Modelling and Verification of Web Services
Business Activity Protocol

Anders P. Ravn, Jiti Srba*, and Saleem Vighio**

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300, DK-9220 Aalborg East, Denmark.
{apr,srba,vighio}@cs.aau.dk

Abstract. WS-Business Activity specification defines two coordination
protocols in order to ensure a consistent agreement on the outcome of
long-running distributed applications. We use the model checker UPPAAL
to analyse the Business Agreement with Coordination Completion pro-
tocol type. Our analyses show that the protocol, as described in the stan-
dard specification, violates correct operation by reaching invalid states
for all underlying communication media except for the perfect FIFO.
Based on this result, we propose changes to the protocol. A further in-
vestigation of the modified protocol suggests that messages should be
received in the same order as they are sent so that a correct protocol
behaviour is preserved. Another important property of communication
protocols is that all parties always reach their final states. Based on
the verification with different communication models, we prove that our
enhanced protocol satisfies this property for asynchronous, unreliable,
order-preserving communication whereas the original protocol does not.

1 Introduction

Numerous protocols from the web services protocol stack [9] are currently in
active development in order to support communication schemes that guarantee
consistent and reliable executions of distributed transactions. As applications
depend on the correctness of these protocols, guarantees about their functionality
should be given prior to the protocols being put into industrial use. However,
design and implementation of these protocols is an error-prone process, partly
because of the lack of details provided in their standards [7, 17]. Therefore, formal
approaches provide a valuable supplement during the discussion and clarification
phases of protocol standards. The advantage of formal methods is that automatic
tools like UPPAAL [3] and TLC [7] can be applied to analyse protocol behaviours
and verify general correctness criteria.

In this paper we consider the WS-Coordination framework [12] which, among
others, includes the WS-Atomic Transaction (WS-AT) [10] and WS-Business

* The author is partially supported by the Ministry of Education of Czech Republic,
grant no. MSM 0021622419.

** The author is supported by Quaid-e-Awam University of Engineering, Science, and
Technology, Nawabshah, Pakistan, and partially by the Nordunet3 project COSoDIS.

2 Anders P. Ravn, Jifi Srba, and Saleem Vighio

Activity (WS-BA) [11] standards. The WS-AT specification provides protocols
used for simple short-lived activities, whereas WS-BA provides protocols used for
long-lived business activities. The WS-AT protocol has recently been in focus in
the formal methods community and its correctness has been verified using both
the TLC model checker [7] where the protocol was formalized in the TLA™T [8]
language as well as using the UPPAAL tool and networks of communicating timed
automata [15]. In [15], we discussed the key aspects of the two approaches,
including the characteristics of the specification languages, the performances of
the tools, and the robustness of the specifications with respect to extensions.

In the present work we analyse the WS-BA standard which (to the best of our
knowledge) has not yet been automatically verified in the literature. It consists
of two coordination protocols: Business Agreement with Participant Completion
(BAwPC) and Business Agreement with Coordinator Completion (BAwCC).
We focus on BAwCC in our analysis. It is more complex in its behaviour and
has a larger number of states, transitions and messages than BAwPC. We de-
velop several UPPAAL [3] models related to the WS-BA protocols based on the
state-tables provided in the standard specification (see [11] or the appendix for
the complete tables). We use with advantage the C-like constructs available in
UprPAAL and the model of the BAwCC protocol contains more than 600 lines of
C code. Our tool supported analysis unexpectedly reveals several problems. The
safety property, that the protocol never enters an invalid state, is checked for
a range of communication mechanisms. The main result is that the property is
violated by all considered communication mechanisms but perfect FIFO (queue).

Based on a detailed analysis of the error traces produced by UPPAAL, we
suggest fixes to the protocol. Moreover, in contrast to [7, 15], we do not limit our
analyses to only one type of asynchronous communication policy where messages
can be reordered, lost and duplicated, but study different communication mech-
anisms (see e.g. [1]). This fact appears crucial as even the fixed protocol behaves
correctly only for some types of communication media, whereas for others it still
violates the correctness criteria.

Another important property of web services applications is that they should
terminate in consistent end states, irrelevant of the actual behaviour of the other
participating parties [6]. This kind of property is usually called liveness and
for most nontrivial protocols it cannot be established without some fairness
assumptions, such that if a particular transition is infinitely often enabled then
it is also executed. In our setting we use a more engineering-like approach by
introducing tire-outs (delays before an alternative action is chosen, essentially
the “execution delay” of ATP [13]) on the resubmission of messages, as this is
a likely way this situation is handled in practice. UPPAAL enables us to specify
the timing information in a simple and elegant way and our verification results
show that under suitable timing constraints used for tire-outs, we can guarantee
the termination property for the fixed protocol, at least for the communication
policies where the protocol is correct.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the web services business activity protocol and discuss different types of com-

Modelling and Verification of Web Services Business Activity Protocol 3

munication policies. Section 3 introduces the UPPAAL modeling approach used
in the case study. Properties of the original and the fixed protocols are dis-
cussed in Sections 4 and 5. Section 6 describes the termination property and its
verification. Finally, Section 7 gives a summary and suggestions for the future
research. The appendix contains a full overview of the state-transition tables of
the original and modified BAwCC protocol.

2 WS-Business Activity Protocol

WS-Business Activity (WS-BA) [11] and WS-Atomic Transaction (WS-AT) [10]
both built on top of WS-Coordination specification [12] form the Web Ser-
vices Transaction Framework (WSTF). WS-Coordination describes an extensible
framework for coordinating transactional web services. It enables an application
service to create a context needed to propagate an activity to other services and
to register for coordination protocols. These coordination protocols are described
in WS-AT and WS-BA specifications. WS-AT provides protocols based on the
ACID (atomicity, consistency, isolation, durability) principle [5] for simple short-
lived activities, whereas WS-BA provides protocols used for long-lived business
activities with relaxation of ACID properties.

WS-BA [11] describes two coordination types: AtomicOutcome and Mixed-
Outcome. In AtomicOutcome the coordinator directs all participants to the same
outcome, i.e. either to close or to cancel/compensate. In MixedOutcome some
participants may be directed to close and others to cancel/compensate. Each of
these coordination types can be used in two coordination protocols: WS-Business
Agreement with Participant Completion (BAwPC) and WS-Business Agreement
with Coordination Completion (BAwCC) that we shall focus on. A participant
registers for one these two protocols, which are managed by the coordinator of
the activity.

2.1 Business Agreement with Coordination Completion

A state-transition diagram for BAwCC is shown in Figure 1. Note that the figure
depicts a combined view and the concrete coordinator and participant states are
abstracted away. The complete transition tables are listed in the appendix.

A participant registered for this protocol is informed by its coordinator that
it has received all requests to perform its work and no more work will be re-
quired. In this version of the protocol the coordinator decides when an activity
is terminated, so completion notification comes from the coordinator: It sends
a Complete message to the participant to inform it that it will not receive any
new requests within the current business activity and it is time to complete the
processing. The Complete message is followed by the Completed message by the
participant, provided it can successfully finish its work. This protocol also in-
troduces a new Completing state between Active and Completed states. Once the
coordinator reaches the Completed state, it can reply with either a Close or a
Compensate message. A Close message informs the participant that the activity

4 Anders P. Ravn, Jifi Srba, and Saleem Vighio

e eemm=-
NG -
o TN e
(\0’& PRd ((\Q .
. P
C:a(\ PR .
/’ (\0&',’
,/’ (;b(\ ,'
L “w A ;;’I EX|t|ng|- ______
. EX‘_—"I - =
R4 _-" ’ ’af‘ A
Phg 1 - A\ .
Lol Exit N

Completed
-- -p- -- >l Completed Close C_Io_sgd

! Compensate “Satee‘

1

o) -)

nsating I— ---- K
Y

~~

Fig. 1. Business Agreement with Coordinator Completion

has completed successfully. A participant then sends a Closed notification and
forgets about the activity. Upon receipt of a Closed notification the coordinator
knows that the participant has successfully completed its work and forgets about
the participant’s state.

A Compensate message, on the other hand, instructs the participant to undo
the completed work and to restore the recorded data to its initial state. A partic-
ipant in response can either send a Compensated or a Fail notification. The Com-
pensated message informs the coordinator that the participant has successfully
compensated its work for the business activity, the participant then forgets about
the activity and the coordinator forgets about the participant. Upon receipt of
a Fail message, the coordinator knows that the participant has encountered a
problem and has failed during processing of the activity. The coordinator then
replies with a Failed message and forgets about the state of the participant. The
participant in turn also forgets about the activity. A participant can also send
CannotComplete or Exit messages while being in Active, or Completing states. A
CannotComplete notification informs the coordinator that the participant can
not successfully complete its work and any pending work will be discarded and
completed work will be canceled. The coordinator replies with a NotCompleted
message and forgets about the state of the participant. The participant also

Modelling and Verification of Web Services Business Activity Protocol

forgets about the activity in turn. In case of an Exit message the coordinator
knows that the participant will no longer engage in the business activity and
the pending work will be discarded and any work performed will be canceled.
The coordinator will reply with the Exited message and will forget about the
participant. The participant will also forget about the activity. In Active and
Completing states the coordinator can end a transaction by sending a Cancel
message. A participant can either reply with a Canceled or a Fail notification. A
Canceled message informs the coordinator that the work has been successfully
canceled and then the participant forgets about the activity.

2.2 Communication Policies

The WS-BA specification is not explicit about
the concrete type of communication medium
for exchanging messages apart from implicitly

expecting that the communication is asyn- SET

chronous. In [7] the authors (two of them were \
designers of the specification) studied WS-AT STUTT-FIFO
and agreed that one should consider asyn-

chronous communication where messages can BAG T

be lost, duplicated and reordered. Indeed, the LOSSY-FIFO
WS-AT protocol was proved correct in this /
setting. It seems natural to adopt the same FIFO

communication assumptions also for WS-BA,
however, as we show later on, the BAwCC
protocol is not correct under such a liberal
communication policy. We therefore consider
a hierarchy of five different communication

Fig. 2. Communication media

policies for asynchronous message passing in our study.

— Unreliable Unordered Asynchronous Communication. In this type of asyn-

chronous communication the messages may arrive in different order than
they were sent and the communication medium is assumed to be unreliable
as messages can be lost and duplicated. It corresponds well with the ele-
mentary UDP protocol of TCP/IP. As argued in [7], this kind of policy is
conveniently implemented as a pool of messages mathematically represented
by a set. Adding more messages of the same sort to a set has no additional
effect and as our correctness property is a safety property, lossiness is im-
plicitly included by the fact that protocol participants are not in any way
forced to read messages contained in the pool (see [7,15] for further discus-
sion on this issue). In the rest of the paper we call this kind of communication
implementation SET.

Reliable Unordered Asynchronous Communication. This kind of communi-
cation still does not preserve the order of messages but it is a completely
reliable medium where a message can only be received as many times as it
was sent. Therefore we have to keep track of the number of messages of the

6 Anders P. Ravn, Jif{ Srba, and Saleem Vighio

same type currently in transit. We can model this communication medium
as a multiset (also called a bag) of messages. We refer to this particular
implementation of the communication medium as BAG.

— Reliable Ordered Asynchronous Communication. This type of communica-
tion channel represents the perfect communication medium where messages
are delivered according to the FIFO (first in, first out) policy and they can be
neither duplicated nor lost. The problem with this medium is that for most
nontrivial protocols there is no bound on the size of the communication
buffer storing the queue of messages in transit (thanks to the asynchronous
nature of the communication) and automatic verification of protocols using
this communication policy is often impossible due to the infinite state-space
of possible protocol configurations. We refer to this communication as FIFO.
It is essentially implemented by the FTP protocol of TCP/IP.

— Lossy Ordered Asynchronous Communication. Here we assume an order pre-
serving communication policy like in FIFO but messages can now be also lost
before their delivery. The problem with unbounded size of this communica-
tion channel remains for most of interesting protocols. We call this policy
LOSSY-FIFO.

— Stuttering Ordered Asynchronous Communication. In order to overcome the
infinite state-space problem mentioned in the FIFO and LOSSY-FIFO com-
munication policies, we introduce an abstraction that ignores stuttering, i.e.
repetition of the same message inside of an ordered sequence of messages.
We can also consider it as a lossy and duplicating medium which, how-
ever, preserves the order among different types of messages. In practice this
means that if a message is sent and the communication buffer contains the
same message as the most recently sent one, then the message will be ig-
nored. Symmetrically, if a message is read from the buffer, it can be read as
many times as required providing it is of the same type. This means that
the communication buffer can remain finite even if the protocol includes re-
transmission of messages, as e.g. both protocols from WS-BA specification
do. We call this communication type STUTT-FIFO.

Figure 2 shows the relationship among the different communication media.
The arrows indicate the inclusions (in the sense of possible behaviours) of the
presented media. Hence any protocol execution with the FIFO communication
policy is possible also in any other communication type above it. This means
that if we can introduce the validity of any safety property for e.g. the SET
medium, this result will hold also for any other medium below it and finding an
error trace in the protocol with e.g. the FIFO medium implies the presence of
such a trace also in any other medium above it.

While the communication policies SET, BAG, FIFO and LOSSY-FIFO are well
studied, the STUTT-FIFO communication we introduce in this paper is nonstan-
dard and not implemented in any of industrial applications that we are aware
of. Although, as remarked above, FTP will work this way if the application level
avoids retransmission of data. The main reason why we consider this kind of
communication is that it allows us to validate the protocols in question while

Modelling and Verification of Web Services Business Activity Protocol 7

preserving the finiteness of the state-space. Hence we can establish safety guaran-
tees also for the FIFO and LOSSY-FIFO communication policies, which would be
otherwise impossible as the size of such channels is not bounded in our setting.

3 Formal Modelling of BAwCC in UPPAAL

The WS-BA standard [11] provides a high-level description of the WSwCC pro-
tocol. It is essentially a collection of protocol behaviours described in English
accompanied by diagrams like the graph shown in Figure 1 and state-transition
tables for the parties involved in the protocol. See Figure 3 a) for a fragment of
such a table and the appendix for a complete collection of the tables.

Figure 3 a) describes how the transaction coordinator, being in its internal
state Closing, handles the message Complete arriving from the participant. It
will simply resend to the participant the message Close and remain in the state
Closing. The table also describes that while being in the state Closing, the co-
ordinator does not expect to receive the message CannotCompensate from the
participant, and should this happen, it will enter an invalid state.

The UPPAAL implementation of this behaviour is given in Figure 3 b). The
syntax should be readable even without any prior knowledge of the tool, but
we refer the interested reader to [3] for a thorough introduction to UPPAAL.
The code in the figure first lists the names of constants that represent messages
sent from the transaction coordinator to the participant and vice versa. Then it
defines two functions Send Msg and Receive Msg that take care of sending and
receiving of messages via the bit-vectors msgTC and msgP. The code is shown
only for the simplest SET implementation. For BAG, FIFO, LOSSY-FIFO and
STUTT-FIFO the code is more complex but implemented in a standard way.
The only complication is that the data structures representing these four types
of communication are in general unbounded, so to ensure automatic verification
we introduce a constant upper bound on the buffer size and we register a buffer
overflow in a boolean variable called overflow.

The transitions described in the state tables are then implemented in the
expected way as shown by the two examples in Figure 3 b). The final timed
automata model then consists of a process for the coordinator with two locations
(normal execution and invalid state) and a similar process for the participant
running in parallel with the coordinator process. All data management (states,
buffer content, etc.) is performed via C-like data structures, as this is an efficient
and manageable way to handle this relatively large model. In total the C part
of the implementation contains more than 600 nonempty lines of code. The
complete UPPAAL model can be downloaded at [14].

4 Analysis of BAwCC

As already noted, WS-BA relaxes the ACID principles and allows for a mixed
outcome of a transaction. Therefore, we cannot expect that all parties of the
protocol agree on the outcome, as it was the case for WS-AT protocols [7, 15].

8 Anders P. Ravn, Jif{ Srba, and Saleem Vighio

(a) WS-BA (BAwCC):
Coordinator View for Inbound Events (received messages).

Inbound Events s States —
] Closing ... [Exiting]. ..
Complete ...| resend Close
goto Closing
CannotComplete ||... |goto Invalid-State|. ..

rc) Uppaal encoding with SET Communication (simplified):
Send_Msg() and Receive_Msg() functions for the coordinator.

typedef int[0,6] MsgsTC; typedef int[0,6] MsgsP;

const MsgsTC CANCEL_TC = 0O; const MsgsP EXIT_P = 0;

const MsgsTC COMPLETE.TC = 1; const MsgsP COMPLETED_P = 1;
const MsgsTC CLOSE_TC = 2; const MsgsP FAILP = 2;

const MsgsTC COMPENSATE_TC =3; const MsgsP CANNOT_COMPLETE_P = 3;
const MsgsTC FAILED_TC = 4; const MsgsP CANCELED_P = 4;
const MsgsTC EXITED_TC = 5; const MsgsP CLOSED_P = 5;
const MsgsTC NOT_COMPLETED_TC = 6; const MsgsP COMPENSATED_P = 6;
bool msgTC[MsgsTC] ; bool msgP [MsgsP] ;

void Send Msg(MsgsTC s) { bool Receive Msg(MsgP r) {
msgTC[s] = true; } return msgP[r]; }

Behaviour of transaction coordinator upon the receipt of the message Complete is
modelled by a loop transition with the following guard and update (action).

bool guard() {
return Receive Msg(COMPLETE_P) && stTC == TC_CLOSING; }

void action() { Send Msg(CLOSE_TC); stTC = TC_CLOSING; }

Behaviour of transaction coordinator upon the receipt of the message CannotCom-
plete is modelled by a transition to a new error-state called INVALID with the fol-
lowing guard and with no update.

bool guard() {
return Receive Msg(CANNOT_COMPLETE_P) && stTC == TC_CLOSING; }

Fig. 3. Implementation of selected WS-BA rules in UPPAAL

Instead, we focus on the analysis of the actual state-transition tables w.r.t. reach-
ability of invalid states. Invalid states appear in the tables both for inbound and
outbound messages. The meaning of these states is not clearly stated in WS-

Modelling and Verification of Web Services Business Activity Protocol 9

Compensated

INVALID

Coordinator Medium Participant
1 1 1
H 1 1 1 .
Active : Cancel : : Active
1 1 1
Canceling-Active i i Cancel i
1 1 | .
: : Canceled : Canceling
1 1 1
1 1 1
' ' Compensated ! Ended
1 1 1
: : \ Ended
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

Fig. 4. Error trace in BAwCC leading to an invalid state

BA specification but we contacted the designers via their discussion forum and
received (citing [16]):

“For outbound events, an Invalid State cell means that this is not
a valid state for the event to be produced. ... For inbound events, an
Invalid State cell means that the current state is not a valid state for the
inbound message. For example, for Participants in BusinessAgreement-
WithCoordinationCompletion (table B.3) the Canceling state is not a
valid state for receiving a Close message. There are no circumstances
where a Participant in this state should ever receive a Close message,
indicating an implementation error in the Coordinator which sent the
message. This is a protocol violation ...”

This means that in the tables for outbound events, messages that lead to
invalid states are never sent (and hence omitted in the UPPAAL model) and for
inbound events the possibility to enter an invalid state is a protocol violation.
This requirement is easily formulated in the UPPAAL query language (a subset
of TCTL) as follows.

E<> (tc.INVALID || par.INVALID) && !overflow

This is a safety property asking whether there is a protocol execution in which
either the transaction coordinator (process called tc) or the participant (process
called par) enters the state INVALID while at the same time there was no buffer
overflow. We have checked this property for all five communication policies we
consider and the property surprisingly turned out to be true for all of them except
for FIFO. The tool automatically generated an error trace, seen in Figure 4.
It is easy to see that this trace is executable both for LOSSY-FIFO and BAG
communication (and hence also for any other above them in the hierarchy in
Figure 2). The main point in this trace is that the message Canceled that is sent

10 Anders P. Ravn, Jifi Srba, and Saleem Vighio

by the participant is either lost (possible in LOSSY-FIFO) or reordered with the
message Compensated (possible in BAG).

It is also clear that this error trace cannot be executed in the perfect FIFO
communication policy. For FIFO we were able to verify that the protocol is correct
for up to six messages in transit (three from coordinator to participant and three
in the opposite direction). As perfect FIFO communication is known to have the
full Turing power [4], there is no hope to establish the correctness of the protocol
with unbounded FIFO communication in a fully automatic way.

Another interesting question we can ask about the protocol is whether the
communication medium is bounded for BAwCC or not. This can be done by
asking the following UPPAAL query.

E<> overflow

Verification results show that all communication media except for SET can al-
ways reach a buffer overflow for any given buffer size that we were able to verify
(up to 20 messages in transit). This is a good indication that the communica-
tion buffer is indeed unbounded and a simple (manual) inspection of the protocol
confirms this fact.

5 Enhanced BAwCC

Given the verification results in the previous section, we found the BAwCC
protocol not completely satisfactory as even a simple relaxation of the perfect
communication policy results in incorrect behaviour. Taking into account that
the protocols in WS-AT avoided invalid states even under the most general SET
communication, we shall further analyze the protocol and suggest an improve-
ment.

The error trace in Figure 4 hints at the source of problems. Once a participant
reaches the Ended state, it it instructed to forget all state information and just
send the last message by which the transition to the Ended state was activated.
The problem is that there are three different reasons for reaching the Ended
state, but BAwCC allows for the retransmission of all three messages at the same
time, whenever the participant is in the state Ended. As seen in Figure 4, the
participant after receiving the message Cancel correctly answers with the message
Canceled, but then sends the message Compensated. This causes confusion on the
coordinator side. A similar problem can occur in a symmetric way.

In our proposed fix to the BAwCC protocol, we introduce three additional
end states, both for the participant as well as for the coordinator, in order to
avoid the confusion. The complete state tables of the enhanced protocol are given
in the appendix. We modelled and verified the enhanced protocol in UPPAAL and
the results are as follows.

Under the STUTT-FIFO communication, the medium is bounded with no
overflow, so all verification results are conclusive. We also established that there
is no execution of the modified protocol that leads to an invalid state. As this is

Modelling and Verification of Web Services Business Activity Protocol 11

Coordinator Medium Participant
Active Active
Complete
Completing
Cancel

Canceling-Completing

Cancel

Canceling

Canceled
Ended-Canceled

Complete

Fail
Ended-Canceled
Fail
Failing-Canceling
Canceled

INVALID

Fig. 5. Error trace in enhanced BAwCC leading to an invalid state

a safety property, the positive result holds automatically also for LOSSY-FIFO
and FIFO.

However, when considering the media BAG and SET representing a commu-
nication where messages can be reordered, the tool still returns error traces like
the one depicted in Figure 5. This problem is more inherent to the protocol
design and the reason for the confusion is the fact that the messages Canceled
and Fail sent be the participant are delivered in the opposite order.

To conclude, our enhanced protocol, unlike the original one, is immune to
lossiness and duplication of messages (stuttering) as long as their order is pre-
served. Making the protocol robust w.r.t. reordering of messages would, in our
opinion, require a substantial and nontrivial redesign of the BAwCC protocol.

6 Termination under Fairness

In this section we shall turn our attention to another important property of
distributed protocols, namely the termination property. Termination means that
as long as the communication parties follow the protocol, any concrete execution
will always bring them to their end states. In UPPAAL this property for our
protocol can be formulated as follows.

12 Anders P. Ravn, Jifi Srba, and Saleem Vighio

A<> stTC == TC_ENDED && stP == P_ENDED

The semantics is that in any maximal computation of the protocol, we will
eventually reach a situation where the states of the transaction coordinator as
well as the participant are TC_ENDED and P_ENDED, respectively. Termination is
hence a liveness property.

It is clear that the original BAwCC fails to satisfy termination as we can
reach invalid states from which there is no further continuation. This is true for
all types of communication, except for FIFO, where on the other hand we cannot
prove termination due to the unboundedness of the medium. We shall there-
for focus on our enhanced BAwCC protocol and the communication medium
STUTT-FIFO where the protocol is correct and the medium bounded. A positive
result will imply termination also for LOSSY-FIFO and FIFO.

A quick query about termination in UPPAAL shows that it fails the property
and the tool returns error traces that reveal the reason: there is no bound on
the number of retransmissions of messages and this can create infinite process
executions where the same message is retransmitted over and over. This is to
be expected for any nontrivial protocol and in theory the issue is handled by
imposing an additional assumption on fairness of the protocol execution. This
can for example mean that we require that whenever during an infinite execution
some action is infinitely often enabled then it has to be also executed. Such
assumptions will guarantee that there is a progress in the protocol execution
and are well studied in the theory (see e.g. [2]).

The complication is that fairness concerns infinite executions and is therefore
difficult to implement in concrete applications. Software engineers would typi-
cally use only a limited number of retransmissions within a fixed time interval
and give up resending messages after a certain time has passed.

So far, we have used UPPAAL only for verification of discrete systems, but
the tool allows us to specify also timed automata models and supports their
automatic verification. By introducing the timing aspects into the protocol be-
haviour, we will be able to argue about fairness properties like termination.

We model the retransmission feature using tire-outs. A tire-out imposes a
progress in the model and as already outlined in the introduction it is essentially
the “execution delay” of ATP [13]. In our model we introduce two clocks 2 and
y local both for the coordinator and the participant. We also assume two global
constants MIN-DELAY and TIRE-OUT, representing the minimal possible delay
between two retransmissions and a tire-out time after which the protocol will not
attempt to retransmit the message any more. Figure 6 shows the implementation
of this feature in the protocol model. We already explained that the rules of the
protocol are modelled using loops in UPPAAL automata and the discrete data
are handled using guards and updates (not shown in the illustration). In the
figure we can separate all transitions into two categories: progress transitions
and retransmission transitions. Retransmission transitions retransmit a message
and remain in the same state, while progress transitions change the state of
the participant or the coordinator. The clock = represents the time delay since
the last progress transition occurred (it is reset to 0 by any progress transition)

Modelling and Verification of Web Services Business Activity Protocol 13

2:=0 y > MIN-DELAY and z <TIRE-OUT

P R
z < TIRE-OUT 3:=0

Fig. 6. Tire-outs modelling; P is a progress transition, R is a retransmission transition

and clock y represents the time elapsed since the last retransmission. These two
clocks restrict the behaviour of the retransmission transitions so that they are
enabled only if at least the minimal delay has passed since last retransmission
and the clock x has not exceeded the tire-out limit. The presence of the invariant
x < TIRE-OUT then ensures a progress.

Using the tire-out modeling as described above we were able to automatically
verify that the enhanced BAwCC protocol with the STUTT-FIFO communication
policy satisfies the termination property for suitable constants MIN-DELAY and
TIRE-OUT where, for example, the minimal delay is set to one time unit and
the tire-out deadline to 30 time units. By changing the two constants we can
experiment with different timing options while making (automatically) sure that
the termination property is preserved.

7 Conclusion and Future Work

We provided a formal UPPAAL model of the Business Agreement with Coordina-
tor Completion (BAwCC) protocol from the WS-BA specification. The model is
based on the state-transition tables provided in the specification. We also intro-
duced several ways to model the communication medium, starting with perfect
FIFO channels and ending up with lossy, duplicating and orderless medium. We
have verified that the protocol may enter invalid states for all communication
policies apart from the FIFO. For FIFO we verified that no invalid states are
reachable for up to six messages in transit (three in each direction), however, this
is not a guarantee that the protocol is correct for any size of the FIFO buffer.
Based on the analysis of the protocol in UPPAAL, we suggested an enhanced
protocol which distinguishes among three different ways of entering the ended
states. This protocol is correct also for all imperfect media based on FIFO but
may still reach invalid states if more liberal communication is assumed. By in-
troducing timing constraints (tire-outs) to the protocol behaviour, we were also
able to verify the termination property for imperfect FIFO communication. Fig-
ure 7 gives the summary of the results for all five communication policies and the
original and enhanced protocols. Correctness stands for the absence of invalid
states in protocol executions, boundedness describes whether the communica-

14 Anders P. Ravn, Jifi Srba, and Saleem Vighio

BAwCA Protocol

Buffer Type Properties Original Enhanced
Correctness No No
SET Boundedness Yes Yes
Termination No No
Correctness No No
BAG Boundedness No No
Termination No No
Correctness No Yes
STUTT-FIFO | Boundedness No Yes
Termination No Yes
Correctness No Yes
LOSSY-FIFO Boundedness No No
Termination No Yes
Correctness Yes? Yes
FIFO Boundedness No No
Termination Yes? Yes

Fig. 7. Overview of verification results for BAwCC and enhanced BAwCC

tion channels have bounded size and termination guarantees that during any
protocol behaviour, all parties eventually reach their final (ended) states.

To conclude, the BAwCC protocol seems correct for the perfect FIFO com-
munication as provided e.g. by the FTP of TCP /IP. We assume that the protocol
was also mainly tested in this setting and hence the tests did not discover any
problematic behaviour. On the other hand, the protocol contains a number of
message retransmissions, which would not be necessary for the perfect medium.
This signals that the designers planned to extend the applicability of the proto-
col also to frameworks with unreliable communication but as we demonstrated,
some fixes have to be applied to the protocol in order to guarantee the correct op-
eration also in this case. In any case, WS-BA specification is not explicit about
the assumptions on the communication medium, but this should be perhaps
considered for the future design of protocols.

Finally, the manual creation of UPPAAL models for WS-BA protocols was
a long and time demanding process and in our future work we will try to auto-
mate the process of creating timed automata templates directly from the state-
transition tables. For widely used, standardized protocols, this is probably not
going to find defects. Yet, in concrete implementations some optimizations and
specializations may be included, and here a tool support may assist in validating
the effect of presumably small innocent changes.

Modelling and Verification of Web Services Business Activity Protocol 15

Acknowledgement. The authors are grateful to the anonymous reviewers for their
comments on the perspective of this work.

References

1.

%

10.

11.

12.

13.

14.

15.

16.

17.

Y. Afek, H. Attiya, A. Fekete, M. Fischer, N. Lynch, Y. Mansour, Dai-Wei.
Wang, and L. Zuck. Reliable communication over unreliable channels. J. ACM,
41(6):1267-1297, 1994.

K.R. Apt, N. Francez, and S. Katz. Appraising fairness in languages for distributed
programming. Distributed Computing, 2:226-241, 1988.

G. Behrmann, A. David, and K.G. Larsen. A tutorial on UPPAAL. In Pro-
ceedings of the 4th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems (SFM-RT’04), number 3185 in
LNCS, pages 200-236. Springer-Verlag, 2004.

D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30(2):323-342, 1983.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

Paul Greenfield, Dean Kuo, Surya Nepal, and Alan Fekete. Consistency for web
services applications. In VLDB ’05: Proceedings of the 31st international conference
on Very large data bases, pages 1199-1203. VLDB Endowment, 2005.

J.E. Johnson, D. E. Langworthy, L. Lamport, and F. H. Vogt. Formal specification
of a web services protocol. Journal of Logic and Algebraic Programming, 70(1):34—
52, 2007.

L. Lamport. Specifying Systems. Addison-Wesley, 2003.

B. Mathew, M. Juric, and P. Sarang. Business Process Execution Language for
Web Services 2nd Edition. Packt Publishing, 2006.

E. Newcomer and I. Robinson (chairs). Web services atomic transaction (WS-
atomic transaction) version 1.2, 2009. http://docs.oasis-open.org/ws-tx/wstx-
wsat-1.2-spec.html.

E. Newcomer and I. Robinson (chairs). Web services business activity (WS-
businessactivity) version 1.2, 2009. http://docs.oasis-open.org/ws-tx/wstx-wsba-
1.2-spec-os/wstx-wsba-1.2-spec-os.html.

E. Newcomer and I. Robinson (chairs). Web services coordination (WS-
coordination) version 1.2, 2009. http://docs.oasis-open.org/ws-tx/wstx-wscoor-
1.2-spec-0s/wstx-wscoor-1.2-spec-os.html.

X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and
application. Information and Computation, 114(1):131-178, 1994.

A.P. Ravn, J. Srba, and S. Vighio. UPPAAL model of the WS-BA protocol.
Available in the UPPAAL example section at http://www.uppaal.org.

A.P. Ravn, J. Srba, and S. Vighio. A formal analysis of the web services atomic
transaction protocol with uppaal. In Proceedings of the 4th International Sympo-
stum On Leveraging Applications of Formal Methods, Verification and Validation
(ISOLA’10), volume 6416 of LNCS, pages 579-593. Springer-Verlag, 2010.

I. Robinson. Answer in WS-BA discussion forum, July 14th, 2010.
http://markmail.org/message/wriewgkboaaxw66z.

F. H. Vogt, S. Zambrovski, B. Gruschko, P. Furniss, and A. Green. Implementing
web service protocols in SOA: WS-coordination and WS-businessactivity. In Pro-
ceedings of the Seventh IEEE International Conference on E-Commerce Technology
Workshops(CECW’05), pages 21-28. IEEE Computer Society, 2005.

Anders P. Ravn, Jif{ Srba, and Saleem Vighio

16

BusinessAgreementWithCoordinationCompletion protocol
(Participant View)

Inbound States
Events Active |Canceling|Completing] Completed |Closing|Compensating Failing Failing NotCompleting|Exiting| Ended
(Active, (Compesating)
Canceling,
Completing)
Cancel Canceling Ignore Canceling Resend Ignore Ignore Resend Ignore Resend Resend Send
Completed Fail CannotComplete Exit Canceled
Canceling Closing | Compensating Failing-
Completed Failing-* Compensating NotCompleting | Exiting Ended
Complete Completing Ignore Ignore Resend Ignore Ignore Resend Ignore Resend Resend Send
Completed Fail CannotComplete Ezit Fail
Canceling | Completing Closing | Compensating Failing-
Completed Failing-* Compensating | NotCompleting | Exiting | Ended
Close Invalid Invalid Invalid Closing Ignore Invalid Invalid Invalid Invalid Invalid Send
State State State State State State State State Closed
Closing
Active Canceling | Completing Compensating Failing-* Failing- NotCompleting | Exiting Ended
Compensating
Compensate Invalid Invalid Invalid Compensating| Invalid Ignore Invalid Resend Invalid Invalid Send
State State State State State Fail State State | Compensated
Compensating
Active Canceling | Completing Closing Failing-* Failing- NotCompleting | Exiting Ended
Compensating
Failed Invalid Invalid Invalid Invalid Invalid Invalid Forget Forget Invalid Invalid Ignore
State State State State State State State State
Ended Ended Ended
Active Canceling | Completing Completed | Closing | Compensating NotCompleting | Exiting
Exited Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Forget Ignore
State State State State State State State State State
Ended Ended
Active Canceling | Completing | Completed | Closing | Compensating Failing-* Failing- NotCompleting
Compensating
NotCompleted Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Forget Invalid Ignore
State State State State State State State State State
Ended Ended
Active Canceling | Completing Completed Closing | Compensating Failing-* Failing- Exiting
Compensating

17

Modelling and Verification of Web Services Business Activity Protocol

Surgrxg | SurgerdwionjoN -Surreg Surso[p | pejeidwoy | Surgerduroy | Sureouey ATy
papuy popuy
21038 21038 2138 2p018 218 2918 2138 21038
prpauy prpauy prvauy 19640,7 puvauy pyvauy prpauy puvauy prpauy pejesuadwo)
Suryixgyy Surge[woH3oN w-Surreq Suryesuaduwop pojerdwio) Surgerdwon Sureoue) QA1}OY
popug popug
218 218 ago1g 2038 2018 21038 ago1g 21038
pypauy pyvauy pyvaus pyvaus 19610, pypauy puvauy pyvaur pypauy pesoID
Surrxg | Surge[mwonIoN -Surreg Suryesuaduroy | Surso[p | pejerdwoy | Surperdwoy ATy
pepuy popugy
21038 21038 2138 2138 2138 21038 21038 21038
pyvauy puvauy puyvauy prpauy puvauy pyvauy prpauy 79640,1 prpauy po[eoue)
pepuy | Surprxy w-Surreq Suryesuadwoy | Sutso[p | parerdwon Sureoue)
BILAS 218 218 203G 218 2018 218
pyvauy | pyvaur | SurzerdwonsoN pypauy pyvauy puypauy pypau; |Sunerdwopion| pyvauy |[Sunerdwopion |ejejdwonjouues
popug | Surixg | SurgerdwonjoN Surso[p | pejerduron
29018 21098 21098 Suryesuedwo) 29018 21018 Surjerdwoy Sureoue) aA1OY
pyvauy | pyvauy pyvauy L-Surreq -Surqreg pyvauy pyauy -Surqreg -Surqreg -Surqreg req
pepuy | Sungixy | SurgeidwonloN w-Surreq Suryesuadwoy | Surso[n Sureoure) QA1}OY
BILAS 218 218 ago1g 203G 218 ago1g RILAS
pyvauy | pyvauy puvaus puvaus pupauy pyvaur | pejsrdwoy | pejerdwoy pyvaur pypauy pejedwon
popum Surgerdwio3oN -Surreg Suryesuaduroy | Sursory | pejerduron Sureouey
29038 21038 2138 21m38 2138 21038 2138
pypauy | Suryixg pyvauy pyvauy pypauy pyvauy puypauy Surgrxgsy pyvauy Surrxgey x5
(8uryesus
-dwop ‘S8urjeidwo)n
‘Sureour) ‘9AI3dY)
popuy [Surjixyg |Surgejdwo)H3oN Surreqg Surjesuadwo) [Surso[p|pejejdwoy | Surjsidwo) |[Sureoue) OA130Y sjuaAyg
sojels punoqinQ

(morA juedprred)
[100030ad uorje]dWOHUOIFRUIPIOODYII A\ JUSUIDIS Y Ssaulsng

Anders P. Ravn, Jif{ Srba, and Saleem Vighio

18

BusinessAgreementWithCoordinationCompletion protocol
(Coordinator View)

Inbound States
Events Active Canceling Canceling Completing |Completed|Closing|Compensating Failing Failing NotCompleting |Exiting Ended
(Active) (Completing) (Active, (Compesating)
Canceling,
Completing)
Exit Exiting Exiting Exiting Exiting Invalid Invalid Invalid Invalid Invalid Invalid Ignore Resend
State State State State State State Exited
Exiting
Completed | Closing | Compensating Failing-* Failing- NotCompleting Ended
Compensating
Completed Invalid Invalid Completed Completed Ignore Resend Resend Invalid Ignore Invalid Invalid Ignore
State State Close Compensate State State State
Completed Failing-
Active Canceling- Closing | Compensating Failing-* Compensating | NotCompleting | Exiting Ended
Active
Fail Failing- Failing- Failing- Failing- Invalid Invalid Failing- Ignore Ignore Invalid Invalid Resend
Active Canceling Canceling Completing State State | Compensating State State Failed
Failing-* Failing-
Completed | Closing Compensating NotCompleting | Exiting Ended
CannotCo- [NotCompleting|NotCompleting | NotCompleting| NotCompleting Invalid Invalid Invalid Invalid Invalid Ignore Invalid Resend
mplete State State State State State State NotCompleted
NotCompleting
Completed | Closing | Compensating Failing-* Failing- Exiting Ended
Compensating
Canceled Invalid Forget Forget Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Ignore
State State State State State State State State State
Ended Ended Ended
Active Completing | Completed | Closing | Compensating Failing-* Failing- NotCompleting | Exiting
Compensating
Closed Invalid Invalid Invalid Invalid Invalid Forget Invalid Invalid Invalid Invalid Invalid Ignore
State State State State State State State State State State
Ended Ended
Active Canceling- Canceling- Completing Completed Compensating Failing-* Failing- NotCompleting | Exiting
Active Completing Compensating
Compensa- Invalid Invalid Invalid Invalid Invalid Invalid Forget Invalid Invalid Invalid Invalid Ignore
ted State State State State State State State State State State
Ended Ended
Active Canceling- Canceling- Completing | Completed | Closing Failing-* Failing- NotCompleting | Exiting
Active Completing Compensating

19

Modelling and Verification of Web Services Business Activity Protocol

Surprxg w-Surreg Suryesuaduroy | Sursorp | peserdwoy | Surgerdwoy |, -Sureouey aATIOY
papuyg papuy
29018 2138 29018 2138 29018 218 21038 2138
prpauy 19640,7 prpauy prpauy prvauy prpauy pyvauy prvauy prvauy pejejdwo) 30N
SurjemwoHION w-Surpreg Burjesuedwoy | Sursorn peojerdwon Surjerdwopn w-8ureoue) QA1
popugd | popug
29018 29018 29018 29018 29018 21035 29018 21038
12640, pyvauy puvauy puvauy puvauy puvauy prvaus puvauy prvauy poyxy
Suryixy Surge[woHIoN Suryesuadwoy | Surso[n pojerdwony Surgerdwoyn w-Surpeoue) QAT
pepug pepug
29018 23018 29018 29018 29018 210318 29038 29038
pywauy pyvauy 19610,1 pypauy puvaus pyvauy pyvaur pyvaus pyvaus paired
popug | Suiyixg | SureidwopjoN w-Surreg Surso[p Suryerdwoy |, -Sureouey oA130Y
2y018 21038 2938 21038 21038 21038 2138 238
pyvauy | pyvaug prpauy prpauy Surjesuedwo) pyvauy [Suryesuaduro) pyvauy prvauy prvauy ojesusdwo)
poepuy | Surnyixy | Surgedwon3oN w-Surpreg Surjesueduwo) Surjerdwopn w-3ureoue) QA1
29015 290318 290318 290318 29015 29015 290318 210318
puvauy | prvauy puvauy puvauy prpauy Surso[n Suso[n prvauf puvauy puvauy aso1D
popuy | Sungixy | SurgeidwonjoN w-Surpreq Suryesuadwoy | Surso[n pojerdwon w-Surpeoue)
21038 29018 29018 21038 29018 29018 29018 29038
pyvauy | pyvauy pypauy pypauy puypaus pyvauy pyvauy Surgerdwoy pyvauy Superdwoy| ejeidwoy
popuy | Sunjixyg | SurgsidwonjoN w-Surpreq Suryesuadwoy | Surso[n pajerdwon
21035 2918 2918 2918 2y18 2918 2918 Superduwop 2130V
puyvauy | pyvaur pyvauy pyvauy pyvauy pyvauy pyvauy -Surpeoue)) «-Sureouey | -Surpeoue) [eoue)
(8uryesus
-dwiop ‘S8urgeidwo) (8uryerdwo))
‘Bureouep ‘eA13dVy) (‘enr3oy)
pepuy |Surjixyg|SurjsjdwoH3oN Surreg Surjesuadwo) |Surso()| pajrejdwo) |Surzejdwo) Sureoue) EYN & 53V sjuanyg
sorels punoqinQ

(ma1A JI0j3RUIPIOO)))
[02030ad uo139[dUIOH)UOIJRUIPIOOD)YIIA USRSy ssaursng

Anders P. Ravn, Jif{ Srba, and Saleem Vighio

20

Enhanced BusinessAgreementWithCoordinationCompletion protocol
(Participant View)

Inbound States
Events Active Canceling|Completing| Completed |[Closing|Compensating Failing Failing NotCompleting |Exiting| Ended- |Ended- Ended- Ended
(Active, (Compesating) Canceled | Closed |[Compensated
Canceling,
Completing)
Cancel Canceling Ignore Canceling Resend Ignore Ignore Resend Ignore Resend Resend Send Ignore Ignore Ignore
Completed Fail CannotComplete Ezit Canceled
Canceling Closing | Compensating Failing- Ended- Ended- Ended
Completed Failing-* Compensating | NotCompleting | Exiting | Ended- | Closed | Compensated
Canceled
Complete Completing Ignore Ignore Resend Ignore Ignore Resend Ignore Resend Resend Send Send Send Ignore
Completed Fail CannotComplete Exit Fail Fail Fail
Canceling | Completing Closing | Compensating Failing- Ended
Completed Failing-* Compensating | NotCompleting | Exiting | Ended- |Ended- Ended-
Canceled | Closed | Compensated
Close Invalid Invalid Invalid Closing Ignore Invalid Invalid Invalid Invalid Invalid Ignore Send Ignore Ignore
State State State State State State State State Closed
Closing Ended- Ended- Ended
Active Canceling | Completing Compensating Failing-* Failing- NotCompleting | Exiting | Canceled | Ended- | Compensated
Compensating Closed
Compensate Invalid Invalid Invalid Compensating| Invalid Ignore Invalid Resend Invalid Invalid Ignore Ignore Send Ignore
State State State State State Fail State State Compensated
Compensating Ended- |Ended- Ended
Active Canceling | Completing Closing Failing-* Failing- NotCompleting | Exiting | Canceled | Closed Ended-
Compensating Compensated
Failed Invalid Invalid Invalid Invalid Invalid Invalid Forget Forget Invalid Invalid Ignore Ignore Ignore Ignore
State State State State State State State State
Ended Ended Ended- Ended- Ended- Ended
Active Canceling | Completing | Completed | Closing | Compensating NotCompleting | Exiting | Canceled | Closed | Compensated
Exited Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Forget Ignore Ignore Ignore Ignore
State State State State State State State State Invalid
Ended Ended- | Ended- Ended- Ended
Active Canceling | Completing Completed Closing | Compensating Failing-* Failing- NotCompleting Canceled | Closed | Compensated
Compensating
NotCompleted Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Forget Invalid Ignore Ignore Ignore Ignore
State State State State State State State State State
Ended Ended- Ended- Ended- Ended
Active Canceling | Completing Completed | Closing [Compensating Failing-* Failing- Exiting | Canceled | Closed | Compensated
Compensating

21

Modelling and Verification of Web Services Business Activity Protocol

peso[) | perecuey
popug | pejesusdwoy | -popuy | -popum | Sumixg | SurgerdwopjoN w-Surreg pojesuodwoyy | Sursorp | pejordwoy | Sumerdwopy | Sureouen | eagoy
-pepuy -pepuy
21018 21018 29018 21015 21038 29018 210315 29018 29018 21018 29018 pPoaje
puvauy puvauy prvauy puvaus puvauy puauy 106.40,] puvauy pyvauy prvauy pupauy puvauy -suadwop)
pojesuadwo) paresue)
popus -popusy pasorD -popui Suryixyg SurjemoH3oN woSurreg Surjesuadwo)) | pesor) | pejeidwo) Surgerdwo) Surjeoue) OA1OY
-popug -popuyg
2038 218 218 218 218 EILS 218 2038 218 EILS 21038
puvauy puvauy prvauy pyvaus pyvaus pypaus pyvauy 126.40,] pyvauy prvauy pyvauy puvauy peso[D
pojesuedwioy | pesoln
popug -pepug -popug | pereouep | Sunyixg | SunermopioN L-Surreg Surpesuadwop | Suiso(p | pejerdwoy | Sumerdwop | peeouey | eanov
-pepuy -pepuyg
23035 21018 EELEIS) EELEIS) 29018 2335 21035 2335 29035 21038 29018
pyvauy pyvauy pyvauy pyvauy pyvaur pyvaur pyvaur pypaur pyvaus puvaus 19600, pyvaus peresuen
pojesuaduwio) | paso[) | pareour)
popum -popug -popug | -popum | Suryixyg w-Surreg Surpesuadwoy | Sursory | pejerdwop Sureouey
2938 2138 2y018 218 218 218 21018 218 29018 2018 Surgey o3ordw
prpauy prvauy pyvauy puvauy pyvaus SurjerdwonioN pyvauf puvauy pyvauy prpauy SurjerdwoHroN pypauy -dwiopjoN [-oDjouue)
pejesuadwo) | peso[) | peeour)
popuy -pepuy -pepuy | -pepuy | Sunyxy [SurjerdwopnjoN Sursorp | pajerdwop
29018 29018 21015 21035 21015 21015 Surjesusdwo) 21015 29018 Suryerdwop Sureour) QAIOY
puvauy puvauy prpauy prvauy pupvauy pupvauy w-Surreq -8urqreq pyvaus puvauy Surqreq -Surqreq -Surqreq req
pojesuadwo) | peso[) | paeoue)
pepuy -pepug -pepuy -pepuy | Surgixy | SurgerdwonHjoN w-Surreg Surgesuadwoy | Sursorn Sureoure) QA130Y
2038 218 21018 218 2gm1g 2g01g 21038 2go1g 2gm1g 21038 21038
pyvauy pyvauy pyvauy | pyvauy pyvauy pyvauy pyvaur puvaus pyvaur | pejerdwoy | peserdwoy pypauy pyvau; | pejardwoy
pojesuadwoy) | peso[) | pareoue)
popug -pepug -popug | -popum SurgerdwonjoN L-Surreg Suryesuadwop | Susorpy | pejerdwoy Sureouey
29018 2918 21018 2918 21018 21018 21035 21018 29039 29015
pyvauy pyvauy puypauy pyvauy | Surarxgy puypauy puypauy pyvauy puypauy pyvauy Surgrxey pypauy Surgrxgey x5
(Surjesus
-dwop ‘S8urjejdwo)n
pejesuadwo) | paso[D [po[edue) ‘Bureoue) ‘@AI13oV)
peopuyg -pepumg -pepuyg| -pepuy |[Surjixyg |SurgejdwojoN Surirreq Surjesusdwo) |Suisorp|perejdwoy| Surjejdwo) |Sui[edoue)| °8AIOY sjuany
sorels punoqinQ

(morA juedprjied)
[00030ad uorje]duI0HUOIFRUIPIOOD)YJIAA JUDUISISySsoulsnyg pasueyuy

Anders P. Ravn, Jif{ Srba, and Saleem Vighio

22

Enhanced BusinessAgreementWithCoordinationCompletion protocol
(Coordinator View)

Inbound States
Events Active |Canceling| Canceling |Completing|Completed|Closing|Compensating Failing Failing NotComp-|Exiting| Ended-|Ended-| EndedNot- |Ended
(Active) [(Completing) (Active, (Compesa- leting Failed | Exited | Completed
Canceling, ting)
Completing)
Exit Exiting | Bxiting Exiting Exiting Invalid Invalid Invalid TInvalid Invalid Invalid Ignore | Ignore | Resend Ignore Ignore
St State State State St State Ezited
Exiting | Ended- Ended- Ended
Completed | Closing | Compensating Failing-* Failing- NotComp- Failed | Ended- [NotCompleted
Compensating leting Exited
Completed Invalid Invalid Completed Completed Ignore Resend Resend Invalid Ignore Invalid Invalid Ignore Ignore Ignore Ignore
State State Close Compensate State State State
Completed Failing- Ended- | Ended- Ended- Ended
Active |Canceling- Closing | Compensating Failing-* |Compensating| NotComp- | Exiting | Failed | Exited |NotCompleted
Active leting
Fail Failing- Failing- Failing- Failing- Invalid Invalid Failing- Ignore Ignore Invalid Invalid | Resend | Ignore Ignore Ignore
Active | Canceling Canceling Completing State State Compensating State State Failed
Failing-* Failing- Ended- Ended- Ended
Completed | Closing Compensating| NotComp- | Exiting | Ended- | Exited |NotCompleted
leting Failed
CannotCom- |NotCom-| NotCom- NotComp- NotComp- Invalid TInwalid Invalid TInvalid Invalid Ignore Invalid | Ignore | Ignore Resend Ignore
plete pleting pleting pleting pleting State State State State State State NotCompleted
NotComp- Ended- | Ended- Ended
Completed | Closing | Compensating Failing-* Failing- pleting Exiting | Failed | Exited Ended-
Compensating NotCompleted
Canceled Invalid Forget Forget Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid | Ignore Ignore Ignore Ignore
State State State State State State State State State
Ended Ended Ended- | Ended- Ended- Ended
Active Completing | Completed | Closing | Compensating Failing-* Failing- NotComp- | Exiting | Failed | Exited [NotCompleted
Compensating pleting
Closed Invalid Invalid Invalid Invalid Invalid Forget Invalid Invalid Invalid Invalid Invalid Ignore Ignore Ignore Ignore
State State State State State State State State State State
Ended Ended- | Ended- Ended- Ended
Active |Canceling-| Canceling- | Completing | Completed Compensating Failing-* Failing- NotComp- | Exiting | Failed | Exited |NotCompleted
Active Completing Compensating| pleting
Compensated| Invalid Invalid Invalid Invalid Invalid Invalid Forget Invalid Invalid Invalid Invalid Ignore Ignore Ignore Ignore
State State State State State State State State State State
Ended Ended- | Ended- Ended- Ended
Active |Canceling-| Canceling- | Completing | Completed | Closing Failing-* Failing- NotComp- | BExiting | Failed | Exited |NotCompleted
Active Completing Compensating| pleting

23

Modelling and Verification of Web Services Business Activity Protocol

PoyIxXH | porred
popug |pojerdwonjoN | -pepug | -popugy | Surgixyg | pejerdwopioN w-Surreg Surpesuadwoy | Sursory | peserdwoy | Sungerdwoy |, -Sureouep oA130Y
-popuy -papuyg
21018 29018 21018 29018 29018 29018 29018 29018 21018 29018 29018 po3ol
puaus puvauy | pyvauy | pyvaus 126.40,1 puvaus puvaus pyvauy puvauf prvauy puvauy puvauy -dwopjoN
pejerdwonioN porred
popuyg -pepuyg polxy | -pepud | pejrxyg SurjemwoH3oN w-Surreq Surjesuadwo) | Sursol) pojordwio) Surjerdwo) x-8ureoue) QA1
-popuyg -popuy
218 2038 21038 21018 2038 218 21038 EILS 218 21038 2038
pyvauy puvauy pyuvauy | 2640, pyvauy pyvauy prvauy pyvauy pyvauy prvauy puvauy pyvauy pPojIxyg
pajerdwonjoN | poIrxyg
pepuyg -pepuyg -pepuy | perred | Surpixyg SurjewonloN parreq Suryesuadwoy | Surso[n pojerdwo) Suryerdwopn x-Sureoue) QA130Y
-pepuyg -pepuyg
EYLETS 21038 21018 EITAS 21018 21018 EILATS BILIS 29038 21038 21038
pyvauy pyvauy pyvauy pyvauy pyvaus 19600, pyvaur pyvauy pypaus puvaus pyvaus pyvaus polreq
poje[dwon3oN | PodixH | porred
popuyg -popuy -popuq | -popug | Surixg | Surgerdwopjon w-Surreg Surso[n Surgerdwoyy |, -Sureouey oA130Y
21018 21038 29018 21018 21018 21018 21018 21018 29018 29018 21018 o3e
pyvauf prpauy pyvauy prpauy prypauy prpauy pypaug Surjesuadwo) pyvauy [Surjesuaduwo)) puvauy prpauy prpauy -suadwo)
peje[dwonjoN | Perxy | porred
popuyg -popuyg -pepuyq | -pepuy | Surjixy | SurgeidwopnioN w-Surreq Surjesuadwio) Surjerdwopn x-3ureoue) 2A130Y
21015 29018 EYTS 29018 29018 21018 21018 EYTS 21018 21018 29018
pypaug pupaug pypaur | pyvauy | pyvaur pupaug pupaug puvauy Sursorp Bursorp puvauy pypaug pupaug sso1D
po3e[dWoDION | PotXy | polred
pepuyg -pepuyg -pepuy | -pepuy | Surgixy [SurgedwopnjoN w-Surreq Suryesuadwoy | Sursorn pogjerdwo) «-Sureoue)
21038 29018 29038 29018 210318 210318 29018 21038 29018 21018 23018
pyvauy pyvaus pyvaus pyvaus pyvaus pypauy pypauy pyvauy pypauy pypauy Surjerdwon pypauy Suryerdwop | @jejdwon
Po3edwWoDION | POIIXE | polred
pepuyg -pepuyg -pepuq | -pepuy | Sungixy [SurgedwopnioN w-Surreq Suryesuadwoy | Surso[n poajerdwo)
210318 29018 21038 29018 290315 29035 29018 21038 29018 290315 Burgerdwop BATIOY
pyvauf pyvauy pyvauy pyvauy pyvauy pyvauy pyvauy pyvauf pyvaus pyvauy -3uieoue) x-3ureoue) -Surjeoue) [eoue)
(Suryesus
-dwiop) ‘S8urjejdwo) (Surgerdwo)n)
pojoidwio) | po3ixy | polied ‘Bureous) ‘9A130VY) (‘enr3ovy)
pepuy| -j3oNpPepuy |-peopuj|-pepud|Surjixy|Surjeiduwo)joN Surreg Surjesuadwo) [Surso[)| pejejdwoy) |Suryejdwo) Sureocue) aA130Yy sjuaAy
sojels punoqinQ

(ma1A I0j3RUIPIOO)))
[00030ad uorje[duwIoHUOIJRUIPIOODYIIAA JUSWDLIS ySsaulsng padueyuy

