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ABSTRACT

We describe the challenges of software analysis by presenting a
series of dichotomies. Each gives a spectrum on which any partic-
ular analysis can be placed; together, they give some structure to
the space of possible analyses. Our intent is not, however, to pro-
vide a survey of existing analyses within this space, but to argue
that some regions are more likely to be important in the future
than others. Recognizing that our opinions do not represent the
consensus of the community, we have tried, for each dichotomy, to
make a case for both extremes (or at least identifying the contexts
in which one makes more sense) while arguing primarily for one
over the other.

We argue that in the future analyses will be model-driven,
namely centered on abstract models of behaviour; modular and
incremental, to enable analysis of components, and of systems
before completion; and focused and partial, rather than uniform,
paying closer attention to properties that matter most and to the
parts of the software that affect those properties. In support of
such analyses, we expect modelling languages to be global, with a
focus on structural relationships across the system, and declara-
tive, and we expect the analyses themselves to make more use of
induction than has been fashionable recently. Finally, although we
believe that unsound analyses have a bright future, we expect the
increasing importance of infrastructural software to bring a
renewed credibility to sound, precise and resource-intensive
analyses.

INTRODUCTION

In speculating on the future of software analysis, the first question
we should ask is whether analysis has a future at all. Perhaps pro-
gramming languages will progress so far that code will unam-
biguously express the intentions of the programmer; components
will be assembled on a trial-and-error basis; and fault-tolerance
mechanisms will make up for any problems that arise at runtime
due to errors in components or in their composition.

E]

We think not. The next few decades will see a rapid growth in
our software infrastructure, so that eventually we will come to rely
on software in almost every interaction with our environment.
Transportation, energy distribution, communications, banking
and health care will all depend on software. For end-user applica-
tions, time to market and feature count may continue to be driv-
ing forces but, in the development of our infrastructure, ‘getting it
right’ will matter once again.

Experience tells us that it is near impossible to get a system
right by fudging late in the day, so early investment in modelling
and analysis will be essential. Moreover, vast amounts of existing
code will be reusable only if there are precise and cogent models
that describe their guarantees and assumptions. And with less
code to write afresh, the proportion of development effort allotted
to coding at the expense of design and analysis will fall further.

Code analysis of all kinds will become increasingly common.
This trend will be driven by several factors: the continuing need
for information about the behaviour of software during all phases
of the development; the widespread use of Java, whose type safety
and high-level intermediate language make it significantly easier
to analyze than languages such as C and C++; and the overall
progress in program analysis technology. Moore’s Law will also
play a role. Static analysis systems that can produce detailed
results for huge programs only with resources that seem unrea-
sonable today will become feasible, and the run-time overheads of
dynamic analyses will be more palatable.

Until now, research into abstract models and research into pro-
gram analysis have been largely disjoint enterprises. We see great
opportunities for collaboration between the two research com-
munities. On the one hand, we believe that the value of abstract
models will be greatly enhanced if a relationship with code can be
established, so that a developer who uses a model as a surrogate
for code can have some confidence that properties inferred from
the model hold also for the code itself. On the other hand, we
believe that program analysis can leverage abstract models: by
offering a vocabulary in which to report analysis results, by focus-
ing analysis on properties of interest, and by providing induction
hypotheses that enable modular analysis.

Our article is divided into three parts. In the first two parts we
discuss the analysis of abstract models and code respectively,
using a series of dichotomies to structure the space of analyses. In
the third part, we expand on the opportunities that lie in the com-
bination of the two—how the value of models can be enhanced by
code analysis, and how code analysis can leverage abstract mod-
els.
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Throughout our article, we construe the term ‘analysis’ rather
narrowly. It means, for us, the extraction of behavioural informa-
tion from the software, represented as an abstract model or code.
Other forms of analysis are important but lie beyond the scope of
our comments here. We do not consider, for example, analysis of
human factors (whether the software will be usable); analysis of
syntactic properties (for example, using dependences to expose
undesirable couplings between modules); or the entire raft of
compiler analyses that enable optimizations (such as constant
propagation and common subexpression elimination).

1 ANALYSIS OF MODELS

Production of lines of code is a common measure of development
productivity, and yet code is an expensive liability. Amenability to
efficient execution is code’s only merit; as a repository of domain
knowledge, environmental assumptions, design rationale or even
required behaviour, code is a poor second to a carefully con-
structed model. A model can be more succinct, and can be struc-
tured more effectively to separate concerns and articulate key
properties. Any opportunity to apply an analysis to a model of the
system rather than the system itself should therefore be taken (so
long as the model can be shown to be faithful—more on this
later). Especially in the early phases of development, when code
does not yet exist, analysis of models is a particularly rewarding
investment, often exposing problems that can cost much more if
not discovered until later.

1.1 Analysis vs. Description

Researchers who work on abstract models can be divided rough-
ly into two camps. There are those, typified by the developers of Z
[44, 47], who have focused primarily on the form of the model,
and have treated analysis as secondary, favoring succinctness of
reasoning over amenability to automation. There are others, typi-
fied by the developers of symbolic model checking [4], who have
focused on analysis, and paid less attention to the way in which
the model is expressed.

A case can be made for either approach. Proponents of analy-
sis over description argue that the main motivation for recording
design decisions is to explore their consequences by analysis;
designing a language without an analysis in mind is thus like
designing a programming language that cannot be compiled.
Proponents of description over analysis point out that, in large-
scale software development, the key obstacle is not to find the hid-
den showstopper flaw, but rather to articulate the development
steps, with notations that succinctly and precisely express the
intentions of the developer (and no more), from requirements
through to detailed design.

The truth lies, of course, somewhere between these extremes,
and varies according to the problem at hand. John Rushby has
argued that Z sacrificed too much analyzability in its design, rul-
ing out the kind of powerful analysis that the PVS theorem prover
can provide [40]; PVS does not, however, subscribe to the mini-
malism of HOL, and its language is rather rich and expressive.
Michael Jackson has made a case for the centrality of description

in software development, but recognizes the importance of rea-
soning, especially in the triangle of specifications, environment
properties and requirements [25].

The two approaches can also be seen as responses to different
problems. In the world of hardware design, which has motivated
most of the work on model checking, the problem has been to
expose flaws in an existing design. The description is made to
enable the analysis, and can be regarded as disposable once the
results of the analysis have been obtained. In the world of soft-
ware—protocol design aside—the problem is usually to construct
a plausible description of the domain or required behaviour. Here,
the analysis is simply a means to better description.

The aims of analyzability and descriptive power are not
incompatible. On the contrary, there seems often to be a synergy
between the two. For example, in our Alloy modelling language
[23], the treatment of scalars as singleton sets has nice conse-
quences for the user, by making navigation expressions uniform
and by sidestepping the partial function problem. At the same
time, it makes analysis easier because it reduces the complexity of
the underlying calculus, and ensures that every expression can be
given a denotation.

Furthermore, a language design that precludes analysis cannot
make sense. For this reason, a modelling language must at least
have a formal semantics. Having a formal basis does not imply
that the language itself should feel formal or have a mathematical
flavour; on the contrary, a formal semantics imposes demands of
simplicity and uniformity that can make the language far easier to
learn and use.

Designing a modelling language without a formal semantics,
or at least a strong sense of which features are likely to be seman-
tically troublesome, is therefore a dangerous enterprise. Whether
UML [37], a modelling language of unprecedented complexity,
can be productively formalized remains to be seen. There are seri-
ous efforts underway [2, 36] to retrofit a semantics to the core ele-
ments of the language, especially the object modelling compo-
nent. Until these succeed or the language is radically altered, any
form of tool support that goes beyond superficial syntactic analy-
sis and transformation seems unlikely to be feasible.

1.2 Global vs. Local Models

Two kinds of model dominate the abstract description of soft-
ware. Look in any book describing an object-oriented method,
and you'll find object models, which show what objects exist and
how they are related, and state transition diagrams, which show
states of objects and the transitions between them. At first glance,
these two kinds of model are barely related, but to understand
their roles, and what analyses might be applied, we need to under-
stand how they differ fundamentally. Surprisingly, the two criteria
that readily come to mind do not survive careful scrutiny.

One criterion is that object models are ‘static’ and transition
diagrams are ‘dynamic’. Object models are often no more than
class diagrams, showing the classes, their fields, and the subclass-
ing relationships between them. A class diagram is a partial repre-
sentation of the syntactic structure of the code, and in this sense
is certainly static in comparison to a transition diagram that



describes runtime states. But a good object model is much more
than a class diagram: its nodes represent sets of objects, not class-
es, and these can classify objects dynamically. The set Telephone,
for example, might have subsets Busy and Idle. What are these if
not states?

(Incidentally, a good object model is also much less than a class
diagram, at least when used in the early stages of development. It
excludes classes that are artifacts of implementation—such as
containers and the kinds of proxy design patterns often use to
achieve decoupling—and avoids prematurely allocating state
components to objects, eg, by using bidirectional associations
between sets rather than by specifying attributes or instance vari-
ables).

An object model, therefore, is a state machine; its states are
configurations of objects, and its transitions are the changes that
result as objects come and go and as relationships are altered.
Admittedly, developers often pay less attention to the transitions,
despite the notations that most object-oriented methods offer for
describing them. And the static/dynamic distinction is not entire-
ly without merit: even if properly elaborated with transitions, the
object model describes changes that occur less often. One might
view a program’s execution as a low and high frequency compo-
nent superposed: the former described by an object model and
the latter by a state transition diagram.

The other common criterion is that object models are ‘data
intensive’ and state transition diagrams are ‘control intensive’. This
is more helpful, since it highlights the key problem of analyzing
object models, namely rich data structures. But the distinction is
hard to make precise. All systems have both data and control com-
ponents, and drawing the boundary between the too is tricky. In a
distributed file system, for example, do we regard the caching state
of a file as data or control? And if we should describe the set of
dirty files as a node in an object model, is that state any more ‘data
intensive’ than the node marked dirty in a state transition diagram
for a file?

A more productive distinction, it seems to us, sees the two
kinds of model as global and local respectively. The object model
describes the global relationships amongst the elements of the
system; its states are global configurations of objects, and its tran-
sitions are the global changes that result as objects come and go
and as relationships are altered. The state transition diagram, on
the other hand, describes the states of an individual object and the
protocol of interactions amongst objects. In a global model, the
state of the system as a whole is directly expressed; in a local
model, the global state emerges from the definitions of the local
states.

The structuring mechanisms in a global model are specifica-
tion-oriented: properties of the global state and of global transi-
tions are formed by conjoining subproperties. The structuring
mechanisms in a local model are more implementation-oriented:
components are combined by communication mechanisms that
can often be implemented fairly directly. For these reasons, global
models tend to be more useful for the earlier stages of develop-
ment in which characterizing basic properties and expected glob-
al behaviour matter most; local models come into their own when
a particular design of the system as a collection of interacting

components must be evaluated.

For the object models, their global nature is the key to their
utility. Relationships between objects are represented as bidirec-
tional associations and not as pointers, precisely to avoid prema-
ture implementation commitments. Especially in conceptual
modelling, local notions such as methods and attributes at best
make little sense, and at worst undermine the entire enterprise.
Object-oriented methods offer constructs—operations in Fusion
[7] and joint actions in Catalysis [12], for example—to express
state transitions without referring to the internal states of objects
and without identifying particular objects as ‘targets’.

Global and local models present very different analysis chal-
lenges. Local models are usually very operational in flavour, and
their complexity arises from concurrent interaction of many
small machines. Global models, on the other hand, are usually
declarative and partial, and view transitions in terms of a single,
sequentialized stream of operations. The state machines that
result from local models are wide but shallow: there may be many
processes arrayed in communication with one another, but each
has only a few states—perhaps a thousand at most. The state
machines that result from global models, on the other hand, are
deep but narrow: there is only a single process, but it typically has
billions of states.

Almost all work in state machine analysis has focused on local
models and the particular complexity that arises from concurren-
cy. Great advances have been made, both in language and in tech-
niques for overcoming the ‘state explosion probleny, in which the
composition of k local machines has a state space that grows
exponentially with k. Indeed, the success of model checking, in
particular symbolic model checking [4], can largely be credited
with saving the reputation of formal methods.

Unfortunately, though, model checking techniques are not
readily applicable to global models. The underlying technologies
are often optimized for local machines; partial-order reduction,
for example, exploits the equivalence of different interleavings of
uncoupled events in distinct processes. The languages cannot
accommodate global models; to our knowledge, no model check-
er provides data structures beyond simple records and arrays, or
the operators used commonly in global models such as relational
image and transitive closure.

1.3 Simulation vs. Checking

Simulation has always been viewed with suspicion by academics.
After all, in a space of billions of possibilities, it must surely be bet-
ter to check a property exhaustively than to examine only a tiny
subspace in an ad hoc manner. And indeed, model checking is far
more effective than simulation in exposing subtle errors.
Nevertheless, simulation is tremendously useful. When build-
ing a model incrementally, it is easy to make mistakes that simula-
tion immediately exposes. Animating a model by generating sam-
ple states and transitions makes the experience of model con-
struction far more compelling; to use David Notkin’s term, it ‘elec-
trifies’ the model. By analogy, most programmers have more con-
fidence in their code when they have observed a few sample exe-
cutions. Perhaps this is a bad thing, but it is nevertheless an almost



universal phenomenon. Our experience is that, in exactly the
same way, a model that has been simulated is much less likely to
contain egregious flaws.

One of the reasons that simulation has been undervalued is
that checking makes better news. Every inventor of a model
checking tool is dutybound to exhibit at least one example of a
subtle error that was detected in a real system. Recognizing the
value of counterexamples is a major contribution of the model
checking community. But is analysis really only about finding
errors?

The supremacy of error detection over other analysis aims is
based on economic assumptions that may not apply to software. A
bug in a hardware design can exact a huge cost, so heavy invest-
ment in error detection before manufacturing begins is well justi-
fied.

But for software, there are few showstopper bugs. Although
some flaws can cost a lot to fix if detected late in the develop-
ment—Dby a factor of up to one thousand in comparison to early
detection, according to a study by Barry Boehm—most subtle
errors are far more expensive to detect than to correct. Of the bugs
that evade testing, many will never be noticed at all, and those that
might have serious economic consequences can be fixed in later
releases, or by inducing the hapless customer to download patch-
es.

Why then does early modelling matter? Not so much because
it reduces the probability of subtle design flaws, but rather because
it prompts an early and serious consideration of fundamental
design questions. The lack of a coherent model manifests itself in
the code as needless complexity, mismatched interfaces, and a
mass of special cases added to overcome the deficiencies of the
gross structure. Simulation of the model allows the developer to
experiment with different structurings in advance, and investigate
their consequences.

We are not so naive as to claim that there are no systems for
which correctness matters. On the contrary, we believe that infra-
structural software—the kind of software on which we increas-
ingly depend, for energy, telecommunications, medicine, traffic
management, banking, and so on—will have to meet higher stan-
dards than today’s commercial software. Checking will be crucial,
not only to ensure that the model is right, but also to establish a
correspondence between the code and its abstract model. We dis-
cuss some preliminary ideas on this topic in section 3 below.

1.4 Verification vs. Refutation

Checking can rarely be fully automated, since any modelling lan-
guage that is rich enough to be useful is likely to be undecidable.
Some compromise is therefore inevitable. There are, roughly
speaking, two options: verification or refutation.

The verification approach has the analysis attempt to find a
proof for the given property. If no proof is found, the property
may yet hold, but such analyses rarely fail in way that enables the
user to determine whether it is the proof strategy or the model
itself that is at fault.

The refutation approach has the analysis attempt to refute the
given property by finding a counterexample. Such analyses usual-

ly employ some form of search in a space that has been artificial-
ly bounded. If no counterexample is found, either the bound was
inappropriate (that is, counterexamples exist outside the space
searched), or the property does in fact hold.

Theorem provers follow the former approach, and model
checkers the latter. Model checkers are often described as per-
forming verification, but in practice almost every system involves
classes of components and the analysis fixes the number in each
class. Some analysis tools (eg, Alcoa [24]) allow the model to be
described in a parameterized fashion, and the bound to be
imposed as a separate input to the analyzer.

This dichotomy has been shrinking recently. Theorem provers
(such as PVS [35] and the engine underlying ESC [11]) are incor-
porating powerful decision procedures, and there have been
numerous model checking schemes involving abstraction and
induction to extend the results to unbounded systems. We believe,
however, that refutation-based tools will continue to be more
attractive to modellers, since they do not demand after the first
investment (formalization of the model itself) a second invest-
ment (namely in proof) of similar or even greater magnitude. As
we have argued before, refutation can be smoothly combined with
simulation, and can provide constructive feedback in an interac-
tive fashion [26].

Nevertheless, we accept John Rushby’s argument that the
choice of analysis is not made in a vacuum [40]. More expensive
forms of analysis, such as theorem proving, provide greater
degrees of assurance. The choice of analysis must therefore
depend on many factors, mostly economic, such as how serious
the consequences of missing an error are. Rushby recommends a
strategy in which one starts with the cheapest analyses to find the
most egregious errors, and then applies successively more costly
analyses until the required confidence has been reached or
resources have been exhausted.

1.5 Declarative vs. Operational Style

Most languages for global models such as Z [44], VDM [27] and
Larch [16] are declarative. In a declarative language, invariants
and operations alike are written as logical formulas (constraining
individual states and pre/post state pairs respectively). Languages
for local models, such as Statecharts [18] and Promela [20], tend
to be more operational, defining transitions in a programmatic
fashion. Operational descriptions run the risk of implementation
bias, but local models rarely suffer from it. The division of the sys-
tem as a whole into communicating components is of course an
intentional design step. The descriptions of the components
themselves are not intended to embody implementation deci-
sions, but usually the structure of the local state is simple enough
for its updating to require no more than a single assignment or
arrow in a diagram (although the microsteps of Statecharts are a
concern).

Declarative description brings several benefits to global mod-
els. First is partiality: the model need not determine the behaviour
of the system completely. For reactive systems, this form of non-
determinism is sometimes viewed as a deficiency, but in other
models it is often appropriate. In a system with caching, for exam-



ple, we might want to specify the behaviour without choosing a
particular replacement policy; the model can say simply that the
cache is free to drop entries arbitrarily.

A second, related, benefit is incrementality, a consequence of
supporting partiality. A declarative model can be understood and
evaluated at various stages of completion. One can start by
recording only essential properties; discover, by analysis, that
these rely on additional properties; and then expand the collec-
tion of properties, never making any more choices than necessary.

Third is separation of concerns: the model can be organized so
that distinct properties of the design (which an implementation
would intertwine) are recorded separately. In a text editor, for
example, the insertion and removal of characters can be separat-
ed from line-breaking concerns, such as hyphenation and justifi-
cation. Many researchers have advocated the separation of aspects
into entirely distinct models [1, 5, 14, 22, 49], and similar ideas
have been proposed for code [19, 29].

Declarative features make trouble for analysis. Explicit model
checkers, for example, are designed on the assumption that gener-
ating the successors of a state is cheap. When there is no recipe for
determining the result of a state transition, however, some kind of
search is necessary. Symbolic techniques are well suited to declar-
ative models since they already employ an implicit representation
of states; the SMV model checker, for example, allows transitions
to be specified as formulas.

One nice property of an operation specified declaratively is
that backward execution is no harder to implement than forward
execution. In using our Alcoa tool [24] to simulate a model, for
example, we often ask for executions of an operation that result in
a particular condition; the resulting search often proceeds by
finding the values of the more tightly constrained post-state vari-
ables first, and from these finding appropriate pre-states. Alcoa’s
ability to simulate the execution of declarative operations belies
the traditional position that executability can only be obtained by
introducing implementation features. By using an efficient search
mechanism, simulation can be obtained without compromising
abstractness, and the term ‘executable specification’ is not an oxy-
moron.

2 ANALYSIS OF CODE

Current modelling languages have an Achilles heel: the lack of any
enforced or checked correspondence with the actual implementa-
tion. A designer or engineer who cannot rely on the model to
accurately reflect the actual behaviour of the program will be
understandably reluctant to use the model to reason about the
system’s behaviour. In fact, an incorrect model can be worse than
no model at all, if it misleads the designer or software engineer
into an incorrect understanding of the causes of the program’s
behaviour. The practical result of the lack of enforced correspon-
dence between the model and the implementation is that the
model becomes increasingly less useful during the software devel-
opment process, to the point where it is essentially discarded as a
useful source of information during the later stages of the devel-
opment and maintainance. This is especially unfortunate in light
of the beneficial role that an accurate model could play in these

phases of the development process.

The future development of program analyses that guarantee
the conformance of the software to the model will increase the
utility and therefore the importance of modelling languages dur-
ing all phases of the program development. A key issue will be the
mechanism used to establish the correspondence between the
abstractions of the modelling language and the constructs of the
programming language. We expect the correspondence to be
mostly straightforward, with a single atomic entity in the model-
ling language often mapping to a single construct in the language.
So, for example, the nodes in a standard object model might map
to classes in an object-oriented language, and the actions in an
event model might map to specific method invocations. There
will inevitably be a need for more sophisticated mappings, how-
ever, to account for implementation decisions. A single entity in
the model might be elaborated into multiple entities in the pro-
gram; a set in an object model might be mapped to those objects
of a class for which a field has a particular value. And there will be
a need to indicate those program points at which the invariants
specified in the model apply, perhaps by marking a fringe in the
procedure call tree.

Program analysis will also be of use in the automatic construc-
tion of initial models from the program source. An engineer
might use an analysis tool such as Womble [28] to obtain a rough
model, and then refine it using a variety of transformations until
it matches the abstract model, thus specifying the mapping
implicitly. For object models, transformations might include split-
ting a single node in the model into multiple nodes, eliminating
edges that can never actually occur, and annotating potential
edges to indicate additional properties of the model such as mul-
tiplicity relationships.

Aside from its application to legacy systems, such as approach
might also be useful even when the system was initially developed
with modern modelling languages. Potential uses in this context
include augmenting preexisting models of part of the system to
reflect the complete structure of the system, and obtaining coars-
er or finer models than the initially developed model. It can also
be used to obtain updated models that correctly reflect the
changes that occur as the software is maintained and modified for
other purposes, and to obtain models of components extracted
for use in other systems.

We next present several dichotomies in program analysis, and
discuss how these dichotomies relate to our view of future trends
in program analysis.

2.1 Static vs. Dynamic

Static analyses analyze the program to obtain information that is
valid for all possible executions. Dynamic analyses instrument the
program to collect information as it runs. The results of a dynam-
ic analysis are typically valid for the run in question, but make no
guarantees for other runs. For example, a dynamic analysis for the
problem of determining the values of global variables could sim-
ply record the values as they are assigned. A static analysis might
analyze the program to find all statements that potentially affect
the global variables, then analyze the statements to extract infor-



mation about the assigned values.

Dynamic analyses have the advantage that detailed informa-
tion about a single execution is typically much easier to obtain
than comparably detailed information that is valid over all execu-
tions. So useful dynamic tools are available for a wider range of
problems than static tools. Consider, for example, the problem of
detecting data races, which occur when two parallel threads access
the same memory location in conflicting ways without synchro-
nization. There are many dynamic tools that will detect data races
in a given execution of the program [42, 8], but far fewer static
analysis tools that detect potential data races in all possible execu-
tions .

Another significant advantage of dynamic tools is the preci-
sion of the information that they provide, at least for the execution
under consideration. Virtually all static analyses extract proper-
ties that are only approximations of the properties that actually
hold when the program runs. This imprecision means that a stat-
ic analysis may provide information that is not accurate enough to
be useful. If the static analysis is designed to detect errors (as
opposed to simply extracting interesting properties), the approx-
imations may cause the tool to report many false positives. In the
worst case, a flood of bogus error reports may render the tool use-
less for all practical purposes. Because dynamic analyses usually
record complete information about the current execution, they do
not suffer from these problems. The trade-off, of course, is that the
properties extracted from one execution may not hold in all exe-
cutions.

One important practical issue for the construction of dynamic
analysis tools is the level at which the tool manipulates the pro-
gram. One alternative is to parse the program source, insert the
instrumentation, then generate modified source. The unavailabil-
ity of source code for parts of the system and the difficulty of con-
structing parsers have led researchers to analyze and instrument
the binary code. This approach, of course, makes it difficult for the
tool to give the engineer feedback in terms of the original source.

In the future, we expect researchers to develop new dynamic
analysis tools with increased power and sophistication. These
tools will be used primarily as debugging aids and to help engi-
neers understand the behaviour of large systems. Engineers will
communicate with these tools using higher-level paradigms such
as database-style queries expressed using models of the program’s
state or execution. The emergence of standard, high level exe-
cutable formats such Java bytecode will make it much easier to
develop dynamic tools that provide high-level, structured feed-
back to the engineer. We also expect the ease of analyzing Java
byte codes and other high level executable formats to drive a
(potentially short) arms race between developers of executable
analysis tools and the developers of code obfuscation tools [10].
The goal of code obfuscation tools is to rewrite the shipped ver-
sion of the code in a way that preserves the semantics of the pro-
gram but makes it impossible for analysis tools to extract useful
information from the shipped version. Without obfuscation, these
representations are very easy for competitors to analyze and
reverse engineer. Their distribution via the Internet also dramati-
cally increases their availability to unauthorized users and com-
petitors.

In the longer term, we believe that static analysis to discover or
verify sophisticated properties of programs will become increas-
ingly viable and important. The major enabling factors for this
trend are the wider use of clean languages, increased hardware
capabilities, advances in program analysis techniques, and, most
importantly, the increasing deployment of critical infrastructural
software that must perform as designed.

2.2 Sound vs. Unsound

Sound static analyses produce information that is guaranteed to
hold on all program executions; sound dynamic analyses produce
information that is guaranteed to hold for the analyzed execution
alone. Unsound analyses make no such guarantees. A sound
analysis for determining the potential values of global variables
might, for example, use pointer analysis to ensure that it correctly
models the effect of indirect assignments that take place via point-
ers to global variables. An unsound analysis might simply scan the
program to locate and analyze only assignments that use the glob-
al variable directly, by name. Because such an analysis ignores the
effect of indirect assignments, it may fail to compute all of the
potential values of global variables.

The soundness of an analysis may depend on the characteris-
tics of the programming language, whether or not the program
uses certain features, and even the adherence of the programmer
to coding standards. Consider, for example, an analysis that uses
the declared types of object fields to extract information about the
potential referencing relationships between objects. Such an
analysis would be sound for type-safe languages such as Java, but
unsound for languages such as C or C++. Of course, if the C or
C++ program used none of the constructs (such as typecasts)
that may violate type safety, the analysis would produce results
that are sound for that program.

Why would an engineer be interested in the results of an
unsound analysis? The answer is that in many cases, the informa-
tion from an unsound analysis is correct, and even when incor-
rect, may provide a useful starting point for further investigation.
Unsound analyses are therefore often quite useful for engineers
who are faced with the task of understanding and maintaining
legacy code.

The most important advantages of unsound analyses, howev-
er, are their ease of implementation and efficiency. Consider the
two example analyses cited above for extracting the potential val-
ues of global variables. Pointer analysis is a complicated interpro-
cedural analysis that requires a sophisticated program analysis
infrastructure and a potentially time-consuming analysis of the
entire program; locating direct assignments, on the other hand,
requires nothing more than a simple linear scan of the program.
An unsound analysis may thus be able to analyze programs that
are simply beyond the reach of the corresponding sound analysis,
and may be implemented with a small fraction of the implemen-
tation time and effort required for the sound analysis.

If unsoundness is tolerated, the analysis may avoid even pars-
ing the code; lexical pattern matching to find function calls can be
used, for example, to construct a (potentially incomplete) call
graph [32]. The advantages of this approach include ease of



implementation, speed of analysis, and easy retargeting to new
languages or language dialects. In return, an engineer may well be
willing to accept less accurate results.

Finally, unsound analyses can exploit information that is
unavailable to sound analyses. An example of this kind of infor-
mation is information present in comments, or in the exact layout
of the code.

For all these reasons, unsound analyses will continue to be
important, and we look forward to research advances that
increase their power, so that an engineer can obtain crucial infor-
mation at very low cost. At the same time, we anticipate a renewed
interest in sound analyses. Software producers will come under
increasing pressure to increase quality and reduce the cost of test-
ing, and will be more willing to invest in the resources required to
develop sound analyses. The prevalence of Java will ease the
development of sound tools, and its open standards will make the
tools that are developed more widely applicable.

2.3 Speed vs. Precision

Static analyses typically exhibit an analyses time versus precision
trade off. We illustrate this trade off by discussing two fundamen-
tal distinctions that separate many analyses: the distinction
between flow-sensitive and flow-insensitive analyses, and the dis-
tinction between context-sensitive and context-insensitive analy-
ses.

Flow-sensitive vs. Flow-insensitive

Flow-sensitive analyses take the execution order of the program’s
statements into account. They normally use some form of iterative
dataflow analysis to produce a potentially different analysis result
for each program point. Flow-insensitive analyses do not take the
execution order of the program’s statements into account, and are
therefore incapable of extracting any property that depends on
this order. They often use some form of type-based or constraint-
based analysis to produce a single analysis result that is valid for
the entire program.

Researchers have developed flow-insensitive pointer analysis
algorithms that have been shown to scale to programs consisting
of hundreds of thousands of lines of code [3,46,15]. But because
the analyses are flow-insensitive, they cannot, for example, deter-
mine if a pointer is initialized before it is used or determine that a
pointer has different values in different regions of the program.
Both of these properties depend on the order in which the state-
ments of the program execute.

At the other extreme are shape analysis techniques, which are
designed to extract detailed information about the referencing
relationships between the objects in the program [17,45]. Shape
analyses have been designed, for example, to discover that data
structure is a tree and not a graph. The analyses are effective even
in the presence of destructive updates such as balanced tree rota-
tions and list reversals. Because these detailed properties depend
heavily on the statement execution order, the analyses must be
flow sensitive and generate an analysis result at each program
point. The price for this precision is paid in efficiency. Many of the
proposed analyses have not been implemented; those that have

been implemented have been tested only on programs consisting
of several thousand lines of code. Researchers have also developed
flow-sensitive algorithms that do not attempt to extract such
detailed information about the object referencing patterns. These
analyses have been shown to scale to programs consisting of tens
of thousands of lines of code[48].

In our view, engineers will be interested in properties that only
flow-sensitive analyses can extract or check. We expect the current
efficiency problems to be ameliorated by the introduction of
design information as expressed in modelling languages. This
information will promote the development of more efficient,
modular analyses that will scale to larger programs. In the long
run, we expect flow-sensitive analyses, in combination with
design information, to play the primary role in the analysis of crit-
ical infrastructural software systems. Given their efficiency and
relative ease of use, flow-insensitive analyses will be prominent in
contexts (such as reverse engineering) where the engineer must
rely primarily or exclusively on the code.

Context-sensitive vs. Context-insensitive

Many programming languages provide constructs such as proce-
dures that can be used in different contexts. Roughly speaking, a
context-insensitive analysis produces a single result that is used
directly in—and is thus approximate enough for—all contexts. A
context-sensitive analysis produces a different result for each dif-
ferent analysis context. The two primary approaches are to reana-
lyze the construct for each new analysis context, or to analyze the
construct once (typically in the absence of any information about
the contexts in which it will be used) to obtain a single parame-
terized analysis result that can be specialized for each analysis
construct. We call the latter analysis a compositional analysis.
Some compositional analyses are parameterized to the extent that
their results, when specialized for a given context, are as precise as
those provided by an analysis that completely reanalyzes the con-
struct for each different context. Others trade off precision in
return for a smaller parameterized analysis result or for increased
analysis efficiency.

Most flow-sensitive and context-sensitive pointer analysis
algorithms use some form of parameterization to avoid excessive
procedure reanalysis, but will reanalyze procedures if the aliasing
relationships between the parameters are different[13,48]. Others
are truly compositional in that they analyze each procedure once
(in the absence of recursion)[43,34,9,41]. The context-sensitive
algorithms that reanalyze procedures have exponential worst case
complexity, although this behaviour has not been observed in
practice. The compositional analyses that produce comparably
precise results also have exponential worst case complexity. The
context-insensitive analyses typically have polynomial worst case
complexity, and researchers have developed less precise composi-
tional analyses with polynomial worst case complexity.

In our view, context sensitivity is essential for analyzing mod-
ern programs in which abstractions (such as abstract datatypes
and procedures) are pervasive. Future research in the field will
therefore, in our opinion, focus on context-sensitive analyses.
Given the potential analysis time and space implications of rean-
alyzing abstractions such as procedures, a focus on composition-



al analyses is likely. It may turn out, however, that engineers do
not, in practice, use abstractions in significantly different con-
texts. There is some experimental evidence indicating that this
may be the case for procedures[39]. We therefore expect to see
future research whose goal is to determine, for different analysis
problems, the extent to which context sensitivity matters.

2.4 Multithreaded vs. Singlethreaded

Most classic program analysis techniques were developed for
optimizing compilers for sequential languages such as Fortran.
The goal was to produce efficient code for a single sequential
machine. In the future, however, programs will increasingly use
explicitly parallel constructs, both as a program structuring
mechanism and for performance reasons. Web servers, for exam-
ple, often use multiple threads to respond quickly to multiple
clients. In a multithreaded program, of course, the instruction
streams of the multiple threads may interleave in many different
ways. The classical dataflow analysis algorithms were simply not
designed for this model of computation. A straightforward adap-
tation that analyzes all potential interleavings fails because of
exponential blowup in the number of analyzed paths. Researchers
have already developed efficient extensions of dataflow analysis to
multithreaded programs for restricted analysis problems or
restricted models of multithreaded computation. The key exten-
sions involve a variety of techniques that represent the potential
interactions between threads in ways that allow the analysis to
efficiently compute their effect [30,38,41]. An alternative is to use
flow-insensitive analyses, which trivially model all the interleav-
ings because they are insensitive to the order in which the state-
ments execute. But in our view, such analyses will, by themselves,
provide results that are not precise enough to discover or verify
properties that are of interest to many engineers.

Given the importance of threads in modern languages, we
believe that the analysis of multithreaded programs will become
an active area of research. We also believe that modelling lan-
guages will play an important role in this field, and anticipate the
development of languages designed to express important proper-
ties of multithreaded programs such as synchronization policies
and sharing properties of objects and data.

2.5 Distributed vs. Localized

Multiple threads of control are used to express conceptually con-
current activities with potentially fine-grain interactions. The
threads typically execute on the same machine, although the
machine may have many processors. Another important source of
concurrency exists between distributed components executing on
separate machines. These components are often developed using
middleware packages such as CORBA and DCOM. One of the
goals of these packages is to provide an abstraction boundary that
decouples the different components.

We believe a narrow, minimal interface is appropriate and even
necessary for systems in which components—such as Web servers
and http clients—are developed independently and deployed and
administered by different organizations. In this context, issues of

security and trust argue for strong boundaries and minimal inter-
actions. But there is another kind of distributed system in which
components are more strongly coupled. The prevalence of
embedded devices will make such systems more common. In such
a system, components typically have complicated interactions,
and must be designed in close cooperation if the system as a
whole is to operate reliably. We therefore anticipate the develop-
ment of code analyses that are designed for programs expressed as
interacting distributed components, and will report results for the
behaviour of the system as a whole.

3 MODEL-DRIVEN CODE ANALYSIS

A particularly exciting prospect, we believe, is the exploitation of
abstract models in the static analysis of code. There is an intrigu-
ing correspondence between object models—advocated as the
central design representation by almost all object-oriented meth-
ods—and the shape graphs produced by many static analyses.
Both are abstractions of the runtime heap structure, and can be
viewed as representations of global, structural invariants.

We see great opportunities for synergy in this correspondence.
Static analysis can help modelling; the value of models will be bol-
stered greatly if their correspondence to code can be firmly estab-
lished. Models can help static analysis too. In this section, we
explain how object models might be used to focus and amplify the
power of static analyses, and to make the results more useful to the
developer.

There is a third crucial element in this approach beyond the
model and the analysis: a mapping to connect the two. We believe
that, although a tool might suggest possible mappings, it will be
essential for the mapping to be provided by the developer. We
expect that something along the lines of Aspect’s abstraction
functions [21] or Leinos dependences [31] might do the trick,
although viewed globally rather than within a module in the style
of reflexion models [33].

3.1 Modular Analysis by Induction

Our perspective on program analysis algorithms is that they dis-
cover invariants that the program preserves. This sheds some light
on some of the fundamental difficulties of analysis. To discover an
invariant, the analysis must analyze all of the parts of the program
that may affect that invariant. In practice, this has meant that most
analyses that extract the kind of deep program information (such
as object referencing information) that engineers find useful have
had to analyze the entire program. This lack of modularity signif-
icantly reduces the utility of the analysis. Many projects integrate
components from different organizations and companies, and
there may be no point at which all components are brought
together as coherent whole in an analyzable form. And of course
in early stages of development, many components do not even
exist.

An alternative is to obtain the invariants from another source,
typically the engineer, then use a modular analysis to verify that
the program preserves the invariants. Instead of analyzing the
entire program as a monolithic unit, the modular analysis would



analyze the program at the granularity of components. It would
start the analysis of each component by assuming that the invari-
ants hold before the component executes. It would then analyze
the component in the presence of these properties, verifying that
the component preserves the invariants.

Program verification systems, which require the engineer to
provide invariants (typically expressed in formal logic) that com-
pletely characterize the behaviour of the program, are the classic
example of this approach. In principle, the systems have a very
fine granularity—each loop in the program is a component.
Experience with these systems has shown the combination of for-
mal logic, complete specification, and the fine component granu-
larity to be too burdensome for all except the most safety-critical
programs. We expect that in the future, partial specification will
become an increasingly popular alternative. These properties will
be checked in a modular way. The Extended Static Checker (ESC)
from Compaq SRC is a good example of such a system [11]. ESC
allows programmers to specify invariants for each class, and veri-
fies that each method in the class preserves the invariants.

Aside from these advantages, modularity also allows the analy-
ses to scale to much larger programs. The cost of analyzing multi-
ple components increases linearly with the number of compo-
nents, rather than quadratically in the program size or worse as is
often the case for whole-program analyses.

Modelling languages will become a popular way for engineers
to specify the properties required for modular analyses. Instead of
specifying the relevant properties in a general-purpose logical
language, engineers will instead use special-purpose modelling
languages that are optimized for expressing specific aspects of the
overall design of the program such as the referencing relation-
ships between objects or the program’s sequence of externally vis-
ible actions.

Object models, for example, provide an appropriate means for
expressing object referencing invariants. These properties could
be checked by a sophisticated pointer analysis algorithm. Event
sequence models provide an appropriate means for expressing
properties of the sequence of externally observable actions that a
program performs. These properties could be checked by a
sophisticated interprocedural control flow analysis.

3.2 Giving Engineers Control

Modelling languages will also help to address a major weakness in
current program analysis approaches. Most analyses are unfo-
cused, and take place in the absence of any indication of which
properties are of interest to the consumer of the analysis informa-
tion. The analysis results produced by the efficient algorithms are
often so imprecise that they may be of little use to the engineer.
But the precise analyses may not scale to the required program
size, leaving the engineer with no viable analysis alternative.
Engineers need different degrees of precision in different situa-
tions, at different points in the program, and for different data
structures. Applying a single analysis uniformly across the entire
program is therefore counterproductive. Instead researchers will
move in the direction of analyses that accept direction from the
engineer via a modelling language regarding the required level of

precision. Such an analysis would exploit the engineer’s input to
increase precision where required, and revert to more efficient but
less precise strategies elsewhere.

Communicating the analysis results to the engineer and allow-
ing the engineer to browse or search the analysis results is anoth-
er area in which modelling languages can help. In general, there is
a need to translate the analysis results from the internal data
structures generated by the analysis tools into a representation
that the engineer can readily understand. Modelling languages
provide an effective medium for this communication: their
abstractions are designed for human use, and they often have con-
venient graphical representations. Representing the results of
deep static analysis visually is a hard challenge in the absence of a
mapping to an abstract model, or a focus on a particular task
(such as restructuring, for which Griswold and his colleagues have
produced impressive results [6]).

Although we have focused in this section on static analysis, we
also believe that modelling languages will play a similarly impor-
tant role for dynamic analyses. The advantages are similar in both
situations: an intuitive language that the designer can use to com-
municate with the analysis tool and a sharpening of the analysis
focus with the concomitant increase in performance and rele-
vance of the extracted analysis information.

CONCLUSIONS

We see software analysis coming full circle. In the last decade, an
appreciation for cost-effectiveness has caused researchers to iden-
tify more carefully the information engineers require, and to find
the most effective means of obtaining it. Precise and sound analy-
ses have fallen out of fashion, since they have tended to scale poor-
ly and to exact a high price for questionable benefits.

In the future, several factors may bring such analyses to the
fore again: the demand for reliable software; the availability of vast
computational resources; and, perhaps most significantly, the
exploitation of abstract models, to focus analysis effort where the
payoff is greatest, and to enable modular reasoning on a large
scale.
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