscures the logical 
structure of a program; it is only claimed that it 
is possible to use the $oto to fabricate a "rat's 
nest" of control flow which has the undesirable 
properties mentioned above. Hence this argument 
addresses the use of the $oto rather than the $o to 
itself. 

As the basis for a proposal to totally elimi- 
nate the goto this argument is somewhat weak. It 
might reasonably be argued that the undesirable 
consequences of unrestricted branching may be 
eliminated by enforcing restrictions on the use of 
the $oto rather than eliminating the construct. 
However, it will be seen that any rational set of 
restrictions is equivalent to eliminating the con- 
struct if an adequate set of other control primi- 
tives is provided. The strong reasons for elim- 
inating the $oto arise in the context of more posi- 
tive proposals for a programming methodology which 
makes the $oto unnecessary. It is not the purpose 
of this paper to explicate these methodologies 
(variously called "structured programming", "con- 
structive programming", "stepwise refinement", 
etc.); however, since the major justification for 
eliminating the $oto lies in this work, a few 
words are in order. 
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It is, perhaps, pedantic to observe that the 
present practice of building large programming 
systems is a mess. Most, if not all, of the major 
operating systems, compilers~ information systems, 
etc. developed in the last decade have been de- 
livered late, have performed below expectation 
(at least initially), and have been filled with 
'bugs'. This situation is intolerable, and has 
prompted several researchers ((2,3,4), (5,6), (7), 
(8), (9)) to consider whether a programming meth- 
odology might be developed to correct this situa- 
tion. This work has proceeded from two premises: 

i. Dijkstra speaks of our "human inability to 
do much" (at one time) to point up the 
necessity of decomposing large systems 
into smaller, more "human size" chunks. 
This observation is hardly startling, and 
in fact, most programming languages in- 
clude features (modules, subroutines, and 
macros, for example) to aid in the mechan- 
ical aspects of this decomposition. How- 
ever, the further observation that the 
particular decomposition chosen makes a 
significant difference to the understand- 
ability, modifiability, etc., of a pro- 
gram and that there is an ~ priori meth- 
odology for choosing a "good" decomposi- 
tion is less expected. 

2. Dijkstra has also said that debugging can 
show the presence of errors, but never 
their absence. Thus ultimately we will 
have to be able to prove the correctness 
of the programs we construct (rather than 
"debug" them) since their sheer size pro- 
hibits exhaustive testing. Although some 
progress has been made on the automatic 
proof of the correctness of programs (c.f., 
(i0), (ii), (12), (23), (24)), this ap- 
proach appears to be far from a practical 
reality. The methodology proposed by 
Dijkstra (and others) proceeds so that the 
construction of a program guides a (com- 
paratively) simple and intuitive proof of 
its correctness. 

The methodology of "constructive programming" 
is quite simple and, in this context, best de- 
scribed by an (partial) examplel Let us consider 
the problem of producing a KWIC" index. Construc- 
tion of the program proceeds in a series of steps 
in which each step is a refinement of some portion 
of a previous step. We start with a single state- 
ment of the function to be performed: 

*For those who may not be familiar with a KWIC 
(key word in context) index, the following de- 
scription is adequate for this paper. 

A KWIC system accepts a set of lines. Each 
line is an ordered set of words and each word is 
an ordered set of characters. A word may be one 
of a set of uninterestin5 words ("a", "the", "of", 
etc.), otherwise it is a key word. Any line may 
be circularly shifted by removing its first word 
and placing it at the end of the line. The KWIC 
index system generates an ordered (alphabetically 
by the first word) listing of all circular shifts 
of the input lines such that no line in the out- 
put begins with an uninteresting word. 

Step i: PRINTKWIC 

We may think of this as being an instruction in a 
language (or machine) in which the notion of gen- 
erating a KWIC index is primitive. Since this 
operation is not primitive in most practical lan- 
guages, we proceed to define it: 

Step 2: PRINTKWIC: generate and save all 
interesting circular 
shifts 

alphabetize the saved 
lines 

print alphabetized lines 

Again, we may think of each of these lines as be- 
ing an instruction in an appropriate language; and 
again, since they are not primitive in most exist- 
ing languages, we must define them; for example: 

Step 3a: generate and save all interesting 
circular shifts: 

etc. 

for each line in the input do 
begin 
generate and save all inter- 

esting shifts of 'this 
line' 

end 

The construction of the program proceeds by small 
steps* in this way until ultimately each operation 
is expressed in the available primitive operations 
of the target language. We shall not carry out the 
details since the objective of this paper is not to 
be a tutorial on this methodology. However, note 
that the methodology achieves the goals set out for 
it. Since the context is small at each step it is 
relatively easy to understand what is going on; in- 
deed, it is easy to prove that the program will 
work correctly if the primitives from which it is 
constructed are correct. Moreover, proving the 
correctness of the primitives used at step ~ is a 
small set of proofs (of the same kind) at step ~_+I. 
(In the terminology of this methodology, step I is 
an abstraction from its implementation in step 
~+I.) 

Now, the constructive programming methodology 
relates to eliminating the goto in the following 
way. It is crucial to the constructive philosophy 
that it should be possible to define the behavior 
of each primitive action at the ~th step indepen- 
dent of the context in which it occurs. If this 
were not so, it would not be possible to prove the 
correctness of these primitives at the 5+ist step 
without reference to their context in the Dth step. 
In particular, this suggests (using flow chart 
terminology) that it should be possible to repre- 
sent each primitive at the ~th step by a (sub) flow 
chart with a single entry and a single exit path. 
Since this must be true at each step of the 

*A more complete explication of the methodology 
would concern itself with the nature and order of 
the decisions made at each step as well as the 
fact that they are small. See (22) for an analysis 
of two alternative decompositions of a KWIC system 
similar to the one defined here. 

792 



construction, the final flow chart of a program 
constructed in this way must consist of a set of 
totally nested (sub) flow charts. Such a flow 
chart can be constructed without an explicit $oto 
if conditional and looping constructs are avail- 
able. 

Consider, now, programs which can be built 
from only simple conditional and loop constructs. 
To do this we will use a flow chart representation 
because of the explicit way in which it manifests 
control. We assume two basic flow chart elements, 
a "process" box and a "binary decision" box: 

These boxes are connected by directed line seg- 
ments in the usual way. We are interested in two 
special "goto-less" constructions fabricated from 
these primitives: a simple loop and an n-way con- 
ditional, or "case", construct. We consider these 
forms "goto-less" since they contain single entry 
and exit points and hence might reasonable be pro- 
vided in a language by explicit syntactic con- 
structs. (The loop considered here obviously does 
not correspond to all variants of initialization, 
test before or after the loop body, etc. These 
variants would not change the arguments to follow 
and have been omitted.) -d> 

o,, 

simple loop case 

Consider the following three transformations (TI, 
T2, T3) defined on arbitrary flow charts: 

TI. any linear sequence of process boxes may be 
mapped into a single process box 

T2. any simple loop may be mapped into a process 
box 

I 
T3. any n-way "case" construct may be mapped into 

a process box 

Any graph (flow chart) which may be derived 
by a sequence of these transformations we shall 
call a "reduced" form of the original. We shall 
say that a graph which may be reduced to a single 
node by some sequence of transformations is "goto- 
less" (independent of whether actual $oto state- 
ments are used in its encoding) and that the se- 
quence of transformations defines a set of nested 
"control environments". The sequence of trans- 
formations applied in order to reduce a graph to a 
single node may be used as a guide to both under- 
standing and proving the correctness of the pro- 
gram (2,4,6,7,19). 

The property of being "goto-less" in the sense 
defined above is a necessary condition for the pro- 
gram to have been designed by the constructive 
methodology. Moreover, the property depends only 
upon the topology of the program and not on the 
primitives from which it is synthesized; in par- 
ticular, a $oto statement might have been used. 
However, not only can such programs be constructed 
without a $oto if conditionals and loops are avail- 
able, but any use of a $oto which is not equivalent 
to one of these will destroy the requisite topology. 
Hence any set of restrictions (on the use of the 
$oto) which is intended to achieve this topology is 
equivalent to eliminating the $oto. 

THE THEORETICAL POSSIBILITY OF ELIMINATING THE GOTO 

It is possible to express the evaluation of an 
arbitrary computable function in a notation which 
does not have an explicit $oto. This is not par- 
ticularly surprising since: (I) several formal 
systems of computability theory, e.g., recursive 
functions, do not use the concept; (2) (pure) LISP 
does not use it; and (3) Van Wijgaarden (13), in 
defining the semantics of Algol, eliminated labels 

793 



and goto's by systematic substitution of proce- 
dures. However, this does not say that an algor- 
ithm for the evaluation of these functions is 
especially convenient or transparent in goto-less 
form. Alan Perlis has referred to similar situa- 
tions as the 'Turing Tarpit' in which everything 
is possible, but nothing is easy. 

Knuth and Floyd (14) and Ashcroft and Manna 
(15) have shown that given an arbitrary flow chart 
it is not possible to construct another flow chart 
(using the same primitives and no additional vari- 
ables) which performs the same algorithm and uses 
only simple conditional and loop constructs; of 
course other algorithms exist that compute the 
same function and which can be expressed with only 
simple conditionals and loops. The example given 
in Ashcroft and Manna of an algorithm which cannot 
be written in goto-less form without adding addi- 
tional variables is: 

5 

8 

B1 

I 
I 
J 

I 

IB2 

I 

I 

I 

I 
I 

I 

I 
I 
I 

By enclosing some of the regions of the flow 
chart in dotted lines and labeling them (BI and 
B2) as shown above, and further abstracting from 
the details of the process and decision struc- 
ture, the abstract structure of this example is: 

The reader is referred to (15) for a proof that 
such programs cannot be constructed from simple 
looping and conditional constructs unless an addi- 
tional variable is added• Intuitively, however, 
it should be clear from the abstraction of the ex- 
ample that neither B1 nor B2 is inherently nested 
within the other. Moreover, the existence of mul- 
tiple exit paths from BI and B2 make it impossible 
to impose a superior (simple) loop (which inherent- 
ly has a single exit path) to control the itera- 
tion between them unless some mechanism for path 
selection (e.g., an additional variable) is intro- 
duced. 

In (21) Bohm and Jacopini show that an arbi- 
trary flow chart program may be translated into an 
equivalent one with a single "while statement" by 
introducing new boolean variables, predicates to 
test them, and assignment statements to set them. 
A variant of this scheme involving the addition of 
a single integer variable, call it '~', which 
serves as a 'program counter' is given below. 

Suppose some flow chart program contains a 
set of process boxes assigned arbitrary integer 
labels il,i2,ooo,i , and decision boxes assigned 
arbitrary integer ~abelst___..n ~i ~-,in.2,...,i m. (By 

assume the ~TO~ 5ox ~s assigned the convention 
label zero, and the entry~'box is assigned the label 
one°) For each process box, i., create a new box, 
i~, identical to the focmer except for the addi- 
tion of the assignment '~ ~ i~ where i k is the 
label of the successor of i. in the orlginal pro- 
gram. For each decision bo~, i%, create the macro 
box, i~, 

where i and i- are the labels of the successors 
of the ~rue an~ false branches of the decision box, 
i , in the original program. Now create the fol- 
l & i n g  flow char t :  

!n  
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Thus, for example, the Ashcroft and Manna example 
given earlier (the labels are given on the earlier 
diagram) becomes : 

N 

N 

N 

• q? 

N 

t 

Constructions such as the one given above are 
undesirable not only because of their inefficiency, 
but because they destroy the topology (loop struc- 
ture) and locality of the original program and 
thus make it extremely difficult to understand. 
Nevertheless, the construction serves to illustrate 
the point that adding (at least one) control vari- 
able is an effective device for eliminating the 
$oto. Ashcroft and Manna have given algorithms for 
translating arbitrary programs into goto-less form 
(with additional variables) which preserve the ef- 
ficiency and topology of the original program. 

THE PRACTICAL POSSIBILITY OF ELIMINATING THE GOTO 

As discussed in the previous section, it is 
theoretically possible to eliminate the $oto. More- 
over, there can be little quarrel with the objec- 
tives of the constructive programming methodology. 
A consequence of the particular methodology pre- 
sented above is that it produces $oto-less pro- 
grams, thus the $oto is unnecessary in programs 
produced according to this methodology. A key, 
perhaps the key, issue, then, is whether it is 
practical to remove the ~oto. In particular there 
is an appropriate suspicion among practicing pro- 
grammers that coding without the $oto is both in- 
convenient and inefficient. In this section we 
shall investigate these two issues, for, if it is 
inconvenient or grossly inefficient to program 
without the $oto then the practicality of the meth- 
odology is in question. 

Convenience: 

Programming without the $oto is no___~t (neces- 
sarily) inconvenient. The author is one of the 
designers, implementors, and users of a 'systems 
implementation language', Bliss (16,17,18); Bliss 
does not have $oto. The language has been in ac- 
tive use for three years; we have thus gained con- 
siderable practical experience programming without 
the $oto. This experience spans many people and 
includes several compilers, a conversational pro- 
gramming system (APL), an operating system, as well 
as numerous applications programs. 

The inescapable conclusion from the Bliss ex- 
perience is that the purported inconvenience of 
programming without a $oto is a myth: Programmers 
familiar with languages in which the $oto is pre- 
sent go through a rather brief and painless adapta- 
tion period. Once passed this adaptation period 
they find that the lack of a $oto is not a handi- 
cap; on the contrary, the invarient reaction is 
that the enforced discipline of programming without 
a $oto structures and simplifies the task. 

Bliss is not, however, a simple goto-less 
language; that is, it contains more than simple 
while-do and if-then-else (or case) constructs. 
There are natural forms of control flow that occur 
in real programs which, if not explicitly provided 
for in the language~ either require a ~oto so that 
the programmer may synthesize them, or else will 
cause the programmer to contort himself to mold 
them into a goto-less form (e.g., in terms of the 
construction in the previous section). Contortion 
obscures and is therefore antipathetic with the 

*Including this author when he first read Dijkstra's 
letter in 1968. 
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constructive philosophy; hence the approach in 
Bliss has been to provide explicit forms of these 
natural constructs which are also inherently well- 
structured. In (19) the author analyzes the forms 
of control flow which are not easily realized in a 
simple goto-less language and uses this analysis to 
motivate the facilities in Bliss. Here we shall 
merely list some of the results of that analysis as 
they manifest themselves in Bliss (and might mani- 
fest themselves in any 8oto-less language): 

i. A collection of 'conventional' control 
structures: Many of the inconveniences 
of a simple goto-less language are elim- 
inated by simply providing a fairly large 
collection of more-or-less 'conventional' 
control structures. In particular, for 
example, Bliss includes: control 'scopes' 
(blocks and compounds), conditionals (both 
if-then-else and case forms), several 
looping constructs (including while-do, 
do-while, and stepping forms), potentially 
recursive procedures, and co-routines. 

2. Expression Language: As noted in an ear- 
lier section, one mechanism for expressing 
algorithms in goto-less form is through 
the introduction of at least one addition- 
al variable. The value of this variable 
serves to encode the state of the computa- 
tion and direct subsequent flow. This is 
a common programming practice used even 
in languages in which the goto is present 
(e.g., the FORTRAN 'computed $oto'). Bliss 
is an 'expression language' in the sense 
that every construct, including those which 
manifest control, is an expression and com- 
putes a value. The value of an expression 
(e.g., a block or loop) forms a natural 
and convenient implicit state variable. 

3. Escape Mechanism: Analysis of real pro- 
grams strongly suggests that one of the 
most common 'good' uses of a $oto is to 
prematurely terminate execution of a con- 
trol environment--for example, to exit 
from the middle of a loop before the 
usual termination condition is satisfied., 
To accommodate this form of control Bliss 
allows any expression (control environ- 
ment) to be labeled; an expression of the 
form "leave <label>with <expression>" 
may be executed within the scope of this 
labeled environment. When a leave ex- 
pression is executed two things happen: 
(I) control immediately passes to the end 
of the control environment (expression) 
named in the leav____~e, and (2) the value of 
the named environment is set to that of 
the <expression> following the with. Note 
that the leave expression is a restricted 
form of forward branch just as the vari- 
ous forms of loop constructs are restrict- 
ed backward jumps. In both cases the con- 
structs are less general, and less danger- 
ous, than the general $oto. 

*A somewhat different form of the Bliss escape is 
described in (19); the form described in (19) has 
been replaced by that described above. 

In summary, then, our experience with Bliss 
supports the notion that programming without the 
$oto is no less convenient than with it. This 
conclusion rests heavily on the assumption that the 
$oto was not merely removed from some existing lan- 
guage, but that a coherent selection of well-struc- 
tured constructs were assemhled as the basis of the 
control component of the new language. It would be 
unreasonable to expect that merely removing the 
$oto from an existing language, say FORTRAN or PL/I, 
would result in a convenient notation. On the 
other hand, it is not unreasonable to expect that a 
relatively small set of additions to an existing 
language, especially the better structured ones 
such as Algol or PL/I, could reintroduce the requi- 
site convenience. While not a unique set of solu- 
tions, the control mechanisms in Bliss are one 
model on which such a set of additions might be 
based. 

Efficiency: 

More computing sins are committed in the name 
of efficiency (without necessarily achieving it) 
than for any other single reason--including blind 
stupidity. One of these sins is the construction 
of a "rat's nest" of control flow which exploits a 
few common instruction sequences. This is precise- 
ly the form of programming which must be eliminat- 
ed if we are ever to build correct, understandable, 
and modifiable systems. 

There are applications (e.g., 'real time' pro- 
cessing) and there are (a few) portions of every 
program where efficiency is crucial. This is a 
real issue. However, the appropriate mechanism 
for achieving this efficiency is a highly optimiz- 
ing compiler, not incomprehensible source code. 
In this context it is worth noting another benefit 
of removing the 8oto--a benefit which the author 
did not fully appreciate until the Bliss compiler 
was designed--namely, that of global optimization. 
The presence of ~oto in a block-structured lan- 
guage with dynamic storage allocation forces run- 
time overhead for jumping out of blocks and pro- 
cedures and may imply a distributed overhead to 
support the possibility of usch jumps. Eliminating 
the $oto removes both of these forms of overhead. 
More important~ however, is that: (i) the scope of 
a control environment is statically defined, and 
(2) all control appears as one of a small set of 
explicit control constructs. A consequence of (i) 
is that the Fortran-H compiler (20), for example, 
expends a considerable amount of effort in order to 
achieve roughly the same picture of overall control 
as that implicit in the text of a Bliss program. 
The consequence of (2) is that the compiler need 
only deal with a small number of well defined con- 
trol forms; thus failure to optimize a peculiarly 
constructed variant of a common control structure 
is impossible. Since flow analysis is pre-requi- 
site to global optimization, this benefit of elim- 
inating the $oto must not be underestimated. 

SUMMARY 

One goal of our profession must be to produce 
large programs of predictable reliability. To do 
this requires a methodology of program construction. 
Whatever the precise shape of this methodology, 
whether the one sketched earlier or not, one prop- 
erty of that methodology must be to isolate (sub) 
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components of a program in such a way that the 
proof of the correctness of an abstraction from 
these components can be made independent of both 
their implementation and the context in which they 
occur. In particular this implies that unrestrict- 
ed branching between components cannot be allowed. 

Whether or not a language contains a got o and 
whether or not a programmer uses a goto in some 
context is related, in part, to the variety and 
extent of the other control features of the lan- 
guage. If the language fails to provide important 
control constructs, then the goto is a crutch from 
which the prograr~mer may synthesize them. The 
danger in the goto is that the programmer may do 
this in obscure ways. The advantage in eliminat- 
ing the $oto is that these same control structures 
will appear in regular and well-defined ways. In 
the latter case, both the human and the compiler 
will do a better job of interpreting them. 
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