Initial____________

[image: image1.wmf]
	COURSE:
SEG-2106
	PROF:

Gregor v. Bochmann

	

Software Construction
	DATE:

April 14, 2011

	SEMESTER:
WINTER 2011
	TIME:

09:30 – 12:30

	
	ROOM:

DMS 1150

	FINAL

 EXAMINATION

No documentation allowed
	Name
	

	Student Number
	

1. There are three (3) types of questions in this examination.

	Part 1
	Simple answers and multiple choice
	10 marks
	

	Part 2
	Small problems
	50 marks
	

	Part 3
	Problem solving
	20 marks
	

	Total
	
	80 marks
	

2. The space allocated for each question is limited. In case of necessity you may use the other side of the pages to continue.

3. Initial all the pages, except the appendixes.

List of Annexes:

Appendix A: Algebraic Properties of Regular Expressions
Appendix B: Elimination of left recursion
Appendix C: Computation of FIRST
Appendix D: Computation of FOLLOW
Appendix E: Non-recursive predictive parsing

Appendix F: Construction of a predictive parsing table

Simple answers and multiple choice (circle the best answer) [2 marks each]:
1. For each of the following strings, please indicate whether it is accepted by the non-deterministic automaton below?

	a) 101001101 YES NO
	b) 00001111 YES NO

	c) 00100111 YES NO
	d) 00110001 YES NO

[image: image2.jpg]

2. We assume the alphabet A={a,b}. Which of the following is not correct? (Note: r, s and t are regular expressions) – Note: Appendix A contains a list of equalities for regular expressions.
	a) (a a* b) is not equal to (a b | a* a a b)
	b) (r | a)+ = (a | r) (r* | a*) *

	c) (s | t) r is not equal to (r s | r t)
	d) (s | a | b)* = (s* a* b*)*

3. Concurrency: Readers and Writers access a shared resource. There is mutual exclusion, except that multiple Readers can access the resource simultaneously, but not when a Writer is using it. Let us assume that reading takes 20 msec and writing takes 30 msec, and that Reader-1 tries to access the resource at time t=0 (initially, the resource is free). Then Writer-1 tries to access the resource at time t=5, and Reader-2 tries to access the resource at time t=10. When do these three threads start and terminate their use of the resource ? – Answers:

Reader-1 starts at 0 and ends at 20 msec.

Writer-1 starts at and ends at msec.

Reader-2 starts at and ends at msec.

4. Concurrency: Why is it more difficult to verify (or test) that a program works correctly when the program contains concurrency, as compared with a sequential program ? – Explain in a few words.
5. We consider a simulation program which simulates 10 workers that, during their work process, have to use from time to time a cutting tool. There are three identical cutting tools available on the shop floor. When using a tool, the worker needs exclusive access to the tool. - Question: How can a semaphore be used in the simulation program to ensure that the mutually exclusive access to the three tools is maintained ? – Explain in a few words.
Small Problems
6. [6 marks] We consider a system consisting of two components C1 and C2 that have the same behavior and exchange messages between one another. There are two types of messages, a request message R and an acknowledgement message A. The behavior of the two components is modeled by the state machines below (left). The figure on the right side is the beginning of the reachability analysis graph which shows the global system behavior: Each transition of the reachability graph corresponds to a transition of one of the two components.

Please complete the reachability graph for the case that component C1 sends an R message while component C2 waits for the reception of this message (the beginning of this behavior is already shown in the diagram below (right); and also include the case that both components start by sending an R message to the other party. Please provide your comments concerning the validity of this system design.

[image: image3.jpg]

 [image: image4.jpg]

7. [4 marks] Implementation design is the development phase during which the non-functional requirements are composed with the functional specification in order to select a software-hardware architecture that fits the requirements of the system. Often one can choose between a centralized implementation and a distributed implementation of the main system functions. Identify at least two advantages and two disadvantages of a distributed implementation approach (as compared to a centralized implementation).

 (A) Advantages:

(B) Disadvantages:

8. [4 marks] We saw that the tag that starts an element in an XML document has in general the following form:

<nameOfElement nameOfFirstAttribute= “attributeValue” nameOfSecondAttribute= “attributeValue” et cetera >

where the number of attributes may be zero. Write down a regular expression that represents this general form of a starting XML tag. You may use the following definitions of sets of characters:

charName = … // characters that can be used in the names of elements and attributes

charString = … // characters that can be used in the values of attributes
9. [4 marks] We assume that a server has a exponential service time with an average of 0.1 seconds. The rate of arrival of requests at the server is on average 5 requests per second. Please calculate the expected (average) response time of the server, knowing that for queuing models the formula “ Tr = Ts / (1 – utilization) “ applies (where Tr is the response time and Ts is the service time). What is the expected average queue length of the server ? – Please explain in a few words.

10. [6 marks] Using the approach discussed in class, convert the non-deterministic automaton below into an equivalent deterministic automaton.
[image: image5.jpg]

11. [4 marks] The following grammar has left recursion. Find an equivalent grammar (that generates the same language) without left recursion. (Note: refer to Appendix B for possible methods).
S (A a | a S
A (B | A b | a
B (B b | c
12. [4 marks] Consider the grammar with the following syntax rules. Use left-factoring to find equivalent rules that satisfy the LL(1) constraints.
S (<assign> | <method call>

<assign> (ID = <expr> ;

<method call> (ID () ;
13. [4 marks] Write down a context-free grammar that generates sentences of the following form: one or more “a” at the beginning, then two “c” followed by zero, one or more “b” and finally the same number of “a” as at the beginning.
14. [4 marks] Show that the following grammar is ambiguous.

S (a B | a A

A (a A | b S | c

B (c B | a A | a

15. [10 marks] Given the following grammar:

Pro ({ L } // the program is followed by $ (meaning end of file)
L ((| S L

S (id = Exp ; | if (Exp) { L } ELSE

ELSE (else { L }

Exp (const
The starting symbol of this grammar is Pro and its terminals are ;, =, (,), {, }, id, if, else, const and $.

a) Compute the sets FIRST and FOLLOW for all the non-terminals in the above grammar. Note: Appendices C, D and F contain related definitions and algorithms.
b) Build a parsing table for the grammar. – Question: is the grammar LL(1) ? – Explain in a few words.
Problem Solving

16. [10 marks] Define a shared Java class that represents a special kind of deposit box.
General description: There are two types of workers: providers and consumers. Each provider performs an infinite loop: repeatedly creating an object and depositing it in the box. Each consumer also executes an infinite loop repeatedly taking an object from the box and consuming it. The access to the box should be controlled in such a way that there are two phases: depositing phase and taking phase. During the depositing phase the providers deposit objects in the box; when the number of objects in the box reaches 100, then the taking phase starts, and the providers have to wait while the consumers empty the box; when the box becomes empty again, the depositing phase starts again.

Please write a Java program that simulates the deposit box system described above. The code for the provider class is given below. You may assume that a similar code for consumers is also given. There should be two providers and three consumers. There should be one instance of a box Class which supports the methods void deposit(BoxObject o) and BoxObject take(). The body of these methods should include in their bodies the necessary statements for scheduling the phases of operation of the box, as described above.

The following is the incomplete program. Your task is to complete the main method and the class Box. You may introduce variables as you think are appropriate for solving this problem.
Complete this Java program:
public class BoxMain {

public static void main(String [] args) {

Box box = new Box();

Producer p1 = new Producer(box);

Producer p2 = new Producer(box);

 Consumer c1 = new Consumer(box);

 Consumer c2 = new Consumer(box);

 Consumer c3 = new Consumer(box);
} }
public class Producer extends Thread {

private Box mybox;

public Producer(Box b) {mybox = b;}

public void run(){

while (true) {

// create a new object ...

BoxObject oneObject = new BoxObject();

mybox.deposit(oneObject);

}

}
}

// the Consumer class is similar

public class Box {

private BoxObject[] content;

public Box(){content = new BoxObject[100];}
17. [10 marks] Writing a recursive descent parser

We assume the following grammar, where Prog is the root:

Prog (List $

Stat (ID := Exp ;

List (Stat List | (

Assuming syntax analysis by recursive procedures, as seen in a lab and Assignment 3, it is your task to write the Java methods parse_Stat() and parse_List() that perform the syntax analysis for the nonterminals Stat and List, respectively. (Note: this grammar is LL(1)).
We assume that the class Syner (see below) contains the methods for parsing the different non-terminals of the grammar. The method for parsing the non-terminal Prog is already given below. The method for parsing the non-terminal Expr is supposed to be given as well. It is assumed that a suitable lexical analyzer exists (variable lex in the program below). You may assume that suitable definitions of Java constants are given which represent the different lexical units, such as DOLLAR, ID, ASSIGN, SEMI, etc.
class Syner {

private Lexer lex;

public Syner(String inputFile) {

lex = new Lexer(inputFile);

 // read the next token (here it is the first one)

 // and place it into lex.token
 lex.getNext();

}

public void parse_Prog() throws IOException {

 parse_List();
 // check that the dollar sign follows the List

 if(lex.token != lex.DOLLAR)
 {errorMessage("DOLLAR token expected!");}

}
public void parse_Stat() throws IOException {

public void parse_List() throws IOException {

Appendix A: Algebraic Properties of Regular Expressions

[image: image6.jpg](r, s, and ¢ are any regular expressions)

rls=slir (commutativity for alternation)
ri(sle)=(1s)lt (associativity for alternation)
rlr=r (absorption for alternation)
r(st) = (rs)t (associativity for concatenation)
rsly=rsirt (left distributivity)
(slr=sritr (right distributivity)

re =er=r (identity for concatenation)
rrx=r* (closure absorption)
rék=elrirml.. (Kleene closure)

(r**=r*

m*=r¥r

(r* | s¥)* = (r¥s*)*
(r*s*y* = (rls)*
(rs)*r=r(sr)*

(r | s)* = (r*s)y*r*

Table 3.2. Algebraic identities for regular expressions.

Appendix B: Elimination of left recursion

[image: image7.wmf]

can be replaced by

[image: image8.png]A= BA Bl | e [Bl
A" > A oA | - aA | €

Appendix C: Computation of FIRST

[image: image9.png]To compute FIRST(X) for all grammar symbols X, apply the following rules

until no more terminals or € can be added to any FIRST set.

1.
2.
3.

If X is terminal, then FIRST(X) is {X}.
If X = € is a production, then add € to FIRST(X).

If X is nonterminal and X = Y,Y, - - - ¥; is a production, then place a in
FIRST(X) if for some i, a is in FIRST(Y;), and € is in all of
FIRST(Y,), ..., FIRS'I‘(Y,~_1); that is, Y, - - - ¥, Z>e. If € is in
FIRST(Y;) for all j = 1, 2, , k, then add € to FIRST(X). For exam-
ple, everythmg in FIRST (Y 1) is surely in FIRST(X). If Y 1 does not
derive €, then we add nothing more to FIRST(X), but if Y, £ €, then we
add FIRST(Y,) and so on.

Appendix D: Computation of FOLLOW

[image: image10.png]To compute FOLLOW(A) for all nonterminals A, apply the following rules
until nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW(S), where S is the start symbol and $ is the input
right endmarker.

2. If there is a production A — aBp, then everything in FIRST(B) except for
€ is placed in FOLLOW(B).

3. If there is a production A - aB, or a production A - aBB where
FIRST(B) contains € (i.e., B £ €), then everything in FOLLOW(A) is in
FOLLOW(B).

Appendix E: Nonrecursive predictive parsing

[image: image11.png]Input. A string w and a parsing table M for grammar G.

Output. If w is in L(G), a leftmost derivation of w; otherwise, an error indi-
cation.

Method. Initially, the parser is in a configuration in which it has $S on the
stack with §, the start symbol of G on top, and w$ in the input buffer. The
program that utilizes the predictive parsing table M to produce a parse for the
input is shown in Fig. 4.14. o

set ip to point to the first symbol of w$;
repeat
let X be the top stack symbol and a the symbol pointed to by ip;
if X is a terminal or $ then
if X = a then
pop X from the stack and advance ip
else error()
else /+ X is a nonterminal »/
ifM[X,al=X—->Y,Y, - Y, then begin
pop X from the stack;
push Y;, Y,_,, ..., Y, onto the stack, with ¥, on top;
output the production X - Y, Y, - - - ¥,
R end
else error()
until X = § /« stack is empty #/

· Appendix F: Construction of a predictive parsing table

[image: image12.png]Algorithm 4.4, Construction of a predictive parsing table.

Input. Grammar G.

Qutput. Parsing table M.
Method.

1.
2.
3.

For each production A = a of the grammar, do steps 2 and 3.
For each terminal a in FIRST(a), add A - a to M[A, al.

If € is in FIRST(a), add A > a to MJ[A, b] for each terminal b in
FOLLOW(A). If € is in FIRST(a) and $ is in FOLLOW(A), add A - «
to M[A, $].

Make each undefined entry of M be error.

Page 3 of 11

_1080462104.doc
[image: image1.png]A—’AallAa2| |Aam|B1|BZ| |Bn

