Final Exam -- SEG 2101

Tuesday, April 24, 2001

No documentation allowed.

Please answer on the questionnaire. If you need additional space, please, write on the back of the preceding page and indicate clearly where the supplementary text can be found.

You can use the examination booklet as draft paper.

Student’s name: __

Student number: __________________________________

Question
Available points
Points obtained

1 10

2 10

3

10

4

12

5

10

6

15

7

10

8
15

9
8

Total

 100

Question concerning Module 1

Question 1 (10 points) on use cases and test coverage – understanding SDL specifications
We consider the system described in SDL in Annex A and the following use case:

UseCase-1: The LSControl receives a Code signal from the Panel and forwards it to the Central Unit. Then it obtains an OK answer, which is also displayed to the user, and unlocks the door. The user waits 5 seconds before he opens the door and then he leaves it open for 40 seconds and then closes it.

Question (a) (5 points): Which branches of the SDL specification will be executed by UseCase-1 ?

Answer (please, write down the numbers (added by hand) of the branches in the specification of Annex A):

Question (b) (5 points): Which of the following operations on the door_timeout timer are tested by UseCase-1: (a) the timer is correctly started, (b) the timer provides the time-out signal at the right time and then goes back to its inactive state, (c) the running timer is correctly halted.

Please indicate the tested operations (e.g. “ (a), (c) “ means that operations (a) and (c) are tested and the operation (b) is not tested):

Questions concerning Module 2
Question 2 (10 points) on LL(1) grammars
We consider the following context-free grammar, where S is the root symbol:

S --> a B c

B --> empty | A c B | d B

A --> a A d | c B e | f

Question (a) (5 points): What are the sets First and Follow of the non-terminals ?

Answers:

First(S) =

First(B) =

First(A) =

Follow(B) =

Follow(A) =

Question (b) (5 points): Is the grammar LL(1) ? -- Please explain why:

Question 3 (10 points) on semantic attributes
We consider the following simplified Java syntax for assignment and IF statements (which we saw already in the mid-term exam):

B --> { SL }

SL --> empty | S ; SL

S --> V = E | if (E) B EP

EP --> empty | else B
where B is the root symbol and stands for "bracket", SL stands for "statement list", S stands for "statement" which may be an assignment statement (using the nonterminals V ("variable") and E ("expression") or an IF-statement. EP stands for "else part". The terminals are {, }, (,), ; , =, if, and else, as well as ID (the identifiers for variables) and INT (the integer constants).

Now we consider a recursive descent parser for this language which is written in Java. The syntax analysis procedure for the non-terminal S is given below, as well as the "header" for the other procedures that analyse variables, expressions, etc.

public void S() {

if (lex.t == ID) {

Var();

if (lex.t == EQUAL) {

lex.nextT();

E(); }

else {error();}

}

else if (lex.t == IF) {

lex.nextT();

if (lex.t == OPEN) {

E();

 if (lex.t == CLOSE) {

lex.nextT();

B();

if (lex.t == ELSE) {

lex.nextT();

B();

}

}

else {error();}

}

else {error();}

}

else {error();}

}

public void B () {};
public void Var () {};

public void E() {};

In order to include in these syntax analysis procedures the facility of type checking, we assume in the following that the procedures analyzing a variable and expression have been changed to procedures that return a String value which represents the name of the type (or class) of the analysed variable or expression, respectively.

Question: Please propose some changes to the above procedure S in order to include statements that verify that the type of the expression in an assignment statement is equal to the type of the variable, and that the type of an expression in the IF statement is boolean. (Note: For simplicity, we assume that type equality is required, that no coercion is possible). To answer, try to write the required changes in the program above. If there is not enough space, you may rewrite part of the revised program on the back of the page.
Questions concerning Module 3
Question 4 (12 points) on principles of implementation design
Question (a) (7 points): Indicate for each of the following activities whether it is part of implementation design (please indicate yes or no):

	Activity
	Answer

	to determine the physical distribution of the system to be built
	

	to define algorithms for the allocation of resources
	

	to define the API to be adopted for one of the new software modules to be created
	

	to refine the specification of fault handling
	

	to define the behavior of the system in the normal situations
	

	to evaluate the reliability of the proposed system description
	

	to verify that the independently implemented system components work correctly together
	

Question (b) (5 points): For each row in the first table below, indicate which row in the second table below contains a matching term.

Note: Your answer should define a permutation (that is, each number should occur as answer only once).
	
	Answer

	fault tolerance
	

	fail-safe system
	

	physical distribution
	

	implementation design
	

	software design
	

	estimation of the system response time
	

	1
	improves fault tolerance

	2
	includes the allocation of finite resources

	3
	requires redundancy

	4
	includes the definition of module interfaces

	5
	avoids the occurrence of catastrophic events

	6
	is an issue to be dealt with during implementation design

Question 5 (10 points) on deadlocks
We consider two identical concurrent processes P1 and P2 that share three resources a, b and c. In order to ensure that only one process may use a given resource at a given time, each process will first reserve a resource before it will use it and when it does not need the resource any more, it will release the resource. The dynamic behavior of the processes P1 and P2 consist of the following loop:

while (true) {

a.reserve();

b. reserve();

 … use a and b …

a.release();

c. reserve();

 … use b and c …

b.release();

c.release();

 … do something else …

 }

Question (a) (5 points): Is it possible that a deadlock occurs for this configuration of two processes and three resources ? -- Please explain why or why not.

Question (b) (5 points): Now we add another process P3 to our configuration. This process has the following behavior:

while (true) {

c.reserve();

b. reserve();

 … use b and c …

b.release();

c.release();

 … do something else …

 }

It is possible that a deadlock occurs for this configuration of three processes and three resources ? -- Please explain why or why not.

Question 6 (15 points) on reachability analysis
Annex C contains the description of a system architecture consisting of two processes A and B that have the same behavior which is defined by the process type Protocol. Both processes may receive a Req signal from the environment. Your task is to perform a reachability analysis for this system in order to determine all global system states that may be reached by this system during execution. We assume that initially, there is a Req signal in the input queues of both processes, A and B. Each transition in the reachability analysis corresponds to a transition in one of the processes. (Reminder: A global system state includes the definition of the state of each system component and the content of all input queues). Please draw below the global transition diagram starting with the initial state already written down. (Please use the notation, where the global state shows first the content of the input queue of process A, then the state of process A, then the content of the input queue of process B and then the state of process B).

<Req, idle / Req, idle>

Questions concerning Module 4
Question 7 (10 points) on resolution and unification
Question (a) (5 points) We consider the following two propositions:

 (1)

sonOf (paul, tom) (sonOf (paul, victor) <== hasBlueEyes (paul)

 (2)

 <== sonOf (paul, tom) (sonOf (paul, mary)

What is the result of applying resolution to these two propositions ?

Answer:

Question (b) (5 points): The following is the definition of the get operation on a FIFO queue in Prolog (taken from last year's exam).

(line 1)

get(X, [X], []).

(line2)

get(X, [Y|TailIn], [Y|TailOut]) :- Get(X, TailIn, TailOut).

The proposition get(X, Qin, Qout) represents the fact that when one gets the element X from a queue which, before the operation, contains the sequence of elements Qin, then, after the operation, the queue contains the sequence of elements Qout.

Now we consider the following queries:

(a)
get (a, [a], [b])

(b)
get ([a, b], [[a, b]], [])

(c)
get (a, [b, c], [b, d])

(d)
get (a, [], [Z])

(e)
get (Y, [a, Y], [a, Z])

For each query, please indicate whether it can be unified with …

(1) with the left side of proposition (line 1) only

(2) with the left side of proposition (line 2) only

(3) with both, the left side of proposition (line 1) and the left side of proposition (line 2)

(4) with none of the two propositions in line 1 and line 2

Answers (please indicate one of the choices (1), (2), (3) or (4)):

Query (a) :

Query (b) :

Query (c) :

Query (d) :

Query (e) :

Question 8 (15 points) on Prolog programming
Question (a) (5 points): We consider the Prolog program "dating" from Lab 10 which is reproduced in Annex B. The "rules" section of that program is as follows:

(line 1)
possible_couple(X, Y) :- can_meet(X, Y), like_the_same(X, Y).

(line 2)
can_meet(X, Y) :- man(X, T1, C1, A1), femme(Y, T2, C2, A2),

 looks_for(X, T2, C2, A2), looks_for(Y, T1, C1, A1).

(line 3)
like_the_same(X, Y) :- likes(X, M, L, S), likes(Y, M, L, S).

Now we consider the following changes to the rules used by the dating agency to determine possible couples:

(a) The color of the hair (for men and women) is not taken into account.

(b) For the matching of the intellectual characteristics, it is sufficient that there are two common interests (instead of three, as in the original program).

What changes should be introduced into the rules of lines 1 through 3 above in order to introduce these changes into the Prolog program ?

Answer: For the lines that must be changed, write the new version of these lines and any additional lines introduced (if any):

Question (b) (5 points): Here is the definition of the Prolog functors append and reverse_list:

append([], List, List).

append([Head|List1], List2, [Head|List3]) :- append(List1, List2, List3).

% reversing a list

reverse_list(List, ResList) :- sub_reverse_list(List, [], ResList).

sub_reverse_list([], TmpList, TmpList).

sub_reverse_list([X|SubList], TmpList, ResList) :-

sub_reverse_list(SubList, [X|TmpList], ResList).

They have the following meaning:

· append (X, Y, Z) means that the list Z is equal to the concatenation (appending) of the list X with the list Y.

· reverse_list (X, Y) means that the list Y is the mirror list of X, i.e. X contains the same elements as Y, but in the opposite order (example taken from Lab 10).

Please, write the definition of the functor substring (X, Y) which means that X is a substring of Y, and of the functor mirrorWord (X) which means that X is a mirror word, that is, it is a list of an even number of elements, and the first half is a mirror of the second half. Suggestion: you may use the append and reverse_list functors defined above.

Answer (continue next page):

Question (c) (5 points): Please write a Prolog functor tree(N, X) which, for a given positive integer N, provides a binary tree of depth N where all leaf nodes consist of the constant a. For instance, for N = 1, X should be equal to X=a, and for N = 3, X should be equal to X = [[a, a], [a, a]] .

Answer:

Question 9 (8 points) on Prolog interpretation
What are the steps of unification and resolution through which the Prolog interpreter goes in order to find the answer to the query

path(a3, a5)

in the context of the following given Prolog program:

(line 1)

edge(a1, a2).

(line 2)

edge(a2, a3).

(line 3)

edge(a2, a4).

(line 4)

edge(a2, a5).

(line 5)

edge(a3, a4).

(line 6)

edge(a4, a5).

(line 7)

path(X,Y) :- edge(X,Y) .

(line 8)

path(X,Y) :- edge(Z,Y) , path(X, Z) .

Answer: (please refer to the line numbers of the Prolog program, you may continue on the next page)

Extra page

Annex A: SDL specification of the LSControl process

Annex B: Prolog program "dating"

% Definition of a dating agency, simple facts and rules to be able to

% determine who should meet who, and what couple could be formed.

%

% -------------------------------- Facts --------------------------------

% Physical characteristics: height, hair-color, age

%

man(damien, tall, blond, young).

% intelectual characteristics: music, books, sports

%

likes(damien, classic, science, tennis).

% what kind of person he/she is looking for: height, hair-color, age

%

looks_for(damien, medium, blond, young).

man(jean, medium, brown, middle-age).

likes(jean, pop, science, swimming).

looks_for(jean, short, red, middle-age).

man(antoine, short, red, old).

likes(antoine, jazz, thriller, jogging).

looks_for(antoine, tall, red, middle-age).

man(pascal, tall, brown, young).

likes(pascal, jazz, thriller, swimming).

looks_for(pascal, short, blond, middle-age).

man(eric, medium, blond, middle-age).

likes(eric, pop, thriller, tennis).

looks_for(eric, short, brown, old).

femme(marie, tall, brown, old).

likes(marie, jazz, science, jogging).

looks_for(marie, tall, blond, young).

femme(odile, medium, red, young).

likes(odile, classic, aventure, swimming).

looks_for(odile, medium, brown, middle-age).

femme(nicole, short, brown, middle-age).

likes(nicole, pop, science, jogging).

looks_for(nicole, medium, brown, young).

femme(nathalie, short, blond, middle-age).

likes(nathalie, jazz, thriller, swimming).

looks_for(nathalie, tall, brown, young).

femme(julie, medium, blond, young).

likes(julie, classic, science, tennis).

looks_for(julie, tall, blond, young).

femme(francine, medium, blond, young).

likes(francine, classic, science, tennis).

looks_for(francine, tall, blond, young).

% -------------------------------- Rules --------------------------------%

possible_couple(X, Y):-

 can_meet(X, Y), like_the_same(X, Y).

can_meet(X, Y):-

 man(X, T1, C1, A1),

 femme(Y, T2, C2, A2),

 looks_for(X, T2, C2, A2),

 looks_for(Y, T1, C1, A1).

like_the_same(X, Y):-

 likes(X, M, L, S), likes(Y, M, L, S).

Annex C: SDL specification of a system (for Question 7)

PAGE
7

