SEG 2106 – Assignment 3

Jason LaValley
3789261



Esther Yu

3222774



Due: Tuesday March 25, 2008

SEG 2106 – Assignment 3

Question 1&2 – Modified Grammar in LL(1) Form

program  program id (identifier_list) ;

       compound_statement 

        .

compound_statement begin




  optional_statements




   end

optional_statements  statement_list | Є

statement_list  statement A’

A’  Є | ; statement A’

statement  variable assignop expression | compound_statement | while expression do statement

Variable  id

Expression  simple_expression | simple_expression relop simple_expression

Simple_expression  term|term B’

B’  Є | addop term B’

term  factor C’

C’  Є | mulop factor C’

factor  id | num | ( expression ) | not factor 

This removal of left recursion will make the grammar in LL(1) form.  While a non-ambiguous grammar may or may not be LL(1), the grammar must be non -ambiguous when the grammar is in LL(1) form.  To confirm if statements are in LL(1) form (eg X ( a | b  | …) the first of a cannot equal the first of b.  If a is a non terminal, then the follow of b cannot equal the first of b.
Question 3 : First and Follow

FIRST(compound_statement) = {begin}

FIRST(optional_statement) = { Є, FIRST(statement_list)} = { Є, id, begin, while}

FIRST(statement_list) = {FIRST(statement)} =  {id, begin, while}

FIRST(A') = { Є, ';'}

FIRST(statement) = {FIRST(variable),FIRST(compound_statement), while} = {id, begin, while}

FIRST(variable) = {id}

FIRST(expression) = {FIRST(simple_expression)} = {id, num, '(', not}

FIRST(simple_expression) = {FIRST(term)} = {id, num, '(', not}

FIRST(B') = { Є, mulop}

FIRST(term) = {FIRST(factor)} = {id, num, '(', not}

FIRST(C') = { Є, mulop}

FIRST(factor) = {id, num, '(', not}

-----------------------------------------------------------------------------------------------------

FOLLOW(program) = FOLLOW(compound_statement) = {end, $}

FOLLOW(optional_statements) = FOLLOW(statement_list) = FOLLOW(A')= {;, $}

FOLLOW(statement) = {expression, end, $, )}

FOLLOW(expression) = FOLLOW(simple_expression) = FOLLOW(B') = FIRST(addop) = {addop, $}

FOLLOW(term) = FOLLOW(c') = FIRST(c') = {mulop, $}

FOLLOW(factor) = {id, num, ), $}
	Question 4 – Parsing Tables

	Non-terminals
	Input Symbol

	
	Begin
	End
	Id
	Mulop
	;

	compound_statement
	compound_statement begin  optional_statements   end


	
	
	
	

	optional_statement
	optional_statements  Є
	
	optional_statements  statement_list 


	
	optional_statements  Є

	statement_list
	statement_list  statement A’
	
	statement_list  statement A’
	
	

	A’
	
	
	
	
	A’   ; statement A’



	statement
	statement  variable assignop expression | compound_statement | while expression do statement
	
	statement  variable assignop expression | compound_statement | while expression do statement
	
	

	variable
	
	
	Variable  id
	
	

	expression
	
	
	Expression  simple_expression | simple_expression relop simple_expression
	Expression  simple_expression | simple_expression relop simple_expression
	

	simple_expression
	
	
	Simple_expression  term B’
	
	

	B'
	
	
	
	B’  addop term B’
	

	C’
	
	C’  Є
	
	C’  Є
	

	term
	
	term  factor C’
	
	
	

	factor
	factor  id 
	
	
	
	


	Non-terminals
	Input Symbol

	
	num
	(
	not
	While

	compound_statement
	
	
	
	

	optional_statement
	
	
	
	optional_statements  statement_list 

	statement_list
	
	
	
	statement_list  statement A’

	A’
	
	
	
	A’  Є

	statement
	
	
	
	statement  while expression do statement

	variable
	
	
	
	

	expression
	
	Expression  simple_expression | simple_expression relop simple_expression
	Expression  simple_expression | simple_expression relop simple_expression
	

	simple_expression
	Simple_expression  term B’
	Simple_expression  term B’
	Simple_expression  term B’
	

	B'
	
	
	
	

	C’
	C’  Є
	
	
	

	term
	
	term  factor C’
	term  factor C’
	

	factor
	factor  num
	factor  ( expression )
	factor   not factor
	


Question 5&6 – Semantic Attributes and Evaluation Rules

For “5 > (2 + 3 * 5)”  to be evaluated, the following attributes must be checked (in order):

1) is the left most value a numerical value (ie not a word/variable)

2) determine the symbol following this value → is it part of the supported list of relations

3) determine if the token following the relation symbol is another numerical value or an open bracket

4) if it is a bracket, solve the value before analyzing the relation

i)  determine the number of numerical values and what their relations are

ii) using BEDMAS, calculate the value that the bracket represents

5) based on the leftmost and (possibly calculated) rightmost values, is the relation correct?

The code created in the following sections will be able to follow these instructions with two restrictions.  If the value is related to a bracketed value, then the bracket must have one of the following forms (NOTE, the second restriction is that there will not be nesting brackets):

· (x*y)

· (x/y)

· (x+y)

· (x-y)

Question 7 and following: Code and Results

The code for this assignment was based on the code given to us during Lab6.  Since this code had it's lexical coding in the java language, a separate lex coding (and linux based compiling) was not needed.  The alterations are noted by commented headers and footers, and do not involve recursions.  Please refer to the attached files for the actual code.  The results are as follows:

Input:

	BEGIN

5 >= (1*2);

6 = (7-1);

10 > 4;

4 <= (25/5);

15 < (14+5);

var = 7-1;

END


Output:

	default input is from file exampleInput.txt

BEGIN

5 >= (1*2)

bracket = 1 * 2 = 2

;

5 >= 2 is true

6 = (7-1)

bracket = 7 - 1 = 6

;

6 = 6 is true

10 > 4;

10 > 4 is true

4 <= (25/5)

bracket = 25 / 5 = 5

;

4 <= 5 is true

15 < (14+5)

bracket = 14 + 5 = 19

;

15 < 19 is true

var = cannot be statically evaluated

7-1;

END

end of file encountered!


