
School of Information

Technology and Engineering (SITE)

Department of Electrical and Computer Engineering

Faculty of Engineering
SEG-2106 - Software Construction - Winter 2008
Lab 3
W.C Campbell 50111

Paul M. Baillot 2273596

Part 1

Regular expressions: Let us consider languages over an alphabet consisting of two letters: V={a, b}.

Give the regular expressions corresponding to the informally defined languages below:
1. All words starting with aa.

· L = aa(a|b)*

2. All words containing aa.

· L = (a|b)*aa(a|b)*

3. All words containing an even number of letters.

· L = ((a|b)(a|b))*

4. All words containing an even number of letter a
· L = ((b*)(a)(b*)(a)(b*))*

5. All words which length is a multiple of 5.

· L = ((a|b)?5..5)*

6. All words containing three consecutive a.

· L = (a|b)*aaa(a|b)*

7. All words which do not contain three consecutive a.

· L = b*(a?0..2)b*(b+(a?0..2))*
Q2: Automata: For each regular expression below, give an accepting automaton that accepts the language defined the regular expression:

 1. L = (a |b) c
ex. {ac, bc}

 2. L = a* b
ex. {b, ab, aab, aaab, ...}

 3. L = a* (a b c)*
(a, abc,aaabcabc)

 4. L = (a | b)*

(aabb,ab,a,bb,bbabab,aaaa,bbbb)

 5. L = (a | b) c* c b b*
(acb,bcb,bcccccbbbbb)

Q3: Programming a recognizer in Java: A simple Java program was developed that asks the user for a character string, tests whether it contains a substring a* b or not, and prints out all the substrings that match the pattern.

A Java program was developed, built using the Netbeans IDE, which took user input, and tokenized it using the tokenizer class. Based on character sequences, if an put sequence of “a”s were found until a “b” was found followed by an end of character, a valid output string would be found, else no match would be determined.

PART 2

Introduction (analyser for e-mail addresses)
An e-mail analyzer was developed for recognizing valid e-mail addresses. This was developed using the FLEX (lex derivative) form the UNIX community. This is built against the following specification:

Construct a lexical analyzer for recognizing e-mail addresses. Notes:

· Your executable should be named spamfinder

· Your program should be able to read a specific input file using the command

· spamfinder < myinputfile

· Your program should be able to use a specific output file using the command

· spamfinder > myoutputfile

· Your program should be able to convert an input file to an output file by using the command

· spamfinder < myinputfile > myoutputfile
· Your output file should contain one e-mail address per line. Do not insert any additional text of spaces.
Description of the regular expression adopted
The regular expressions adopted included an alphabet with all upper/lower case letter and numbers, special character “-“ . for the subject and address. The only acceptable delimiter was a single occurrence of “@” between the subject and address. A single “.” Between subject words, and between address words is accepted. For IP addresses, dotted notation of Number”.”Number”.”Number”.”Number is accepted. For IP Domain address a 4 number dot delimited set only is acceptable.

The following general rules are applied:

· examples of valid e-mail addresses:
bochmann@site.uottawa.ca

groupe.seg-2501@site.uottawa.ca

bill@microsoft.com

localhost@127.0.0.1

 examples of invalid e-mail addresses that would be ignored:

seg2501

seg@

seg@seg@qc.ca

groupe@.qc.ca

.@site.uottawa.ca

groupe@site..uottawa
Description of the input specification for Lex
The input specification for the Flex analyzer , included the three parts of the analyzer, the Definition specification for acceptable strings , including macro definitions of rules, The accepting rules with matching actions, and user code which provide feedback to the ser on status. Note some action code is included in the rules section.

Problems encountered and lessons learned

Some of the key problems, which are in general typical across various O/S platforms, included syntax compatibility. The different shell dialects in red hat Linux and Sun Solaris provided different minor responses. Some script structures were compatible across platforms and some were not. Also there was a difference between Windows with line terminations of <CR><LF> versus UNIX with a single <LF> or <N> terminator. Also the negation operator in Flex did not behave correctly. In order to assure separation between input addresses, a separation in the rules match ensured correct operation. This included a “^” at the beginning and a”$” terminator at the end.

Conclusion
Flex is a good general purpose tool , and in conjunction with other UNIX string handling tools including grep, egrep, and shell script, along with C code provides a very powerful string handling environment. Theses tools are useful for building useful system applications such as firewall , mail and web proxy services. The ability to produce compiled executables our f Flex , integrated with other C code applications make sting management and string analysis easy under a UNIX/LINUS platform.

ANNEX A - Flex code example

* File........ parser1.lex

 * Contents.... Exemple of small parser usin LEX

 *

 * compilation:

 * flex parser1.lex

 * gcc -o parser1.exe lexyy.c

 */

/* ---------------- Definitions space ----------------- */

%option noyywrap

%{

#include <assert.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

 int num_matches = 0;

%}

valchar [a-zA-Z0-9"!""#""$""%""*""/""?""|""^""{""}""`""~""&""'""+""_"]|"-"

domain [a-zA-Z0-9]

validDomain (({domain}+)|({domain}+"-"{domain}+))+

/* ------------------- Rules space -------------------- */

%%

^({valchar}+["."]{0,1}{valchar}+)+@{validDomain}("."{validDomain}+)+$ {++num_matches; printf("\nThe match was : %s", yytext);}

. {}

%%

/* ----------------- User code space ------------------ */

main()

{

 printf("Listing matches for 'e-mail addresses'.\n");

 yylex();

 printf("--- Number of matches found: %d\n", num_matches);

}

Page 1 of 5 SEG2106 Lab 3 /winter 2008

