
1

UPPAAL TutorialUPPAAL TutorialUPPAAL Tutorial
IntroductionIntroduction

Alexandre David

Paul Pettersson

RTSS’05

Collaborators

@UPPsala
Wang Yi
Paul Pettersson
John Håkansson
Anders Hessel
Pavel Krcal
Leonid Mokrushin
Shi Xiaochun

@AALborg
Kim G Larsen
Gerd Behrman
Arne Skou
Brian Nielsen
Alexandre David
Jacob Illum Rasmussen
Marius Mikucionis

@Elsewhere
Emmanuel Fleury, Didier Lime, Johan Bengtsson, Fredrik Larsson, Kåre J 
Kristoffersen, Tobias Amnell, Thomas Hune, Oliver Möller, Elena 
Fersman, Carsten Weise, David Griffioen, Ansgar Fehnker, Frits 
Vandraager, Theo Ruys, Pedro D’Argenio, J-P Katoen, Jan Tretmans, Judi 
Romijn, Ed Brinksma, Martijn Hendriks, Klaus Havelund, Franck Cassez, 
Magnus Lindahl, Francois Laroussinie, Patricia Bouyer, Augusto Burgueno, 
H. Bowmann, D. Latella, M. Massink, G. Faconti, Kristina Lundqvist, Lars 
Asplund, Justin Pearson...



2

Real-Time Systems

Plant
Continuous

Controller Program
Discrete

E.g.: Air Bags, Cruise Control, ABS
Process Control, Production Lines, Robots
Real-time Protocols
DVD/CD Players

Real-Time System
A system where correctness not only depends on the 
logical order of events but also on their timing!!

Real-Time System
A system where correctness not only depends on the 
logical order of events but also on their timing!!

sensors

actuators

Task
Task

Task
Task

Real-Time Model-Checking

sensors

actuators

Task
Task

Task
Task

a

cb
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a
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UPPAAL Model

Model of
environment
(user-supplied)

Model of
tasks
(automatic?)

Plant
Continuous

Controller Program
Discrete
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Model-Checking

A – Model: Network of Timed Automata
F – Requirement: temporal logical formula, e.g.

Invariant: something bad will never happen, something 
may happen
Liveness: something will eventually happen

Model: A

Requirement 
Specification: F A ² F

Yes!

No!        
Diagnostic 
Information

UPPAAL

UPPAAL Tool

Modeling

Simulation

Verification
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UPPAAL’s Architecture

Linux, Windows, Solaris, MacOS

Outline Tutorial Day
Session 1: Introduction 
(9:00-10:30)

Lecture
• Tool presentation
• Modeling: Timed Automata w. 

extensions
• Query Language
• Symbolic Semantics

Demo/Exercise
Session 2: Inside UPPAAL Basics 
(11:00-12:00)

Lecture
• Reachability Analysis
• Difference Bounded Matrices
• Liveness checking

Lunch Break

Session 3: Inside UPPAAL 
Advanced (13:30-15:00)

Lecture
• Virtual machine
• Sharing
• Optimizations
• Simulation
• Modeling Patterns

Session 4: Beyond UPPAAL 
(15:30-17:00)

Lecture
• UPPAAL Cora
• UPPAAL Tron
• UPPAAL TIGA
• CoVer
• Times
• Open source modules

Exercise
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Modeling Formalisms
Timed Automata
Query Language
Symbolic Semantics

Timed Automata:

Light Control

WANT:
• pressed once = light
• pressed twice quickly = light will get brighter
• pressed again = light off.

Off Light Bright
press? press?

press?

press?
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Off Light Bright
press? press?

press?

press?

SOLUTION: Add real-valued clock x to
measure the delay between press events 

X:=0

X<=3

X>3

with Timing

Timed Automata:

Light Control

Timed Automata review

n

m

a

Alur & Dill 1990

Clocks: x, y

x<=5 & y>3

x := 0

Guard 
Boolean combination of integer bounds
on clocks

Reset
Action performed on clocks

Transitions

( n , x=2.4 , y=3.1415 )
( n , x=3.5 , y=4.2415 )

e(1.1)

( n , x=2.4 , y=3.1415 )
( m , x=0 , y=3.1415 )

a

State
( location , x=v , y=u ) where v,u are in R

Action
used

for synchronization

Discrete Trans

Delay Trans
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n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Transitions

( n , x=2.4 , y=3.1415 )
( n , x=3.5 , y=4.2415 )

e(1.1)

( n , x=2.4 , y=3.1415 )
e(3.2)

x<=5

y<=10

Location
Invariants

g1
g2 g3

g4

Timed Automata   review
Invariants

Invariants
ensure 

progress!!

Invariants
ensure 

progress!!

Timed Automata: Example

a

guard

reset-set

location

a

action
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Timed Automata: Example

a
a a

guard

reset-set

location

a

action

Timed Automata: Example

3≤x a

Invariant
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Timed Automata: Example

3≤x a a a a

Invariant

Networks of 
Timed Automata

l1

l2

a!

x>=2
i==3

x := 0
i:=i+4

m1

m2

a?

y<=4

…………. Two-way synchronization
on complementary actions.

Closed Systems!

Two-way synchronization
on complementary actions.

Closed Systems!

(l1, m1,………, x=2, y=3.5, i=3,…..)              (l2,m2,……..,x=0,  y=3.5, i=7,…..)
tau

Example transitions

with (finite) 
integer variables
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Train Crossing [WPD-FORTE’94]

River

Crossing

Gate

Stopable
Area

[10,20]

[7,15]

Queue

[3,5]

Train Crossing

River

Crossing

Gate

Stopable
Area

[10,20]

[7,15]

Queue

[3,5]appr,
stop

leave

go

empty
nonempty
hd, add,rem

ee

Communication via channels and
shared variable.
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Scheduling with UPPAAL

5
10

20
25

Unsafe Side Safe Side

If possible find schedule for all four men 
to reach safe side in 60 min.

lamp

night

damaged bride (max 2 men) with mines

Bridge Problem

Can be modeled 
and solved with timed automata in UPPAAL.

UNSAFE SAFE

5 10 20 25

Mines
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Timed Automata in UPPAAL
Timed Automata with Invariants

urgent action channels,
urgent and committed locations,
data-variables (with bounded domains),
arrays of data-variables, 
constants, 
guards and assignments over data-variables and 
arrays…,
templates with local clocks, data-variables, and

constants.
C subset

Declarations in UPPAAL
The syntax used for declarations in UPPAAL is similar 
to the syntax used in the C programming language.

Clocks:
Syntax:

clock x1, …, xn ;

Example: 
clock x, y; Declares two clocks: x and y.
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Declarations in UPPAAL 
(cont.)

Data variables
Syntax:

int n1, … ; Integer with “default” domain.
int[l,u] n1, … ; Integer with domain “l” to “u”.
int n1[m], … ; Integer array w. elements n1[0] to 

n1[m-1].

Example;
int a, b;
int[0,1] a, b[5][6];

Declarations in UPPAAL 
(cont.)

Actions (or channels):
Syntax:

chan a, … ; Ordinary channels.
urgent chan b, … ; Urgent actions (see later)

Example:
chan a, b;
urgent chan c;
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Declarations UPPAAL
(const.)

Constants
Syntax:

const int c1 = n1;

Example:
const int[0,1] YES = 1;
const bool NO = false;

Timed Automata in UPPAAL

n

m

a!

x>=5 && y>3

x = 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||:: <=<=

clock   natural number  “and”

}!,,,,,{
},,,,{

::
|::

,||::

=>>===<=<∈
>>===<=<∈⊗

=
+⊗⊗=

=

op

ExpropExprg
nyxnxg

ggggg

d

c

dc

Clock guards

Data guards

Clock Assignments

Variable Assignments

):?(
|/
|*
|
|

||
|][|::

:

ExprExprg
ExprExpr
ExprExpr
ExprExpr
ExprExpr

Exprn
ExpriiExpr

Expri

d

−
+

−
=

=

Location Invariants

x = n 
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Timed Automata in UPPAAL

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||:: <=<=

clock   natural number  “and”

}!,,,,,{
},,,,{

::
|::

,||::

=>>===<=<∈
>>===<=<∈⊗

=
+⊗⊗=

=

op

ExpropExprg
nyxnxg

ggggg

d

c

dc

nx =:

Clock guards

Data guards

Clock Assignments

Variable Assignments

):?(
|/
|*
|
|

||
|][|::

:

ExprExprg
ExprExpr
ExprExpr
ExprExpr
ExprExpr

Exprn
ExpriiExpr

Expri

d

−
+

−
=

=

Location Invariants

Actions:
• “a” name of action
• a! or a?
• one or zero per edge

Broadcast Synchronization

Declared like
broadcast chan a, b, c[2];
If a is a broadcast channel:

a! = Emmision of broadcast
a? = Reception of broadcast

A set of edges in different processes can 
synchronize if one is emitting and the others are 
receiving on the same b.c. channel.  
A process can always emit.  
Receivers must synchronize if they can. 
No blocking.
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Urgent Channels: Example 1

Suppose the two edges in 
automata P and Q should be 
taken as soon as possible.
I.e. as soon as both automata 
are ready (simultaneously in 
locations l1 and s1).
How to model with invariants 
if either one may reach l1 or 
s1 first?

a! a?

l1

l2

s1

s2

P: Q:

Urgent Channels: Example 1

Suppose the two edges in 
automata P and Q should be 
taken as soon as possible
I.e. as soon as both automata 
are ready (simultaneously in 
locations l1 and s1).
How to model with invariants 
if either one may reach l1 or 
s1 first?
Solution: declare action “a”
as urgent.

a! a?

l1

l2

s1

s2

P: Q:
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Urgent Channels

urgent chan hurry;

Informal Semantics:
• There will be no delay if transition with urgent action can 
be taken.

Restrictions:
• No clock guard allowed on transitions with urgent actions.
• Invariants and data-variable guards are allowed.

Urgent Channel: Example 2

Assume i is a data variable.
We want P to take the transition 
from l1 to l2  as soon as i==5.

i==5

l1

l2

P:
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Urgent Channel: Example 2

Assume i is a data variable.
We want P to take the transition 
from l1 to l2  as soon as i==5.
Solution: P can be forced to take 
transition if we add another 
automaton: 

where “go” is an urgent channel, 
and we add “go?” to transition 
l1 l2 in automaton P.

i==5

l1

l2

P:

s1 go!

go?

Urgent Location: Example
Assume that we model a simple 
media M:

that receives packages on 
channel a and immediately sends 
them on channel b.
P models the media using clock 
x.

Ma b a?
x:=0

l1
P:

x==0
b!

l2

l3

x≤0
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Urgent Location: Example

Assume that we model a simple 
media M:

that receives packages on 
channel a and immediately sends 
them on channel b.
P models the media using clock 
x.
Q models the media using 
urgent location. 
P and Q have the same behavior.

Ma b a?
x:=0

l1
P:

x==0
b!

l2

l3

x≤0

a?

l1
Q:

b!

l2

l3

urgent

Urgent Location

Click “Urgent” in State Editor.

Informal Semantics:
• No delay in urgent location.

Note: the use of urgent locations reduces the number of 
clocks in a model, and thus the complexity of the analysis.
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Committed Location: Ex. 1
Assume: we want to model a 
process (P) simultaneously 
sending message (a) to two 
receiving processes (when i==0). 
P’ sends “a” two times at the 
same time instant, but in location 
“n” other automata, e.g. Q may 
interleave (which is wrong):

a!a!

l1

l2

P:

a!

l1
P’:

a!

n

l2

urgenti:=1

i==0
i==0

i:=1
k1 k2

i==0Q:

Committed Location: Ex. 1

Assume: we want to model a 
process (P) simultaneously 
sending message (a) to two 
receiving processes (when i==0). 
P’ sends “a” two times at the 
same time instant, but in location 
“n” other automata, e.g. Q may 
interleave (which is wrong):

Solution: mark location n 
“committed” in automata P’
(instead of “urgent”).

a!a!

l1

l2

P:

a!

l1
P’:

a!

n

l2

committedi:=1

i==0
i==0

i:=1
k1 k2

i==0Q:
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Committed Location

Click “Committed” i State Editor.

Informal Semantics:
• No delay in committed location.
• Next transition must involve automata in committed
location. 

Note: the use of committed locations reduces the number of 
clocks in a model, and allows for more space and time efficient 
analysis.

Committed Location: Ex. 2

Assume: we want to pass 
the value of integer ”k”
from automaton P to 
variable ”j” in Q. 
The value of k can is 
passed using a global 
integer variable ”t”. 
Location “n” is committed 
to ensure that no other 
automat can assign “t”
before the assignment 
“j:=t”.

a?

l1

l2

Q:l1
P:

a!

n

l2

j:=t

t:=k

committed
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More Expressions

Operators (not clocks): 
Logical: 

• && (logical and), || (logical or), ! (logical negation), 
Bitwise: 

• ^ (xor), & (bitwise and), | (bitwise or), 
Bit shift: 

• << (left), >> (right) 
Numerical: 

• % (modulo), ? (max) 
Assignments: 

• +=, -=, *=, /=, ^=, <<=, >>=, := 
Prefix and postfix: 

• ++ (increment), -- (decrement) 

More on Types

Multi dimensional arrays
e.g. int b[4][2];

Array initialiser:
e.g. int b[4] := { 1, 2, 3, 4 };

Arrays of channels, clocks, constants. 
e.g. 
chan a[3];
clock c[3];
const k[3] { 1, 2, 3 };

Broadcast channels.
e.g. broadcast chan a;
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Declarations

Constants
Bounded integers
Channels
Clocks
Arrays

Templates
Processes
Systems

Constants
Bounded integers
Channels
Clocks
Arrays

Templates
Processes
Systems

Templates
Templates may be 
parameterised:

int v; const min; 
const max

int[0,N] e; const id

Templates are instantiated
to form processes:

P:= A(i,1,5);
Q:= A(j,0,4);

Train1:=Train(el, 1);
Train2:=Train(el, 2);
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Extensions

Select statement

models a non-deterministic
choise
x : int[0,42]

Types

Record types
Type declarations
Meta variables:
not stored with state
meta int x;

Forall / Exists expressions

forall (x:int[0,42]) 
expr
true if expr is true for all
values in [0,42] of x

exists (x:int[0,4]) expr
true if expr is true for some
values in [0,42] of x

Example:
forall
(x:int[0,4])array[x];

Modeling Formalisms
Timed Automata
Query Language
Symbolic Semantics

CLASSICCLASSICCLASSIC
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Query Language

A subset of the logic Timed 
Computation Tree Logic (TCTL).
Can be efficiently implemented

A

B C

P:
P’s compu-
tation tree: A

B

A

C

CC

Quantifiers in TCTL
E - exists a path ( “E” in UPPAAL).
A - for all paths ( “A” in UPPAAL).
G - all states in a path ( “[]” in UPPAAL).
F - some state in a path ( “<>” in UPPAAL).

The following combination are supported: 
A[], A<>, E<>, E[].
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E<> p – “p Reachable”
E<> p – it is possible to reach a state in 
which p is satisfied.

p is true in (at least) one reachable state.

p

A[] p – “Invariantly p”
A[] p – p holds invariantly.

P is true in all reachable states.

p

p

p

p

pp
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A<> p – “Inevitable p”
A<> p – p will inevitable become true

the automaton is guaranteed to eventually reach a 
state in which p is true.

P is true in some state of all paths.

p

pp

E[] p – “Potentially 
Always p”

E[] p – p is potentially always true.

There exists a path in which p is true in all 
states.

p

p

p
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Local Properties

A[]p, A<>p, E<>p, E[]p – p is a local property

Syntax:

p::= a.l | gd | gc | deadlock | 
p and p | p or p | not p | 
p imply p | ( p )

clock guarddata guard
automata location

process name

Modeling Formalisms
Timed Automata
Query Language
Symbolic Semantics
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Symbolic States
From Infinite to Finite

State
(n, x=3.2, y=2.5 )

x

y

x

y

Symbolic state (set)

Zone:
conjunction of
x-y<=n, x<=>n

(n, 1·x·4, 1·y· 3)

58

Symbolic Transitions

n

m

x>3

y:=0

delays to

conjuncts to

projects to

x

y
1<=x<=4
1<=y<=3

x

y
1<=x, 1<=y
-2<=x-y<=3

x

y 3<x, 1<=y
-2<=x-y<=3

3<x, y=0

x

y

Thus  (n,1<=x<=4,1<=y<=3)  =a => (m,3<x, y=0) Thus  (n,1<=x<=4,1<=y<=3)  =a => (m,3<x, y=0) 

a

using Zones
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Zones = Conjuctive
constraints

A zone Z is a conjunctive formula:
g1 & g2 & ... & gn

where gi is a clock constraint:
xi ~ bi or  xi-xj~bij

Use a zero-clock x0 (constant 0)
A zone can be re-written as a set:

{xi-xj ~ bij | ~ is < or ≤, i,j≤n}
This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

Solution set as semantics

Let Z be a zone (a set of constraints)

Let [Z]={ u | u is a solution of Z }
The semantics

(We shall simply write Z instead [Z] )
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Operations on Zones
Strongest post-condition (Delay): SP(Z) or Z↑

[Z↑] = {u+d| d ∈ R, u∈[Z]}

Weakest pre-condition: WP(Z) or Z↓ (the dual of Z↑)
[Z↓] = {u| u+d∈[Z] for some d∈R}

Reset: {x}Z or Z(x:=0)
[{x}Z] = {u[0/x] | u ∈[Z]}

Conjunction
[Z&g]= [Z]∩[g]

An important theorem
on Zones

The set of zones is closed under all  
constraint operations (including x:=x-c or 
x:=x+c)
That is, the result of the operations on a 
zone is a zone
That is, there will be a zone (a finite object
i.e a zone/constraints) to represent the sets: 
[Z↑],  [Z↓], [{x}Z]
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One-step reachability: 
Si Sj

Delay:  (n,Z) (n,Z’) where Z’= Z↑ ∧ inv(n)

Action: (n,Z) (m,Z’) where Z’= {x}(Z ∧g)

Successors(n,Z)={(m,Z’) | (n,Z) (m,Z’), Z’≠Ø}
• Sometime we write: (n,Z) (m,Z’) if (m,Z’) is a successor of 

(n,Z)

n m
g x:=0

if

Now, we have a search 
problem

(n0,Z0)

S2, S3  ......   Sn

T2                 T1

…
..

Reachable?
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~ End of Session 1 ~

Urgency & Commitment

Urgent Channels

No delay if the 
synchronization edges can be 
taken !

No clock guard allowed.
Guards on data-variables.

Declarations:
urgent chan a, b, c[3];

Urgent Locations

No delay – time is freezed!
May reduce number of 
clocks!

Committed Locations

No delay.
Next transition MUST 
involve edge in one of the 
processes in committed 
location
May reduce considerably 
state space
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Timed Automata
= Finite State Control + Real Valued Clocks

invariants

Guards

Synchronizations

Resets

Discrete 
Variables

UPPAAL 3.6 beta 2

Soon to be UPPAAL 3.6

New language features
Record data types
Subset of C for user-defined 
functions

Lacks pointers, recursive 
functions, enumeration and 
union types, and bitwise 
negation

UPPAAL 3.4.11 (Jun 2005)

Current official release

Textual and graphical languages with
Parallel composition
Synchronisation via channels
Simple data types
Rich expression language
Parameterised templates
Urgent Actions
Committed Locations
Urgent Locations

Expressions

used in 
guards, 
invariants, 
assignments,
synchronizations
properties 

used in 
guards, 
invariants, 
assignments,
synchronizations
properties 
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Expressions

Operators
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Guards, Invariants, 
Assignments

Guards: 
It is side-effect free, type 
correct, and evaluates to 
boolean
Only clock variables, integer 
variables, constants are 
referenced (or arrays of 
such)
Clocks and differences are 
only compared to integer 
expressions
Guards over clocks are 
essentially conjunctions (i.e. 
disjunctions are only allowed 
over integer conditions)

Assignments
It has a side effect and is 
type correct
Only clock variable, integer 
variables and constants are 
referenced (or arrays of 
such)
Only integer are assigned to 
clocks

Invariants
It forms conjunctions of 
conditions of the form x<e
or x<=e where x is a clock 
reference and e evaluates to 
an integer


