	[image: image1.png]Université d’Ottawa - University of Ottawa

SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

	Course:
SEG2101/SEG2101A
	Lecturer:
Jiying Zhao

	Semester:
Winter 2003
	Room:
STE 5019

	
	Phone:
(613)562-5800 x 6667

	
	Email:
jzhao@uottawa.ca

Assignment 2: Lexical Analysis

Due: March 10, 2003 @ 12:00 noon

Posted on: February 10, 2003

Exercise 1: Build a syntax tree [10 marks]
We consider the following grammar for expressions (with the root symbol <assign>)
[image: image2.jpg]<assign> — <id> := <expr>
<id> »alB|C
<expr> — <expr> + <term>
| <term>
<term> — <term> * <factor>
| <factor>
<factor> — (<expr>)
| <id>

Please write down the syntax tree for the following expression:
A := A * (C + B) + (B * A)

Exercise 2: Modify grammar [10 marks]
We consider the same grammar as in Exercise 1. Your task is to modify the grammar in order to allow for the exponentiation operator ** in expressions. The priority of this operator should be higher than the priority of * , and the order of evaluation in the case of multiple exponentiation operators should be from left to right, that is, the value of the expression 3**3**3 should be 9**3 = 3**6 , and not 3**9. Also write down a syntax tree for A := A**(B+C)*A.
Exercise 3: Understand a grammar [10 marks]
We consider the following grammar (with root symbol A):
A --> E A E | F B G
B --> F B | B G | F | G
(a) What are the non-terminals and what are the terminals of this grammar ?
(b) Write down all sentences with a length smaller or equal to 6 that can be generated by this grammar.
(c) Please explain in some words: what is the language of ALL sentences generated by this grammar. (Note: your answer could start like this: The language generated by this grammar consists of all strings formed from the alphabet . . . which have the following property . . .)

Exercise 4: Ambiguity [10 marks]
Question (a): Explain why the following grammar (with root symbol A) is not ambiguous.
A --> E A E | B
B --> F B | B G | G
Question (b): We consider the grammar (with root symbol A)
A --> c A b | A b | B
B --> d | c B
Show that this grammar is ambiguous by constructing two different parse trees for the sentence ccdb.
Question (c): For the two parse trees of Question (b), write down the corresponding leftmost and rightmost derivations.
Exercise 5: Regular expression to NFA [15 marks]
Construct nondeterministic finite automata for the regular expressions ab(a|b)*aba* using Algorithm 3.3 (Aho p122-4). Show the sequence of moves made by each in processing the input string abababaa.

Exercise 6: NFA to DFA [15 marks]

Convert the NFA of Exercise 1 into a DFA using Algorithm 3.2 (Aho p118-9). Show the sequence of moves made by each in processing the input string ababbab.

Exercise 7: LEX [30 marks]
Scanning C++

One of the first jobs performed by a compiler is to read in the source code (which is really just one long string of characters) and group individual characters into tokens, the lowest level of symbol used in defining a programming language. Examples of tokens include identifiers, keywords, and the arithmetic and boolean operators. This process of breaking the source code up into tokens is called scanning or lexical analysis. Your assignment is to build a scanner for C++.

C++ Tokens

C++ has the following classes of tokens. (See the C++ reference manual if you have any questions about the exact form of a token.)

1. Identifiers: an arbitrarily long sequence of letters, digits, or the underscore character; the first character cannot be a digit.

2. Keywords: asm, auto, break, case, char, class, const, continue, default, delete, do, double, else, if, inline, int, long, main, new, operator, overload, public, register, return, short, sizeof, static, struct, switch, this, typedef, union, unsigned, virtual, void, while.

3. Constants: there are four types of constants

1. Integers: a sequence of one or more digits. An integer that begins with zero is an octal integer and may only include the digits zero thru seven. An integer that begins with zero and then an X (or x) is a hexadecimal integer and may contain digits a (or A) thru f (or F).

2. Longs: an integer constant followed by the letter l (or L).

3. Floats: consist of an integer part, a decimal point, a fraction part, an e (or E), and an optionally signed integer exponent. Either the integer part or the fractional part may be omitted, but not both. Either the decimal point or the e (or E) and exponent may be missing, but not both.

4. Characters: any character enclosed in single quotes. Certain non-graphic characters may be represented by a single quote, a backslash, a character (representing one of the non-printing characters) or a sequence of up to three octal digits or an "x" and a sequence of up to 3 hexadecimal digits, and a terminating single quote.

4. Strings: a sequence of characters enclosed in double quotes. If a string contains a double quote character, it must be preceded by a backslash.

5. Operators: +,-,*,/,%,>>,<<,&,|,^,&&,||,?,:,=,+=,-=,*=,/=,%=, >>=,<<=,&=,|=,^=,~,!,++,--,->,<,>,<=,>=,==,!=,","

6. Special symbols: (,), [,], {, }, ;, #

7. Separators: blanks, tabs, newlines, and comments are ignored except as they serve to separate tokens. The characters /* begin a comment, which terminates with */. (These comments cannot be nested.) The characters // also start a comment, which terminates at the end of the line.

Your Assignment

Normally a scanner passes tokens as they are recognized on to other parts of the compiler. In this assignment however, we ask you to instead output the token (e.g., typedef) and token class (e.g., keywords) for each token recognized. Your scanner should ignore white space and separators, which need not appear in the output. Your scanner should only treat identifiers, the keywords (void, main, double, if, else), floats, operators (+, -, ==, <=), special symbols ((,), {, }, ;), and separators (blanks, tabs, newlines).

Use lex or flex utility to build a scanner. Turn in

. your lex program

. the C++ file as the input to your lex program

. the output generated by your lex program to the C++ file

1
C:\Gregor's Files\Mailgregor\attach\assignment2_seg2101.doc

Page 1 of 4

