Initial____________

[image: image1.wmf]
	COURSE:
SEG2101
	PROF:

Jiying Zhao

	

Software Construction
	DATE:

April 28, 2006

	SEMESTER:
WINTER 2006
	TIME:

09:30 – 12:30

	
	

	FINAL

 EXAMINATION

	Name
	

	Student Number
	

Final Exam
1. There are three (3) types of questions in this examination.

	Part 1
	Multiple choice
	16 marks
	

	Part 2
	Short answer
	52 marks
	

	Part 3
	Problem solving
	18 marks
	

	Total
	
	86 marks
	

2. The space allocated for each question is limited. In case of necessity you may use the other side of the pages to continue.

3. Initial all the pages.

4. Submit back all the pages.

· Multiple choice questions [2 marks each, please circle the best answer]:
	[image: image2.png]process final1_1

	[image: image3.png]process final1_2

	[image: image4.png]process final1_3

1. Refer to the diagram above. Signal D and E are from the environment. Which of the following is not correct?

	a) Suppose final1_1, final1_2, and final1_3 have been just initialized. When there is no signal sent from the environment, final1_1, final1_2, and final1_3 will not be able to output any signals.
	b) Suppose final1_1, final1_2, and final1_3 stay at state 1 and are not generating any signal. When signal D is sent from the environment, final1_1, final1_2, and final1_3 will start to output signals.

	c) When final1_1, final1_2, and final1_3 start generating signals and there is no further signal sent from the environment, the three processes will not stop and will generate signals endlessly.
	d) Whenever signal E is sent from the environment, the three processes will always stop generating signals.
e) At least one of the above (a,b,c,d) is wrong.

2. Refer to process final 2. In 100 time unites, how many T2 signal(s) will be generated?

	a) 0
	b) 1

	c) 2
	d) 3

[image: image5.png]process final2

TIMER T1,T2; |\

SET(NOW+13,T1);
SET(NOW+26,T2);
wait
1 12
RESET(T2); RESET(T1);
SET(NOW+13,T1); SET(NOW+26,T2);

)

3. Refer to the diagram below (final3_1 and P2). Signals A and B are from the environment. Sinal C is to the environment. Long time after inputting signal A, the user inputs signal B. What value will be returned by the signal C (the integer value carried by C)?
	a) 0
	b) 1

	c) 2
	d) 3

	[image: image6.png]process final3_1

[DCL integer Count:=0; [\

e

P2 DAD B

P2 Count:=Count+1; ‘ C(Count)

= :

KID to OFFSPRING

	[image: image7.png]process P2

4. Refer to the grammar below.

S --> NP VP

NP --> N

NP --> Det N

Det --> the

N --> man

N --> dog

N --> cat

VP --> V NP

V --> bites

V --> catches
The grammar belongs to which of the following?

	a) Regular grammar
	b) Context-free grammar

	c) Context sensitive grammar
	d) Unrestricted grammar

5. Consider the following grammar rules:
S (0 A 0 S | 1 0
A (1 | 0 S 0 A
Which of the following strings is not a member of this language?

	a) 001001010
	b) 10

	c) 01010
	d) 0010110

6. Which of the following is not described by the regular definition below?

D ([1234567890]

N (D+ (. D+)? (E(+|-)? D+)?
	a) 1.894
	b) .894E-4

	c) 1.894E+4
	d) 1.894E4

7. Which of the following cannot be recognized by the following NFA?

[image: image8.png]OO,

{)

ﬁ@ @uu

)

	a) An empty string
	b) 00001111

	c) 10101010
	d) 01010111

8. Let (={a,b}, which of the following is not correct? (where r, s and t are regular expressions)
	a) Regular expression (a|b)(a|b) denotes {aa,ab,ba,bb}.
	b) r**=r*

	c) r|(s|t)=(r|s)|t
	d) (a|b)* is not equal to (a|b)**

· Short-answer questions

9. [8 marks] A SDL block named COUNTER consists of one process COUNTP. There is one input signal (PULSE) to the process, and one output signal (OVERFLOW) from the process. Whenever an input signal PULSE is received, the process COUNTP will add 1 to its variable
[image: image9.wmf]c

. The initial value for the variable
[image: image10.wmf]c

 is 0. The counting range is from 0 to 99. That is, the value of
[image: image11.wmf]c

 goes from 0 to 1 to 2, …, to 99, when it reaches 100 it resets to 0, then the counter will continue to count from 0 to 99 repeatedly. Whenever the value of
[image: image12.wmf]c

 is reset from 100 to 0, an output signal OVERFLOW will be generated.
[image: image13.png]inp

block Counter

inpp

outpp

[PULSE| | COUNTP

[oVERFLOW |

outp

[image: image14.png]process COUNTP

DCL integer c:=0; [\

PULSE

c:=c+1 ‘

¢=100

false
true

OVERFLOW

[image: image15.png]process COUNTP1

DCL integer ¢ E

PULSE1

ci=cH;

=100

false
true

OVERFLOWT

Now you are asked to implement a block similar to COUNTER. That is, you should design a new block, called B-COUNTER, slightly more complex than block COUNTER. The B-COUNTER block should contain four processes (instead of a single one). Three of the four processes (namely, COUNTP1, COUNTP2, and COUNTP3) are the same as process COUNTP except for the names of the input and output signals (see COUNTP1). That is, each of these three processes counts input signals (namely, PULSE1, PULSE2, and PULSE3 are respectively the inputs for COUNTP1, COUNTP2, and COUNTP3) and generate an output signal (namely, OVERFLOW1, OVERFLOW2, and OVERFLOW3 are respectively the output signals from COUNTP1, COUNTP2, and COUNTP3) when the counter reaches 100. COUNTP1, COUNTP2, and COUNTP3 wait for a signal SYNC1, SYNC2, and SYNC3, respectively, from the fourth process before going back to state 1. The fourth process (namely, BARRIER) takes OVERFLOW1, OVERFLOW2, and OVERFLOW3 as inputs, and sends an OVERFLOW signal to the environment when the three OVERFLOW1, OVERFLOW2, and OVERFLOW3 signals have been received. BARRIER sends a SYNC1, SYNC2, or SYNC3 signal to COUNTP1, COUNTP2, or COUNTP3 when it receives an OVERFLOW1, OVERFLOW2, or OVERFLOW3, respectively. After sending out OVERFLOW, the process BARRIER goes back to the previous state to get ready for the next iteration.
a) Draw the SDL structure diagram of the B-COUNTER block. Draw all processes, channels, signal routes, signals, adding labels, as appropriate.

b) Draw the SDL behavior diagram for the process BARRIER in the BLOCK B-COUNTER. Draw all states, inputs, and outputs, adding labels, as appropriate.

10. [4 marks] Refer to the following figure.

a) Draw the Transition Chart (TC) for process P1.

b) Draw a global reachability graph showing at least five (5) global states starting from the global state 2.
[image: image16.png]block EXAM 101

ch
=]]

process P2 TC for Process P2

P2

1

?A

Sl Global state 1

) A, 1) Global state 2
1

11. [4 marks] Write the corresponding regular expression for the following finite state machine.
[image: image17.png]OO,

{)

ﬁ@ @uu

)

12. [6 marks] Closely follow Algorithm 3.2 (attached as Appendix A) to convert the following NFA into a DFA by showing the intermediate steps.

[image: image18.emf]4

1 3

2

ε

a

a

b

b

b

13. [4 marks] The following grammar has left recursion (refer to Appendix B for possible methods). Find an equivalent grammar (that generates the same language) without left recursion.

<expression> (<expression> + <factor>
<expression> (<expression> - <factor>

<expression> (<factor>

14. [4 marks] Consider the following grammar (0 and 1 are terminals). Left-factor the grammar.

<expr> -> <term> ADD <expr> | <term> SUB <expr> | <term>

<term> -> <factor> MUL <term> | <factor> DIV < term > | <factor> | NUM
Note: ADD, SUB, MUL, DIV, and NUM are terminals.
15. [4 marks] Show that the following grammar is ambiguous.

S (A | S + A | S + + A

A (a | (
16. [10 marks] Refer to Appendices C, D and F. Given the following grammar:

S (id = c ;
S (if (c) {LS} E

LS (S LS
LS ((
E (else {LS}

E ((
a) Compute the sets FIRST and FOLLOW for all the non-terminals in the above grammar.

b) Build a parsing table for the grammar.

c) Is the grammar LL(1)? – Explain.

17. [8 marks] Refer to Appendix E. The table below is the parsing table for the following LL(1) grammar:
S((L) | a

L(SL’

L’(,SL’ | (
	
	(
	a
)
	,
	$
	

	S
	S((L)
	S(a
	
	
	
	

	L
	L(SL’
	L(SL’
	
	
	
	

	L’
	
	
	L’((
	L’(,SL’
	
	

Seek the moves made by a nonrecursive predictive parser on the input ”(a,(a,a))”, by filling the following table.
	Stack
	Input
	Output

	
	(a,(a,a))$
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

· Problem Solving

18. [10 marks] Define a Java class representing a monitor that controls the access to a resource for reader and writer processes. We consider the following problem: A resource is used by two different kinds of processes. The Reader processes access the resource without changing its content. The Writer processes access the resource and update the content of the resource. In order to provide a consistent view of the resource to the Readers, no Writer should access the resource while some reader uses the resource. It is also required that at most one Writer process has access to the resource at any given time.
It is assumed that the Readers and Writers use a monitor Database to synchronize their access to the resource. The monitor offers the following methods: startRead(), endRead(), startWrite(), endWrite(); they are used as follows: Before accessing the resource, a Reader will call startRead(), then it will access the resource and then call the method endRead(). Similarly, a Writer will first call startWrite(), then it will update the resource and then call the method endWrite().

The following is the incomplete program. Your task is to complete method startRead() and startWrite(). Please give Writers priority over Readers. That is, if a writer is waiting no new reader may enter the resource (even if other readers are currently using the resource).
public class Database

{

 private int readerCount;

 private boolean dbReading;

 private boolean dbWriting;

 public Database()

 {

 readerCount = 0;

 dbReading = false;

 dbWriting = false;

 }

 public synchronized int startRead()

 {

 }

 public synchronized int endRead()

 {

 --readerCount;

 if (readerCount == 0)

 dbReading = false;

 notifyAll();

System.out.println("Reader Count = " + readerCount);

 return readerCount;

 }

 public synchronized void startWrite()

 {

 }

 public synchronized void endWrite()

 {

 dbWriting = false;

 notifyAll();

 }

}

19. [8 marks] The following is a multithreading program. In order to provide fairness to all the five threads, you are asked to modify the run method of the classes PrintChar and PrintNum so that any of the 5 threads must stop before the for loop and cannot proceed until all other threads reach this point. This can be implemented in a way similar to a semaphore or a monitor. Please write the class that provides the needed method(s) and make the necessary modification to the following program.

public class TestRunnable

{

 public static void main(String[] args)

 {

 Thread printA = new Thread(new PrintChar('a',100));

 Thread printB = new Thread(new PrintChar('b',100));

 Thread printC = new Thread(new PrintChar('c',100));

 Thread print100_1 = new Thread(new PrintNum(100));

 Thread print100_2 = new Thread(new PrintNum(100));

 print100_1.start();

 print100_2.start();

 printA.start();

 printB.start();

 printC.start();

 }

}

class PrintChar implements Runnable

{

 private char charToPrint;

 private int times;

 public PrintChar(char c, int t)

 {

 charToPrint = c;

 times = t;

 }

 public void run()

 {

 for (int i=1; i < times; i++)

 System.out.print(charToPrint);

 }

}

class PrintNum implements Runnable

{

 private int lastNum;

 public PrintNum(int n)

 {

 lastNum = n;

 }

 public void run()

 {

 for (int i=1; i <= lastNum; i++)

 System.out.print(" " + i);

 }

}
· Appendix A: Algorithm 3.2

[image: image19.png]118 LEXICAL ANALYSIS SEC. 3.6

Algorithm 3.2. (Subset construction.) Constructing a DFA from an NFA.
Input. An NFA N.
Outpur. A DFA D accepting the same language.

Method. Our algorithm constructs a transition table Diran for D. Each DFA
state is a set of NFA states and we construct Diran so that D will simulate “in
parallel” all possible moves N can make on a given input string.

We use the operations in Fig. 3.24 to keep track of sets of NFA states (s
represents an NFA state and T a set of NFA states).

OPERATION DESCRIPTION

e-closure(s) | Set of NFA states reachable from NFA state s on e
transitions alone.

e-closure(T) | Set of NFA states reachable from some NFA state s in T
on e-transitions alone.

move(T, a) | Set of NFA states to which there is a transition on input
symbol a from some NFA state s in T.

Fig. 3.24. Operations on NFA states,

Before it sees the first input symbol, N can be in any of the states in the set
e-closure(so), where sy is the start state of N. Suppose that exactly the states
in set T are reachable from s, on a given sequence of input symbols, and let a
be the next input symbol. On sceing a, N can move to any of the states in the
set move(T, a). When we allow for e-transitions, N can be in any of the states
in e-closure(move(T, a)), after seeing the a

initially, e-closure(so) is the only state in Dstates and it is unmarked;
while there is an unmarked state T in Dstates do begin
mark
for cach input symbol a do begin
U = eclosure(move(T.));
if U is not in Dstates then
2dd U as an unmarked state to Dstates;
Drran]T, a}
end

end

Fig. 3.25. The subset construction

‘We construct Dstates, the set of states of D, and Diran, the transition table
for D, in the following manner. Each state of D corresponds to a set of NFA

[image: image20.png]SEC. 3.6 FINITE AUTOMATA 119

states that N could be in after reading some sequence of input symbols includ-
ing all possible e-transitions before or after symbols are read. The start state
of D-is e-closure(sy). Statcs and transitions are added to D using the algo-
rithm of Fig. 3.25. A state of D is an accepting state if it is a set of NFA
states containing at least one accepting state of N.

push all states in T onto stack;
initialize e-closure(T) to T
while stack is not empty do begin
pop 1, the top element, off of stack;
for cach state u with an edge from ¢ to u labeled € do
if u is not in e-closure(T) do begin
add u to e-closure(T);
push « onto stack
end
end

Fig. 3.26. Computation of e-closure.

The computation of e-closure(T) is a typical process of scarching a graph for
nodes reachable from a given sct of nodes. In this case the states of T are the
given set of nodes, and the graph consists of just the e-labeled edges of the
NFA. A simple algorithm to compute e-closure(T) uses a stack to hold states
whose edges have not been checked for e-labeled transitions. Such a pro-
cedure is shown in Fig. 3.26. o

Example 3.15. Figure 3.27 shows another NFA N accepting the language
(alb)*abb. (It bappens to be the one in the next section, which will be
mechanically constructed from the regular expression.) Let us apply Algo-
rithm 3.2 to N. The start state of the equivalent DFA is e-closure(0), which is
A =10, 1,2,4,7}, since these arc exactly the states reachable from state 0 via
a path in which every edge is labeled €. Note that a path can have no edges,
s0 0 is reached from itself by such a path.

The input symbol alphabet here is {a, b}. The algorithm of Fig. 3.25 tells
us to mark A and then to compute

e-closure(move(A, a))

We first compute move(A, a), the set of states of N having transitions on a
from members of A. Among the states 0, 1, 2, 4 and 7, only 2 and 7 have
such transitions, to 3 and 8, so

e-closure(move({0, 1,2, 4,7}, a)) = e-closure({3,8}) = {1,2,3,4,6,7,8}

Let us call this set B. Thus, Diran|A, a] = B.
Among the states in A, only 4 has a transition on b to 5, so the DFA has a
transition on b from A to

· Appendix B: Elimination of left recursion

[image: image21.wmf]

can be replaced by

[image: image22.png]A= BA Bl | e [Bl
A" > A oA | - aA | €

· Appendix C: Computation of FIRST

[image: image23.png]To compute FIRST(X) for all grammar symbols X, apply the following rules

until no more terminals or € can be added to any FIRST set.

1.
2.
3.

If X is terminal, then FIRST(X) is {X}.
If X = € is a production, then add € to FIRST(X).

If X is nonterminal and X = Y,Y, - - - ¥; is a production, then place a in
FIRST(X) if for some i, a is in FIRST(Y;), and € is in all of
FIRST(Y,), ..., FIRS'I‘(Y,~_1); that is, Y, - - - ¥, Z>e. If € is in
FIRST(Y;) for all j = 1, 2, , k, then add € to FIRST(X). For exam-
ple, everythmg in FIRST (Y 1) is surely in FIRST(X). If Y 1 does not
derive €, then we add nothing more to FIRST(X), but if Y, £ €, then we
add FIRST(Y,) and so on.

· Appendix D: Computation of FOLLOW

[image: image24.png]To compute FOLLOW(A) for all nonterminals A, apply the following rules
until nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW(S), where S is the start symbol and $ is the input
right endmarker.

2. If there is a production A — aBp, then everything in FIRST(B) except for
€ is placed in FOLLOW(B).

3. If there is a production A - aB, or a production A - aBB where
FIRST(B) contains € (i.e., B £ €), then everything in FOLLOW(A) is in
FOLLOW(B).

· Appendix E: Nonrecursive predictive parsing

[image: image25.png]Input. A string w and a parsing table M for grammar G.

Output. If w is in L(G), a leftmost derivation of w; otherwise, an error indi-
cation.

Method. Initially, the parser is in a configuration in which it has $S on the
stack with §, the start symbol of G on top, and w$ in the input buffer. The
program that utilizes the predictive parsing table M to produce a parse for the
input is shown in Fig. 4.14. o

set ip to point to the first symbol of w$;
repeat
let X be the top stack symbol and a the symbol pointed to by ip;
if X is a terminal or $ then
if X = a then
pop X from the stack and advance ip
else error()
else /+ X is a nonterminal »/
ifM[X,al=X—->Y,Y, - Y, then begin
pop X from the stack;
push Y;, Y,_,, ..., Y, onto the stack, with ¥, on top;
output the production X - Y, Y, - - - ¥,
R end
else error()
until X = § /« stack is empty #/

· Appendix F: Construction of a predictive parsing table

[image: image26.png]Algorithm 4.4, Construction of a predictive parsing table.

Input. Grammar G.

Qutput. Parsing table M.
Method.

1.
2.
3.

For each production A = a of the grammar, do steps 2 and 3.
For each terminal a in FIRST(a), add A - a to M[A, al.

If € is in FIRST(a), add A > a to MJ[A, b] for each terminal b in
FOLLOW(A). If € is in FIRST(a) and $ is in FOLLOW(A), add A - «
to M[A, $].

Make each undefined entry of M be error.

D:\data\zhao\2006w\seg2101\fin_seg2101_2006w_v2.doc

Page 17 of 20

_1174720638.unknown

_1206987418.vsd
4

1

3

2

ε

a

a

b

b

b

_1174720621.unknown

_1080462104.doc
[image: image1.png]A—’AallAa2| |Aam|B1|BZ| |Bn

