
Formal Semantics and Analysis of Control Flow in WS-BPEL?

(Revised Version)

Chun Ouyang1, Eric Verbeek2, Wil M.P. van der Aalst2,1, Stephen Breutel1,
Marlon Dumas1, and Arthur H.M. ter Hofstede1

1 Faculty of Information Technology, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{c.ouyang,sw.breutel,m.dumas,a.terhofstede}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology,

GPO Box 513, NL-5600 MB, The Netherlands
{h.m.w.verbeek,w.m.p.v.d.aalst}@tm.tue.nl

Abstract. Web service composition refers to the creation of new (Web) services by combination of
functionality provided by existing ones. This paradigm has gained significant attention in the Web
services community and is seen as a pillar for building service-oriented applications. A number of
domain-specific languages for service composition have been proposed with consensus being formed
around a process-oriented language known as WS-BPEL (or BPEL). The kernel of BPEL consists
of simple communication primitives that may be combined using control-flow constructs expressing
sequence, branching, parallelism, synchronisation, etc. As a result, BPEL process definitions lend
themselves to static flow-based analysis techniques. This report aims at validating the feasibility of
using Petri nets for static analysis of BPEL processes. We present a comprehensive and rigorously
defined mapping of BPEL constructs into Petri net structures. This leads to the implementation
of a tool which operates by translating BPEL processes into Petri nets and exploiting existing
Petri net analysis techniques. The tool performs two useful types of static checks and extracts
meta-data to optimise dynamic resource management.

Keywords: Business process modelling, Web services, BPEL, tool-based verification, Petri nets.

1 Introduction

There is an increasing acceptance of Service-Oriented Architectures (SOA) as a paradigm for integrating
software applications within and across organisational boundaries. In this paradigm, independently
developed and operated applications are exposed as (Web) services that communicate with each other
using XML-based standards, most notably SOAP and associated specifications [3]. While the technology
for developing basic services and interconnecting them on a point-to-point basis has attained a certain
level of maturity, there remain open challenges when it comes to engineering services that engage in
complex interactions with multiple other services.
A number of approaches have been proposed to address these challenges. One such approach, known

as (process-oriented) service composition [6] has its roots in workflow and business process management.
The idea of service composition is to capture the business logic and behavioural interface of services in
terms of process models. These models may be expressed at different levels of abstraction, down to the
executable level. A number of domain-specific languages for service composition have been proposed,
with consensus gathering around the Business Process Execution Language for Web Services, which is
known as BPEL4WS [4] and recently WS-BPEL [5] (or BPEL for short).
In BPEL, the logic of the interactions between a given service and its environment is described

as a composition of communication actions (send, receive, send/receive, etc). These communication
actions are interrelated by control-flow dependencies expressed through constructs corresponding to
parallel, sequential, and conditional execution, event and exception handling, and compensation. Data
manipulation is captured through lexically scoped variables as in imperative programming languages.
The constructs found in BPEL, especially those related to control flow, are close to those found in

workflow definition languages [1]. In the area of workflow, it has been shown that Petri nets provide
an appropriate foundation for performing static verification: Tools such as Woflan [22] are able to
perform state space-based and transition invariant-based analysis on workflow models in order to verify
properties such as soundness [22]. It is thus natural to conjecture that static analysis can be performed

? This work was supported by the Australian Research Council under the Discovery Grant “Expressiveness
Comparison and Interchange Faciliation between Business Process Execution Languages”.

on BPEL processes by translating them to Petri nets and applying existing Petri net-analysis techniques.
In particular, BPEL incorporates two sophisticated branching and synchronisation constructs, namely
“control links” and “join conditions”, which can be found in a class of workflow models known as
synchronising workflows formalised in terms of Petri nets in [14].
The work reported in this paper aims at validating the feasibility of using Petri nets for static analysis

of BPEL processes. The contributions are:

– A complete formalisation of all control-flow constructs of BPEL in terms of a mapping to Petri nets.
This formalisation has served to unveil ambiguities in the current BPEL specification which have
been reported to the BPEL standardisation committee.3

– A tool (WofBPEL) that employs the output of the above mapping to perform three types of analysis:
• Checking for unreachable activities.
• Checking for potentially conflicting “message receipt” actions.
• Determining, for each action in a BPEL process definition, which messages might eventually be
consumed by the process after this action has been performed. This information can be used by
a BPEL engine in order to detect which messages in the inbound queue may be discarded and
thus optimise resource consumption.

While other formalisations of BPEL have been proposed (see Sect. 2), we have found that none of
them is as detailed in terms of capturing control-flow constructs (especially “join conditions”) as the
one presented in this paper, and none of them has led to a publicly available tool that performs static
analysis as described above.
The rest of the report is organised as follows. Sect. 2 gives a brief introduction to BPEL and a review

of related work on formalisation and analysis of BPEL. Sect. 3 provides an informal description of the
mapping from BPEL to Petri nets. Sect. 4 presents a formal definition of this mapping, including an
abstract syntax of BPEL. Sect. 5 discusses the analysis of BPEL processes using the WofBPEL tool.
Finally, Sect. 6 concludes and outlines future work.

2 Background and Related Work

In this section, we provide an overview of BPEL and review related formalisation efforts.

2.1 Overview of WS-BPEL

BPEL is designed to support the description of both behavioural service interfaces and executable
service-based processes. A behavioural interface (known as abstract process) is a specification of the
behaviour of a class of services, capturing constraints on the ordering of messages to be sent to and
received from a service. An executable process, which is the focus of this paper, defines the execution
order of a set of activities (mostly communication activities), the partners involved in the process, the
messages exchanged between partners, and the events and exception handling specifying the behaviour
when specific events or faults occur.
A BPEL process definition relates a number of activities. Activities are split into two categories:

basic and structured activities. Basic activities correspond to atomic actions such as: invoke, invoking
an operation on some web service; receive, waiting for a message from an external partner; reply ,
replying to an external partner; wait , waiting for a certain period of time; assign, assigning a value to a
variable; throw , signaling a fault in the execution; compensate, undoing the effects of already completed
activities; exit , terminating the entire service instance; and empty , doing nothing. Structured activities
impose behavioural and execution constraints on a set of activities contained within them. These include:
sequence, for defining an execution order; flow , for parallel routing; switch, for conditional routing; pick ,
for capturing a race between timing and message receipt events; while, for structured looping; and scope,
for grouping activities into blocks to which event, fault and compensation handlers may be attached
(see below). Structured activities can be nested and combined in arbitrary ways, which enables the
presentation of complex structures in a BPEL process.
The sequence, flow , switch, pick and while constructs provide a means of expressing structured flow

dependencies. In addition to these constructs, BPEL provides another construct know as control links

3 See discussions associated to issues 189, 192 and especially 200 at the OASIS WS-BPEL website http:

//www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel.

2

which, together with the associated notions of join condition and transition condition, support the
definition of precedence, synchronization and conditional dependencies on top of those captured by the
structured activity constructs. A control link between activities A and B indicates that B cannot start
before A has either completed or has been “skipped”. Moreover, B can only be executed if its associated
join condition evaluates to true, otherwise B is skipped. This join condition is expressed in terms of
the tokens carried by control links leading to B. These tokens may take either a positive (true) or a
negative (false) value. An activity X propagates a token with a positive value along an outgoing link L
if and only if X was executed (as opposed to being skipped) and the transition condition associated to
L evaluates to true. Transition conditions are boolean expressions over the process variables (just like
the conditions in a switch activity). The process by which positive and negative tokens are propagated
along control links, causing activities to be executed or skipped, is called dead path elimination.

Control links may cross the boundaries of most structured activities. However, they must not create
cyclic control dependencies and must not cross the boundary of a while activity or a serializable scope.4

Prior to our work, the interaction between structured activities and control links was not fully under-
stood, resulting in ambiguities and contradictions in the wording of the BPEL specification [5]. Following
our formalisation effort, some of these issues were reported and discussed in the BPEL standardisation
committee, and changes to the specification’s wording have been proposed, albeit not yet adopted (see
footnote 3).

Also, whilst the control flow constructs of BPEL have been designed in a way to ensure that no
BPEL process execution can deadlock5, some combinations of structured activities (in particular switch
and pick) with control links can lead to situations where some activities are “unreachable”. Consider the
BPEL process definition in Fig. 1 where both the XML code and a graphical representation are provided.
During the execution of this process, either A1 or A2 will be skipped because these two activities are
placed in different branches of a switch and in any execution of a switch only one branch is taken. Thus,
one of the two control links x1 or x2 will carry a negative token. On the other hand, we assume that
the join condition attached to activity A3 (denoted by keyword “AND”) evaluates to true if and only if
both links x1 and x2 carry positive values. Hence, this join condition will always evaluate to false and
activity A3 is always skipped (i.e. it is unreachable).

<invoke name = "A3">

AND

A1 A2

x2

x1

A3

SW

FL

c1 c2

Flow

Switch

Control Link

Legend:

Basic Activity

<process name="unreachableTask"

<flow name="FL" suppressJoinFailure="yes">
<links>
 <link name="x1"/>
 <link name="x2"/>
</links>
<switch name="SW">
 <case>
 <invoke name="A1">
 <sources>
 </invoke>
 </case>
 <otherwise>
 <invoke name="A2">
 <sources>
 </invoke>
 </otherwise>
</switch>

 <targets>
 <joinCondition>

 </joinCondition>
 <target linkName="x1"/>
 <target linkName="x2"/>
 </targets>
</invoke>
</flow>

</process>

 <source linkName="x1"/> </sources>

 </sources>

 targetNamespace="http://samples.otn.com"
 suppressJoinFailure="yes"
 xmlns:tns="http://samples.otn.com"
 xmlns:services="http://services.otn.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

 bpws:getLinkStatus(‘x1’) and bpws:getLinkStatus(‘x2’)

 <source linkName="x2"/>

Fig. 1. Example of a BPEL process with an unreachable activity.

4 Serializable scopes are not covered in this paper since they are not a control-flow construct and thus fall
outside the scope of this work. Instead, serializable scopes are fundamentally related to data manipulation.

5 Although it has not been formally proved that BPEL processes are deadlock-free, to the best of our knowledge
no example of a deadlocking BPEL process has been put forward. Also, Kiepuszewski et al. [14] proves
that synchronizing workflows (a subset of BPEL processes made up of elementary actions, control links,
and restricted forms of join conditions) are non-deadlocking. Note that here we refer to “individual BPEL
processes” as opposed to “sets of communicating BPEL processes” which are outside the scope of our work.

3

Another family of control flow constructs in BPEL includes event , fault and compensation handlers.
An event handler is an event-action rule associated with a scope. An event handler is enabled when
its associated scope is under execution and may execute concurrently with the main activity of the
scope. When an occurrence of the event associated with an enabled event handler is registered (and
this may be a timeout or a message receipt), the body of the handler is executed while the scope’s
main activity continues its execution. Fault handlers on the other hand define reactions to internal or
external faults that occur during the execution of a scope. Some of these faults may be raised explicitly
using the throw activity. Unlike event handlers, fault handlers do not execute concurrently with the
scope’s main activity. Instead, this main activity is interrupted before the body of the fault handler is
executed. Finally, compensation handlers, in conjunction with the compensate activity, enable a process
to undo the effect of an already completed scope. When the compensate activity is executed for a given
scope, the compensation handler of this scope will be executed when it is available. This may involve
the execution of the compensation handlers associated to only the sub-scopes of the above given scope.

2.2 Related Work

The provisioning of a formal semantics of BPEL has been the subject of a variety of related work.
Many of these efforts however, focus on small subsets of BPEL like for example only on structured
activities [11,12] which is a relatively simple subset. A comparative summary of previous efforts in this
area is given in Table 1. The columns of the table correspond to the following criteria:

– Tech indicates the formalisation technique used: FSM for finite state machines, PA for process
algebra, ASM for abstract state machines, PN for plain Petri nets and HPN for high-level Petri nets.

– SA indicates whether the formalisation covers Structured Activities fully (+), partially (+/-) or not
at all (-). It can be seen that each of the cited papers covers this subset of BPEL.

– CL indicates whether the formalisation covers Control Links. Here a +/- rating is given for formali-
sations that cover control link constructs but do not fully cover join conditions. In particular, [13,16]
map each join condition to a single transition in the Petri net, thus losing information about the de-
tails of the join condition expression. We also found that [20] maps control links and join conditions
using features specific to high-level Petri nets, which are usually less suitable for static analysis of
control flow properties than low-level (or plain) Petri nets (i.e. place/transition nets [18,19]) due to
complexity issues. As we will show later, control links and join condition expressions can be fully
captured in terms of plain Petri nets. This results in a comprehensive mapping that is more detailed
and suitable for the types of analysis outlined in Section 5.

– EH indicates whether the formalisation covers Event and exception Handling. Some references cover
fault handling, but do not cover compensation and/or event handling, in which case, a +/- rating
is assigned.

– TAV indicates whether a Tool for Automatic Verification is provided. In the case of some efforts [10,
15], the authors claim to have developed and/or used a tool to verify deadlock-freeness of BPEL
processes. However, no example has been given of a deadlocking BPEL process (abstracting from
inter-process communication which can create deadlocks across processes) and hence such analysis is
unnecessary. Contributions [13,16,20] do not provide full automated support, i.e. the transformation
from BPEL code to a Petri net representation that can be loaded into a tool is not automated. In
these cases, a +/- rating is given. Finally, some of the cited references refer to the possibility of
performing formal verification [8, 9], but do not develop automated means of doing so (- rating).

– FDM (Formally Defined Mapping) indicates whether an abstract syntax for BPEL is provided and
the mapping from BPEL to the target language is formally defined. Here a + rating is given if the
formally defined mapping is complete with respect to the scope of the work claimed by the author(s).

– Comm indicates whether the formalisation covers the communication between BPEL processes.

Table 1 shows that our work is the first full formalisation of control flow in BPEL that has led
to a verification tool capable of performing useful and non-syntactic analysis. In addition, our BPEL
verification tool is publicly available. For the sake of balance, we note that some of the previous efforts
have addressed verification issues related to communication aspects, while our work focuses exclusively
on control flow. Specifically, Fu et al. [12] discuss how an automata-based tool can be used to verify
the correctness of a collection of inter-communicating BPEL processes. Similarly, Martens [17] shows
how a Petri net-based tool could be used to check the compatibility of two services with respect to
communication.

4

Table 1. A comparative summary of related work on BPEL formalisation and analysis.

Tech SA CL EH TAV FDM Comm

Fu et al. [12] FSM + - - +/- - +
Foster et al. [11] FSM + - - +/- - +
Fisteus et al. [10] FSM + - +/- +/- - -
Ferrara [9] PA + - + - - -
Koshkina & van Breugel [15] PA + + - +/- + -
Farahbod et al. [8] ASM + +/- + - + -
Martens [16], Hinz et al. [13] PN + +/- + +/- - +
Stahl [20] HPN + + + +/- - +
our work PN + + + + + -

This paper follows on our previous work on formalising BPEL. A less complete and earlier version
of the formalisation presented here (without the tool support) can be found in [21], while an informal
analysis of BPEL in terms of a set of workflow patterns is given in [23].

3 Mapping WS-BPEL to Petri Nets

In this section we informally establish a mapping of the WS-BPEL control flow constructs to Petri nets.
When using Petri nets for capturing formal semantics of WS-BPEL, we allow the usage of both labeled
and unlabeled transitions. The labeled transitions are used to model events and basic activities. The
transitions without a label, which we hereafter refer to as λ-transitions, represent internal actions that
cannot be observed by external users.

3.1 Activities

We start with the mapping of a basic activity (X) shown in Fig. 2, which also illustrates our mapping
approach for structured activities. The net is divided into two parts: one (drawn in solid lines) models
the normal processing of X, the other (drawn in dashed lines) models the skipping of X. In the normal
processing part, place rx (“ready”) models an initial state when it is ready to start activity X before
checking the status of all control links coming into X, and place fx (“finished”) indicates a final state
when both X completes and the status of all control links leaving from X have been determined. The
transition labeled x models the action to be performed. This is an abstract way of modelling basic
activities, where the core of each activity is considered as an atomic action. Transition x has an input
place sx (“started”) for the state when activity X has started, and an output place cx (“completed”)
for the state when X is completed. Two λ-transitions (drawn as solid bars) model internal actions for
checking pre-conditions or evaluating post-conditions for activities. The skip path is used to facilitate
the mapping of control links, which will be described in Sect. 3.2. Note that the to skip and skipped
places are respectively decorated by two patterns (a letter Y and its upside-down image) so that they
can be graphically identified. In Fig. 2, hiding the subnet enclosed in the box labeled x yields an abstract
graphic representation of the mapping for activities. This will be used in the rest of the paper.

X

Y

skippedX

"skip"

YXto_skip Xr

Xs

X

Xc

Xf

Fig. 2. A basic activity.

Fig. 3 depicts the mapping of structured activities (except scopes) with a focus on their normal
behaviour. Since scopes are mainly concerned with exception handling, their mapping will be given
in Sect. 3.3. In Fig. 3, next to the mapping of each activity is a BPEL snippet of the activity. More

5

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

(d) pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

(c) switch(b) flow

(e) while

name="X">
activity A
activity B

</flow>

(a) sequence

<flow

<switch name="X">
<case>

<condition>

activity A

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

The mapping of skipping an entire structured activity is shown in Fig. 4. To capture the control
dependencies generated by structural constructs like sequence, we define separately the mapping of
skipping a non-sequence activity (i.e. flow, switch, pick, or while) in Fig. 4(a), and the mapping of
skipping a sequence activity in Fig. 4(b). In both mappings, a skipping place is added to specify an
intermediate state when the structured activity (X) waits for all its sub-activities (X1 to Xn) to be
skipped before X itself can be skipped. In Fig. 4(a), when a non-sequence activity is skipped, all its
sub-activities will be skipped in parallel. Whereas in Fig. 4(b), when a sequence activity is skipped, all
its sub-activities need to be skipped in the same order as their normal occurrences in the sequence.

(a) non−sequence

X Xn. . . are all direct sub−activities of X.[note]

.

..

.

..

Xn

Xn

. ..

. . .
. . .

X

n

X1

X1

X1

X

X

X

Y

I

Y Y

Y

Y Y

X

X

r

s

c

f

r

ff

r

"skip"

"skip_fin"

Xto_skip

Xskipped

Xskipping

nX

2X

1X

.

..

Xf

.

..

X

X

Xn

n
r

f

c

X2

X2

r

f

X

X

X1

X1

Y

r

s

r

f

Y

I
Y

Y

Y

Y

Y

Y

"skip"

"skip_fin"

X
X

X

Xskipped

skipping

to_skip

(b) sequence1

Fig. 4. Skipping structured activities.

3.2 Control Links

Control links are non-structural constructs used to express control dependencies between activities.
Fig. 5 depicts the mapping of control links using an example of a basic activity. The given BPEL
snippet specifies that activity X is the source of links X out

1 to X out
n and the target of links X in

1 to X in
m .

Each control link has a link status that may be set to true or false, as represented by place lst (“link
status true”) or lsf (“link status false”).

..

. BNXnet
boolean

βX

(mapping
of)

jctX

jcfX

...

. ..

lsttc
X
out

lst

lsf

tc

1
out

out

out

lsf

lst

1

lsf

lst

in

in

in

in
1

m

m

X

X

X

X

r

c

f

s

X

X

"sjf"

X
inL

L

n

n

n

1

1

lsf

out

out

out

jlsin Xin
jis the status of control link

where j=1, 2, ... , m.
,[note]

outtcn

out
1tc

...

...

βX lsin
1 , ... , mlsin()

Xout
n

Xout
1

Xin
1

Xin
m

<targets>
<joinCondition>

</transitionCondition>
</source>

</sources>

</joinCondition>

<activityX suppressJoinFailure="yes">
<sources>

</transitionCondition>
</source>

</targets>
</activityX>

<transitionCondition>

<source linkname="

<source linkname="

<target linkname="

<transitionCondition>
">

">

<target linkname=" ">

">

Fig. 5. A basic activity with control links.

7

The subnet enclosed in the box labeled Loutx specifies the mapping of outgoing links from activity X.
Once X is complete, it is ready to evaluate transition conditions, which determine the link status for each
of the outgoing links. Since transition condition expressions are part of the data perspective, they are
not explicitly specified in the mapping and their boolean evaluation is modelled non-deterministically.

The subnet enclosed in the box labeled Linx specifies the mapping of incoming links to activity X. A
join condition is defined as a boolean expression (e.g. βX (ls

in
1 ,...,ls

in
m)) in the set of variables representing

the status of each of the incoming links. It is mapped to a boolean net (BNx), which takes the status
of all incoming links as input and produces an evaluation result as output to place jctx (“join condition
true”) or jcfx (“join condition false”). The definition of this boolean net is given in Sect. 4.2.

If the join condition evaluates to true, activity X can start as normal. Otherwise, a fault called
join failure occurs. A join failure can be handled in two different ways, as determined by a so-called
suppressJoinFailure attribute associated with X. If this attribute is set to yes, the join failure will
be suppressed, as modelled by transition “sjf” (“suppress join failure”). In this case, the activity will
not be performed and the status of all outgoing links will be set to false. This is known as dead path
elimination in the sense that suppressing a join failure has the effect of propagating the false link status
transitively along the paths formed by control links, until a join condition is reached that evaluates to
true. An activity for which a join failure is suppressed, will end up in the “finished” state (e.g. fx) as if it
is completed as normal, and thus the processing of any following activity will not be affected. Otherwise,
if suppressJoinFailure is set to no, a join failure needs to be thrown, which triggers a standard fault
handling procedure as described in Sect. 3.5.

The mapping of skipping a basic activity with control links is shown in Fig. 6. Such an activity X, if
asked to skip, cannot be skipped until the status of all incoming links has been determined. Place jcvx
is used to collect either true or false token which represents the corresponding result of join condition
evaluation, as such result will not affect the skipping behaviour of X. In this way, we capture the control
dependency between activity X and the source activity of each of the incoming links to X. As soon as
activity X is skipped, the status of each of the outgoing links from X will be set to false, which captures
the dead path elimination as a result of skipping the activity.

jcfX

jctX

jcvX

.

X

X
in

X

X

X

r

c

f

s

X

X

.

L

.

.

LX
out"skip"

Y

Y

.

..

. . .

. . .

out
1

n
outlsf

lsf

skipped

X

X

to_skip

Fig. 6. Mapping of skipping a basic activity with control links.

. ..

. . .

Xto_f

.

..

.

..

. . .
. . .

Xr

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

X

Xs

Xc

Xf

X1

X1

X1

f

rY

Y

Xn

r

f

Y

Y

. . .

"sjf_fin"

"sjf"
.
..

.

..

Xc

Xr

. ..X1 Xn

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

Xs

X

Xf

Y

Y

X1

X1

r

f

r

f

I

. . .

Y Y

Y Y

"skip_fin"

"skip"

to_skipX

skippedX

skipping

. . .
. . .

. . .

Xjcv

X

(a) normal behaviour (b) skipping behaviour

Fig. 7. A non-sequence structured activity with control links.

8

We now extend the mapping of control links for structured activities. This is shown in Fig. 7 which
includes mappings for both (a) normal behaviour and (b) skipping behaviour of a non-sequence activity.
For the mapping of suppressing a join failure in Fig. 7(a), place to fx is added to capture an intermediate
state when activity X waits for all its sub-activities X1 to Xn to be skipped, before it is finished (fx).
For both mappings in Fig. 7(a) and (b), the dead path elimination is captured upon the completion of
suppressing the join failure (transition “sjffin”) or skipping all sub-activities of X (transition “skipfin”).
The mapping for a sequence activity can be extended in a similar way, as shown in Fig. 8. Note that
there is an exclusive choice between the normal behaviour (Fig. 7 (a) and Fig. 8 (a)) and the skipping
behaviour (Fig. 7 (b) and Fig. 8 (b)), because the environment puts a token in either place rx or to skipx.

Xn

Xn

. . .

to_fX

Xf

Xn

Xn

. . .

...

rX

skippedX

jctX

jcfX

XLin

...

XLin

jctX

jcfX

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf ...
. . .

. . .

LX
out

out
1

n
outlsf

lsf......

to_skipX

skippingX

X1

X2

XnXn

X2

X1

(a) normal behaviour (b) skipping behaviour

X

r

f

c
"sjf_fin"

X2

2

r

Xf

rX

X

X1

X1

s

r

f

X

"sjf"

X

r

f

c

X2

2

r

Xf

X

X1

X1

s

r

f

X

Y

...

Xf

Y

Y

I

Y

Y

Y

Y

Y

.

.

.

"skip"
Y

Y

Y

Y

Y

Y

...

jcv

"skip_fin"

X

Fig. 8. A sequence activity with control links.

As an example, Figure 9 depicts the mapping of the BPEL process shown in Figure 1.

"c1"

FL

rFL

cFL

fFL

cSW

fSW

rSW

sSW

Y Y

Y Y

"~c1 c2"v

tc

tc

"tt"

"ff"

"tf"

"ft"

r

s

A3

c

f

c

s

r

f f

c

A2

s

A2r

jct

jcflsf

lst
lsf

lst

A1

A1 A2

A2A1

A1 A2

A3

A3

A3

A3

A1
x2

x1

x2

x2

x1

A3

A3

x1

s

Fig. 9. Mapping of the BPEL process shown in Figure 1.

9

3.3 Scopes

A scope is a special type of structured activity defined for event and exception handling. It has a
primary (i.e. main) activity, and can provide event handlers (Sect. 3.4), fault handlers (Sect. 3.5) and
a compensation handler (Sect. 3.6). Like other structured activities, scopes can be nested to arbitrary
depth, and the whole process is implicitly regarded as the top level scope.
To facilitate the mapping of exception handling, we define four flags for a scope. These are: to continue,

indicating the execution of the scope is in progress and no exception has occurred; to stop, signaling an
error has occurred and all active activities nested in the scope need to stop; snapshot, capturing the scope
snapshot defined in [5] which refers to the preserved state of a successfully completed uncompensated
scope; and no snapshot, indicating the absence of a scope snapshot.
Fig. 10 depicts the basic mapping for a scope (Q) in which the mapping of any event or exception

handler associated with the scope is not included. Assume that no exception occurs. Scope Q remains in
the status of to continue during its normal performance (i.e. the execution of Q’s main activity A). Upon
the completion of activity A, a snapshot is preserved for scope Q. Next, consider the case of skipping
scope Q (see Fig. 10(a)) or the case of suppressing a join failure for Q (see Fig. 10(b)). Once activity A
has been skipped (upon the occurrence of transition “skip fin” or “sjf fin”), the status indicating the
absence of a scope snapshot for Q (place no snapshotQ) will be recorded. Finally, faults may occur during
the normal performance of scope Q, causing the status of Q to change from to continue to to stop. This
will be described further in Sect. 3.5.

(b) suppressing join failure

to_stopX

to_continueQC

snapshotQ

:)

Qno_snapshotskippedQ

Qskipping

to_skipQ

Q

A

A

A

Qr

s

r

f

Y

Q

Q

Q

c

f

Y !

Y

I

Y

"skip_fin"

"skip"

(a) skipping behaviour

Qr

Qs

Qc

snapshotQ

:)

Qno_snapshot ! Qf

jctQ

jcfQ

Q
inL

to_fQ

LX
out

...
. . .

. . .

out
1

n
outlsf

lsf

Qto_stopX

to_continueQC

Ar

A

Af

.

.

.

"sjf"

"sjf_fin"

Y

Y

Q

. ..

. . .

Q

Fig. 10. A scope with its main activity.

3.4 Event Handlers

A scope can provide event handlers that are responsible for handling normal events (i.e. message or alarm
events) that occur concurrently while the scope is running. A message event handler can be triggered
multiple times if the expected message event occurs multiple times, and an alarm event handler, except
for a repeatEvery alarm, can be invoked at most once (upon timeout). The repeatEvery alarm event
occurs repeatedly upon each timeout when the scope is active, and the corresponding event handler can
be invoked multiple times as long as the alarm event occurs.
We discuss a couple of decisions made for the mapping of event handlers. Firstly, since no control

links are allowed to cross the boundary of event handlers, each event handler can be viewed as an
independent unit of activities within a scope. Secondly, the occurrence of an event is either triggered by
the system (for an alarm event) or by the environment (for a message event), and the event handler is
invoked only if the expected event occurs. So it is not necessary to distinguish between the mappings
of the different types of event handlers.
Fig. 11 depicts the mapping of a scope (Q) with an event handler (EH). The four flags associated

with the scope are omitted. The subnet enclosed in the box labeled EH specifies the mapping of event
handler EH. As soon as scope Q starts, it is ready to invoke EH. Meanwhile, event enormal is enabled
and may occur upon an environment or a system trigger. When enormal occurs, an instance of EH is
created, in which activity HE (“handling event”) is executed. EH remains active as long as Q is active.
Finally, event enormal becomes disabled once the normal process of Q (i.e. Q’s main activity A) is finished.

10

However, if a new instance of EH has already started when enormal is disabled, it is allowed to complete.
The completion of the whole scope is delayed until all active instances of event handlers have completed.
Note that when a join failure occurs at activity A, event enormal will become disabled upon suppressing
the join failure (see Sect. 4.2). Hence, by using place enabled in the mapping, we are able to avoid
the situation where the event handler can still be triggered if the corresponding event occurs after the
normal process of the scope has completed. Such case violates the semantics of “disablement of events”
defined in Section 13.5.5 of [5].

<onAlarm

...

Af

Qc

Qf

Q

Qs

r
Qnormal

fHE

to_invokeEH

enormal���
���
���

���
���
���

A

Ac

r
A

r

HE

HE

enabled

EH

enormal

enormal

Example BPEL code 1:

<eventHandlers>

</onMessage>
</eventHandlers>

<scope name="Q">

</scope>
activity A

activity HE
<onMessage >

Example BPEL code 2:

<eventHandlers>
<scope name="Q">

</eventHandlers>

</scope>
activity A

</onAlarm>
activity HE

>

Fig. 11. A scope with an event handler.

It is worth noting that “unlike alarm event handlers, individual message event handlers are permitted
to have several simultaneously active instances” (Section 13.5.7 of [5]). The mapping in Fig. 11 allows
an event handler to have at most one active instance at a time. By adding an arc from transition enormal
to place to invokedEH in the mapping, multiple active instances of an event handler may be invoked
simultaneously. This however will cause the place to invokedEH and thus the net to be unbounded,
and the analysis of an unbounded net is always difficult to manage and requires techniques that are
computationally expensive. To avoid an unbounded net, we consider another approach in which the
subnet enclosed in the box labeled EH in Fig. 11 is duplicated to n subnets to capture at most n
active instances of an event handler simultaneously. The resulting net, as shown in Fig. 12, is a 1-safe
net [19]. The analysis of such a net will be a parameterised analysis based on the maximal number (n)
of simultaneously active instances of an event handler allowed in the process.

EH

. .
...

Af

fQ

2EHto_invoke EHto_invoke n

enabled2 enabledn

emsg emsgemsg

1enabled

Qnormal

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

	�	
	�	
	�	

Q

A

A

Q

Q

HE

HE

HE

HE2

HE

HE

HE1

HE

HE

r

s

r

c

c

A

r

f

r

f

r

f
n

n

n21

1 2

1EH

disabled

to_invoke

.

Fig. 12. A message event handler that may have a maximum of n simultaneously active instances.

11

3.5 Fault Handling

BPEL defines three types of faults that may arise during the process execution. These are: application
faults (or service faults), which are generated by services invoked by the process, such as communication
failures; process-defined faults, which are explicitly generated by the process using the throw activity; and
system faults, which are generated by the process engine, such as join failures and datatype mismatches.

If a fault occurs during the normal process of a scope, it will be caught by one of the fault handlers
defined for the scope. The scope switches from the normal (processing) mode to the fault handling (or
faulty) mode. Note that “it is never possible to run more than one fault handler for the same scope
under any circumstances” (Section 13.4 of [5]). A fault handler is defined either explicitly or implicitly.
An implicit fault handler is also known as a default fault handler. It is created to catch any fault
that is not caught by all explicit fault handlers within the scope. Therefore, we can assume that each
scope has at least one (default) fault handler. If a fault handler cannot handle a fault being caught or
another fault occurs during the fault handling, both faults need to be rethrown to the (parent) scope
that directly encloses the current scope. A scope in which a fault has occurred is considered to have
ended abnormally and thus cannot be compensated, no matter whether or not the fault can be handled
successfully (without being rethrown) by the corresponding fault handler.

The mapping of fault handling is defined via the following steps. At first, we present a general
mapping of it which can be instantiated given a specific fault. For example, process-defined faults are
generated by the throw activity which can be explicitly specified in the mapping, while application or
system faults are generated by process services or the process engine which may be treated as external
or system triggers. Secondly, as compared to the faults occurred in the normal mode of a scope (which
invoke the fault handling within that scope), the faults occurred in the faulty mode of a scope invoke
the fault handling within its parent scope. This needs to be realised in the mapping. Thirdly, since event
handlers associated with a scope are considered as a part of the normal behaviour of the scope, we also
specify the behaviour of handling faults within a scope that has event handlers attached to it. Finally,
control links are only allowed to leave the boundary of a fault handler. So the mapping needs to capture
the dead path elimination for the outgoing links of a fault handler that will never be invoked.

General mapping of fault handling. Fig. 13 depicts the general mapping of handling a fault that
occurs during the normal process of a scope (Q). The subnet enclosed in the dashed box labeled FH
specifies the general mapping of a fault handler. It has a similar structure as the mapping of an event
handler (shown in Fig. 11) with differences in the following three aspects.

– Firstly, as compared to the normal events defined within event handlers, faults that may arise during
a process execution can be considered as fault events. Transition “efault” represents such fault event,
and upon its occurrence, the status of scope Q changes from to continue to to stop. All activities
that are currently active in Q need to stop, and any other fault events that may occur are disabled.
In this way, we ensure that no more than one fault handler can be invoked for the same scope.

– Secondly, a fault handler, once invoked, cannot start its main activity HF (“handling fault”) until
HF has terminated. This results in an intermediate state, as captured by place invokedFH, after the
occurrence of event efault but before the execution of activity HF. Note that we will not describe
the mapping of activity termination here (see Sect. 3.7), except to mention that an activity being
terminated will end up in the “finished” state. For example, in Fig. 13, if activity A is asked to
terminate, place fA will get marked upon the termination of A. Accordingly, the arc from place fA
to the input transition of place rHF, ensures that activity HF cannot be started until the normal
process of scope Q has terminated.

– Finally, if the fault has been handled successfully, any control links leaving from scope Q will be
evaluated normally. Accordingly, in Fig. 15, place cQ will get marked. However, the status of Q will
change from to stop to no snapshot to indicate that a fault has occurred during its performance.

Handling a process-defined fault. We instantiate the above general mapping for handling process-
defined faults, as shown in Fig. 14. The fault is generated by a throw activity and its occurrence triggers
the fault handler FHt as an instantiation of the fault handler FH in Fig. 13. The throw activity is
directly enclosed in Q, i.e., there does not exist any intermediate scope which is both nested in Q and
encloses this throw activity. In Fig. 14, the transition labeled throw models the action of throwing a
fault, and the occurrence of the action itself resembles the occurrence of the corresponding fault event.

12

Q

<faultHandlers>
<catch faultName="fault">

activityHF

<scope name="Q">

</scope>

</catch>

activityA

!

X

C

FHinvoked

FHto_invoke

"efault"

Qto_stop

Qto_continue

Q

Q

no_snapshotQ

FH

HF

A

A

A

Q

r

s

r

c

fQ

f
HF

HF

r

f

Q

:) snapshot

</faultHandlers>

Fig. 13. A fault handler (general mapping).

The above throw activity in A

X

C

.. .

Af

Qc

rthrow

sthrow

cthrow

fthrow

.. .

Q

Q

A

r

s

r

snapshotQ

:)no_snapshotQ! Qf

HFt

throw

A

Q

HF

HF

FHt

r

f

t

t

t
to_invokeFH

FHinvoked t

.

..

.

..

</scope>

</faultHandlers>
</catch>

<activityA>

</activityA>

<throw faultName="fault"/>

<faultHandlers>
<catch faultName="fault">

<scope name="Q">

activityHF t

[note]
is directly enclosed in scope Q.

Fig. 14. Handling a process-defined fault generated by the throw activity.

Handling a join failure fault. We instantiate the general mapping of a fault handler for a join failure
fault, as shown in Fig. 15. Assume that activity X, which is part of the normal process of scope Q and
is directly enclosed Q, has the suppressJoinFailure attribute set to no. The occurrence of fault event
ejoinf will be triggered if a join failure occurs (place jcfX being marked) at activity X and X is ready to
start (place rX being marked). The arc from transition “ejoinf” to place sX allows the continuation of the
flow in the normal process of scope Q. This is necessary in the mapping of activity termination (see
Section 3.7) which requires a dry run of the uncompleted activities in the scope.

Handling faults occurred within fault handlers. Any type of activity (e.g. a scope) can be used
for fault handling, and thus the main activity carried out by a fault handler may contain scope activities
that are nested to arbitrary depth. If a fault occurred within a fault handler can be solved inside the
fault handler, the mapping of fault handling shown in Fig. 13 can be used. Otherwise, if the fault cannot
be solved locally, it needs to be thrown to outside of the fault handler. Fig. 16 depicts the mapping
of throwing a fault from within a fault handler (FH1) of the current scope (Q1), which invokes the
fault handler (FH) for the parent scope (Q) of Q1. Note that the BPEL specification [5] also defines a
rethrow activity, which in essence “can be considered a macro for a <throw> (i.e. throw activity) that
throws the fault caught by the corresponding fault handler” but cannot be solved by that fault handler
(Section 13.4 of [5]).

13

FH

X is directly enclosed in scope Q.

...
. . .

. . .<target linkname= >

...

<activityA>

<scope name="Q">

</faultHandlers>

<faultHandlers>
<catch faultname="bpws: joinFailure">

</catch>

<activityX suppressJoinFailure="no">

</activityA>
</scope>

<targets>
<joinCondition>

</joinCondition>

</targets>
</activityX>

activity HF jf

:)

C

X

!

.. .
.. .

"ejoinf "

jctX

jcfX

Q

rQ

sQ

rA

fA

c

fQ

Q

rHF

fHF

HF

FH

r

s

c

f

X

X

A
X

X

X

X

jf

jf

jf

jf

to_invokeFHjf

jf
invoked

[note]

Fig. 15. Handling a join failure as an example of a system fault.

f

1[note]

.

..
Q1<scope name=" ">

.

..

.

..

.

..

</catch>
</faultHandlers>
<activityA>

<faultHandlers>
<catch faultName="fault">

<scope name="Q">
<faultHandlers>

<catch faultname="fault">

</catch>
</faultHandlers>

</scope>

</activityA>
</scope>

activity (of FH)t

activity (of Q)1

<rethrow/>

X

C to_continue Q

to_stopQ

.

.

.

FHinvoked t

FHt

t
to_invokeFH

rthrow

sthrow

cthrow

fthrow

..

.

..

. FH1

rFH1

fFH1

.

.

.

Q1

.. .

Af

Ar

Q

Q

r

s
.. .

...

throw

A

Q

Q

Q is directly enclosed in scope Q.

Fig. 16. Handling a fault thrown from within a fault handler.

Handling faults occurred in a scope with event handlers. Since event handlers are considered as
part of the normal process of a scope, faults occurred within a scope include those occurred within the
event handlers attached to the scope. Fig. 17 depicts the mapping of handling a fault occurred within
a scope that has event handlers attached to it. This mapping is mainly obtained by combining the
mappings of event handling (Fig. 11) and fault handling (Fig. 13) for the scope. Based on this, we add
the following two arcs, both drawn in thick dashed lines. The arc from place to invokeEH to the input
transition of place rHF, is added to ensure that any active instance of event handler (EH) will terminate
before the fault handling (activity HF) starts. The bidirectional arc connecting place to continueQ and
transition “enormal”, is added to disable event enormal once a fault occurs within scope Q.

14

either activity A or activity HE.

C

. . .

X

to_invokeEH

HE

HE

HE

r

f

enormal

!

:)

�
�

�
�

�
�

�����
�����
�����

A

A

r

f

A
..
.

Ac

enabled

HF

fHF

HFr

FHinvoked

FH

EH

Q

Q

r

s

Q

Q

Qf

c

enormal<onMessage >

activity A

</onMessage>

<eventHandlers>

</eventHandlers>

</faultHandlers>
</catch>

activity HF

<faultHandlers>
<catch faultName="fault">

</scope>

<scope name="Q">

activity HE

[note] The above "fault" may occur in

Fig. 17. Mapping of fault handling in a scope that involves event handlers.

Dead path elimination for control links leaving from a fault handler. Fig. 18 depicts the
mapping of dead path elimination for an outgoing control link (HFout1) from a fault handler (FH1).
There are four possible cases, which are realised by four input arcs to place lsfout1 as follows.

– Firstly, consider the case when the fault handler FH1 is invoked and during the execution of activ-
ity HF1 it is determined that the status of control link HF

out
1 should be set to false. This is captured

by the dashed arc leading from within activity HF1 to place lsf
out
1 .

– Secondly, assume that scope Q is completed successfully. In this case, none of the fault handlers
will be executed for scope Q. The status of link HFout1 will be set to false upon completion of Q, as
captured by the arc from the input transition of place cQ to place lsf

out
1 .

– Thirdly, consider the case when another fault event (efault2) occurs, which invokes the corresponding
fault hander (FH2) but disables FH1 in scope Q. The status of link HF

out
1 will be set to false upon

the occurrence of event efault2 , as captured by the arc from transition “efault2” to place lsf
out
1 .

– Finally, suppose that scope Q needs to be skipped, and again none of the fault handlers in Q will
be performed. The status of link HFout1 will be set to false when Q is being skipped, as captured by
the arc from transition “skip” to place lsfout1 .

Also, note that if one of the fault handlers (e.g. FH2) gets invoked, the other (e.g. FH1) cannot be
invoked any more. Therefore, the token in the to invoke place of fault handler FH1 needs to be consumed
before activity HF1 for handling fault efault2 starts.

1

The above "throw" activity in A
is directly enclosed in scope Q.

1tcout

HF 1
out "><source linkname="

.

..

.

..

<scope name="Q">
<faultHandlers>

</transitionCondition>
</source>

<transitionCondition>

<sources>

</catch>

</sources>
activity

</catch>

</scope>

</faultHandlers>
<activityA>

</activityA>

<throw faultName="fault "/>

<catch faultName="fault ">

</activityHF >1

<activityHF >
1

<catch faultName="fault ">
activityHF

2

2

2

1

!

fault1
"e " fault2

"e "

to_invokeFH1

to_invokeFH2

:)

C

X

skippingQ

rQto_skipQ

skipped Q

.

.

.
out
1lsf

.. .

HF1

Q

A

Q

A

A

Q

Qf

s

r

c

f

Y

Y

I

Y

"skip_fin"

"skip"

Y

rHF1

fHF

[note]

Fig. 18. Dead path elimination for a control link leaving from a fault handler.

15

3.6 Compensation

As part of the exception handling, compensation refers to application-specific activities that attempt to
undo the work of a completed scope. Such activities are defined within a compensation handler . Each
scope, except the top level scope (i.e. process scope), provides one compensation handler that is defined
either explicitly or implicitly. Similarly to a default fault handler, an implicit (or default) compensation
handler is created for a scope, if the scope is asked to be compensated but an explicit compensation
handler is missing for that scope. A fault handler or the compensation handler of a given scope, may
perform a compensate activity to invoke the compensation of one of the sub-scopes of this scope. The
compensation handler of a scope is available for invocation only if the scope has a scope snapshot as
mentioned in Sect. 3.3. Otherwise,“invoking a compensation handler that has not been installed (i.e.
unavailable) is equivalent to the empty activity (it is a no-op)” (Section 13.3.3. of [5]).
Fig. 19 depicts the mapping of handling the compensation of a given scope (Q1), as invoked by the

compensate activity within a fault handler (FH) or compensation handler (CH) of the parent scope (Q)
of Q1. The transition labeled compensate models the atomic action of invoking a compensation. Upon its
occurrence, it is ready to invoke the compensation handler CH1 of scope Q1. However, the availability of
CH1 depends on the presence of a scope snapshot of Q1. Only if Q1 has a scope snapshot will transition
“invoke” occur. Upon its occurrence, activity HC1 (“handling compensation” of Q1) will be carried out,
and consequently the scope snapshot of Q1 will be consumed. If Q1 does not have a scope snapshot, the
attempt to invoke CH1 results in an empty action, as captured by transition “no-op”. The compensate
activity will end upon the completion of either the compensation of Q1 or the empty action, and the
performance of activity HF or HC can be continued.

Q

..

...

...

...

...

Q1"><compensate scope="

...
Q1"><compensate scope="

Q1"><scope name="

HC1

<compensationHandler>

</compensationHandler>

</catch>

<faultHandlers>

</faultHandlers>

<scope name="Q">

</activityHF>

<activityHC>

</activityHC>

<activityA>

activity
</scope>

</activityA>
</scope>

<activityHF>
<catch>

<compensationHandler>

</compensationHandler>
activity

[note] 1Q is directly enclosed in scope Q.

.

..

:)

.

..
!

.

.

.

1Q

HC1

Qs

Qr

Q

Q

f

c

...

.

..

.

..
f

c

compensates

compensater

compensate

compensate

compensate

.

..

A

A

A
r

f

1

Q1
f

rQ

no_snapshotQ1
snapshotQ1

CH1to_invoke 1CH

rHC1

HC1
f

FH/CH

HF/HC

"no−op" "invoke"

HF/HC

fHF/HC

r

.

Fig. 19. Handling compensation invoked by the compensate activity.

Similarly to fault handlers, a compensation handler may contain scope activities and faults may
occur during compensation. Fig. 20 depicts the mapping of throwing a fault from within a compensation
handler (CH1) of scope (Q1). Such a fault is treated as being a fault within the scope (Q

CH
i) that directly

encloses the compensate activity used for the compensation of scope Q1. Therefore, if the fault is thrown,
it will be caught by one of the fault handlers (FHi) associated with scope Q

CH
i .

3.7 Termination

This subsection presents the mapping for BPEL constructs that terminate (i.e. cancel) the execution
of activities: a) termination of a scope due to a fault and b) termination of an entire process upon the
occurrence of an exit activity.

16

. . .

1<scope name=" ">Q1<scope name=" ">

...

...

...

...

</activity >Ai

...
Q1<compensate scope=" ">

...

FHi(of)

<activity >Ai

Q CH
i<scope name=" ">

...

Q1(of)

...

<activityA>

<compensationHandler>

<throw faultname="fault">

<activity

</activity
</compensationHandler>

</compensationHandler>

</scope>

<faultHandlers>
<catch faultName="fault">

activity
</catch>

</faultHandlers>

<compensationHandler>
<scope name="Q">

activity
</scope>

</activity>
</scope>

HC >1

HC >1

sthrow

cthrow

fthrow

rthrow

HC1
r

to_invokeCH1

HC1
f

!

:)

CH1

Q1

f

c

compensates

compensater

compensate

compensate

compensate

Q i
CH

A i

...

...

throw

X

C iFH
. . .

. . .

.
 .

 .

. .
 .

. .
 .

A

CH

Q

. . .

Q

Fig. 20. Handling faults thrown from within a compensate handler.

Termination of a scope due to a fault The main activity of a scope needs to terminate when the
scope is faulty. If the fault has been handled successfully, the scope will end as if it is completed normally
and thus the processing of its parent scope will not be affected. Also, the control dependencies should
be preserved during activity termination. Hence, for the mapping of activity termination, we adopt an
approach of conducting a dry run of the activity without performing its concrete actions (i.e. the core
action of each basic activity) nor allowing it to process any normal events (i.e. message or alarm events).

Fig. 21 depicts the mapping for the termination of a basic activity with suppressJoinFailure

attribute set to (a) yes or (b) no. We assume that activity X is directly enclosed in scope Q and has
incoming and outgoing links. As shown in both mappings, the core action of X (transition X) can be
performed only if Q is allowed to continue its normal process. Otherwise, if Q is asked to stop, the core
action of X will be bypassed, as captured by the λ-transition “bypass”. The dead path elimination is
realised by imposing an additional condition to link status evaluation of each outgoing link from X, such
that a true status may be obtained only if Q is in the normal processing mode.

Suppose that a join failure occurs at activity X when X is required to terminate. A dry run of
suppressing join failure is performed by transition “sjf” shown in Fig. 21 (a). However, it is not possible
to conduct a dry run of throwing join failure to scope Q when Q needs to stop. Recall the mapping of
handling a join failure fault in Fig. 15, where ejoinf may be triggered only within the normal process of Q.
In order to continue the dry run of activity X which attempts to throw a join failure during termination
of scope Q, we add transition “ignore” to the mapping in Fig. 21 (b). This transition will fire if a join
failure occurs at X and X needs to terminate. As a result, the join failure is ignored and the dry run of
X is continued.

out

in
X

jctX

jcfX

Qto_stop

XLout

lstout
tcout

(a) suppressJoinFailure = yes

X

X

CX

rX

X

X

X

s

c

f

"bypass"
Qto_continue

"sjf"

lsfout

Lin
X

jctX

jcfX

XLout

tcout

X

X

X C

(b) suppressJoinFailure = no

X

X

X

Xr

s

c

f

to_stopQ

to_continueQ
"bypass"

"ignore"

lsfout

lst

L

Fig. 21. Termination of a basic activity.

17

The mapping of the termination of structured activities is defined in a similar way to the mapping
for basic activities. In the process of termination, the dry run of a structured activity will be performed
until it reaches a basic activity of which the core action will be bypassed. However, there are exceptions
which apply to pick activities and while activities, as shown in Fig. 22.
A pick activity involves normal events (i.e. message or alarm events) of which the processing is not

allowed upon termination. Fig. 22 (a) depicts the mapping of bypassing all branches of a pick activity
(X) during its termination. The bypass path can be viewed as an additional branch added to X. It is
taken only if X is asked to terminate. Also, it is the only branch that can be taken upon termination.
A while activity, if asked to terminate, can no longer execute its sub-activity. Fig. 22 (b) depicts

the mapping of how a while activity (X) stops further iteration of its sub-activity (A) as soon as its
directly enclosing scope (Q) leaves the normal processing mode (i.e. the token is removed from place
to continueQ). If activity X needs to terminate, no matter whether or not the while condition z holds,
only transition “∼z” can occur, leading to the end of activity X.

"bypass_fin"

A

X

(a) pick

B

Y

Y Y

Y

rX

X

X

B

c

s

f

r

f

Xf

A

rA

B

21e e

CX
Q

Xto_c

Qto_stop

"bypass"

to_continue
C

A

(b) while

X
X

A

A

X

sX

r

r

f

f

c

"~z" "z"

X

Qto_continue

Fig. 22. Exceptions applied to the termination of a pick activity (a) and a while activity (b).

Next, if a scope needs to terminate, all the active (sub-)scopes nested within this scope are forced
to terminate. However, “the already active fault handler (of any nested scope) is allowed to complete”
(Section 13.4.4 of [5]). If a non-faulty scope is forced to terminate, a termination handler will be invoked
to perform compensation of all successfully completed scopes nested within this scope. A termination
handler can be viewed as a special fault handler that is invoked upon a forced termination event and
cannot throw any fault during its performance.
We assume a hierarchy of scopes from Q1 (innermost) to Qn (outermost). Let Qk be any scope

from Q1 to Qn−1, scope Qk is directly enclosed in scope Qk+1. Therefore, scope Q1 is nested in scope
Qn to (n − 1) depth. If Qn needs to terminate at some point during its normal performance, all the
active scopes (Qn−1 to Q1) nested within Qn are forced to terminate. If none of the fault handlers have
been invoked, the termination handlers (THn−1 to TH1) for each of these scopes will be executed in
outermost-first order, while the terminations of the scopes are performed in an innermost-first order.
Fig. 23 depicts the mapping for the termination of the above hierarchy of scopes. Once the status

of Qn changes to to stop, a dry run of the rest of the normal process in Qn is started, and all active
scopes among Qn−1 to Q1 are forced to terminate. The subnet enclosed in each dashed box defines the
mapping of the termination handler within a scope. It can be viewed as an example of the mapping
for a fault handler shown in Fig. 13, where transition “efault” is instantiated as “eterminate”. For a given
scope Qk , the termination event ekterminate is triggered by the termination of its parent scope Q

k+1.
In Fig. 23, activity X represents any basic activity that is part of the normal process of scope Q1 and

is directly enclosed in Q1. The dry run of Qn will be continued until it reaches X. There are bidirectional
arcs connecting transition X with the to continue place of each of the ancestor scopes of Q1, so that
activity X cannot be executed as long as one of these scopes (e.g., Qn) is not in the status of to continue.
The dry run is then halted waiting to bypass transition X, which requires a token from place to stopQ1 .
This place will get marked as a result of the invocation of termination handlers along the hierarchy of
scopes from Qn−1 (outermost) to Q1 (innermost). In this way, we ensure that a scope is terminated as
soon as one of its ancestor scopes terminates.
Two things need to be mentioned. Firstly, the mapping of bypassing a normal event upon termination

of a hierarchy of scopes, is defined in a similar way as for a basic activity shown in Fig. 23. Secondly, any
activity or the processing of any normal event within a fault handler (including a termination handler)
or a compensation handler, will not be affected by the forced termination of the associated scope.

18

.
 .

 .

X2Q 1Q XX3QXn−1QXnQ . . .

C Q2C Q1 C Qn−1 C Qn. . .

1Q .

Qn Qk Qk+1[note]

2.

1.

X is a basic activity that is directly enclosed in

is the process scope, and is directly enclosed in (0<k<n) .

1Q !

lstout

tcout

lsfout

X

rA

fA

A

. .
 .

. .
 .

fQ1

cQ1

1Q

rQ1

sQ1

rHT1

HT1

fHT1

terminate
1"e "

TH1invoked

TH 1
TH1to_invoke

. .
 .

TH n−1

terminate
n−1"e "

THn−1invoked

THn−1to_invoke

Q3

TH 2

terminate
2"e "

TH2invoked

TH2to_invoke
. .

 .
Q2

Qn−1

Qn

Fig. 23. Termination of a hierarchy of scopes.

Termination of a process due to an exit activity In BPEL, the termination of an entire pro-
cess is triggered by the execution of an exit activity within the process. When the process needs to
terminate, “all currently running activities MUST be terminated as soon as possible without any fault
handling or compensation behavior” (Section 14.6 of [5]). Based on the mapping for scope termination
aforementioned, the mapping of the process termination can be obtained as follows:

– Two new flags, no exit and to exit , are defined for the process scope to indicate if it needs to
terminate. A process will be in the status of no exit from the beginning to the end, unless an exit
activity occurs. The occurrence of the exit activity changes the process status from no exit to to exit .

– Every basic activity or normal event needs to checks for the presence of a token in the place no exit
or to exit (which represents the corresponding flag), and will be bypassed if a token is present in the
to exit place. This applies to all basic activities and normal events in the entire process, including
those within the fault handlers and the compensation handlers.

19

4 Formal Definition of WS-BPEL

This section provides formal definitions of the syntax and the semantics of WS-BPEL. We first introduce
a boolean function and an evaluation function that will be used in the definition. Let f be a boolean
function (or propositional statement), Var(f) yields all the propositional variables used in f . Let F
be a set of boolean functions and B be the boolean set {true, false}, a variable assignment of F is
a mapping assign: Var(F) → B, and the set of all possible variable assignments of F is denoted by
Assign(F). An evaluation function is a mapping eval : F ×Assign(F)→ B.

4.1 Abstract Syntax of WS-BPEL

Definition 1 formally defines an abstract syntax of WS-BPEL.

Definition 1 (WS-BPEL Process Model). A WS-BPEL Process Model is a tuple W = (A, E,
C, L, HR, typeA, typeE , instance, name, <seq , <swt , serialscp, process, triggerf , scpc, triggerc, scpt ,
triggertf , LR, joincon, supjoinf, triggerjf) where:

(∗ basic elements ∗)

– A is a set of activities,
– E is a set of events,
– C is a set of conditions,
– L is a set of control links,

– let B = E ∪ C ∪ {⊥} be a set of labels where ⊥ denotes the empty label, then HR ⊆ A× B ×A is a
labeled tree which defines the relation between an activity and its direct sub-activities,

– ∀ a ∈ A, let HRp=π1,3HR (the projection of HR on two activity sets), children(a)={a ′∈A | HRp(a, a
′)}

is the set of immediate descendants of a, descendants(a)={a ′∈A | HR+
p (a, a

′)} is the set of all de-
scendants of a, and clan(a)={a}∪descendants(a) is the set constituting of a and all its descendants,

– typeA: A → TA is a function that assigns types to activities taken from the set of activity types TA
= {sequence, flow, pick, switch, while, scope, invoke, receive, reply, wait, assign, empty,
throw, compensate, exit},

– ∀ t ∈ TA, At = {a ∈ A | typeA(a) = t} is a set of all activities of type t,

– typeE : E → TE is a function that assigns types to events taken from the set of event types TE =
{message, alarm, fault, compensation, termination}.

– ∀ t ∈ TE , Et = {e ∈ E | typeE(e) = t} is a set of all events of type t,

– instance: Areceive ∪ Apick → B is a function which assigns a boolean value to the createInstance

attribute of a receive or a pick activity.

– name: A → N is a function assigning names to activities taken from some given set of names N .

(∗ activities ∗)

– let Astructured = Asequence ∪Aflow ∪Aswitch ∪Apick ∪Awhile ∪Ascope be a set of structured activities,
∀s∈Astructured (children(s)6=∅), i.e., they are the internal nodes of the HR tree,

– let Abasic = Ainvoke ∪Areceive ∪Areply ∪Await ∪Aassign ∪Aempty ∪Athrow ∪Acompensation ∪Aexit be
a set of basic activities, ∀s∈Abasic children(s)=∅, i.e., they are the leaves of the HR tree,

– given A′ = Asequence ∪ Aflow , HR ∩ (A′ × B ×A) = HR ∩ (A′ × {⊥} ×A),

– ∀ s ∈ Asequence , ∃ an order <s
seq which is a strict total order over children(s),

– HR ∩ (Apick × B ×A) = HR ∩ (Apick × Enormal ×A), where Enormal = Emessage ∪ Ealarm provides a
set of normal events,

– ∀ s ∈ Apick , |HR ∩ ({s} × Emessage ×A)| > 1, i.e., a pick activity has at least one message event,

– given A′ = Aswitch ∪ Awhile , HR ∩ (A′ × B ×A) = HR ∩ (A′ × C ×A),

– ∀ s ∈ Aswitch , ∃ an order <s
swt which is a strict total order over children(s),

– ∀ s ∈ Aswitch , let last(s) ∈ children(s) be the sub-activity in the last branch evaluated in s such that
¬∃

a∈children(s)
(last(s)<s

swta), let c ∈ C, HR(s, c, last(s))⇒∀assign(c)∈Assign(C) eval(c, assign(c))=true.

Note that last(s) represents the otherwise branch in a switch activity, which ensures that at least
one of the branches is taken in the activity,

– ∀ s ∈ Awhile , |HR ∩ ({s} × C ×A)| = 1, i.e., each while activity has exactly one sub-activity,

20

(∗ scopes ∗)

– HR ∩ (Ascope × B ×A) = HR ∩ (Ascope × (E ∪ {⊥})×A), where: ∀ s ∈ Ascope ,

• |HR ∩ ({s} × {⊥} × A)| = 1, i.e., each scope has one primary (or main) activity, and therefore
Amainset (s) = {a ∈ A | ∃x∈A(HR(s,⊥, x) ∧ a ∈ clan(x))} is the set constituting of the main
activity x of scope s and all descendants of x ,

• |HR ∩ ({s}×Efault×A)| > 1, i.e., each scope provides at least one fault handler,

• |HR∩ ({s}×Ecompensation×A)| 6 1, i.e., each scope provides at most one compensation handler,

• |HR ∩ ({s}×Etermination×A)| 6 1, i.e., each scope provides at most one termination handler,

• ∀ t ∈ TE , A
t
H(s) = {a ∈ A | ∃(e,x)∈Et×A

(HR(s, e, x)∧ a ∈ clan(x))} is the set constituting of the

top level activities (represented by x) used for handling all events of type t for scope s and all
descendants of these activities,

• AeventH (s) = AmessageH (s) ∪ AalarmH (s) is the set of activities used by all event handlers of scope
s, and therefore Anormal (s) = Amainset (s) ∪ AeventH (s) is the set of all activities that define the
normal behaviour of scope s,

• Adirectenc(s) = descendants(s) \ (
⋃
x∈Ascope∩children(s)

descendants(x)) is the set of all activities

that are directly enclosed in scope s,

– serialscp: Ascope → B is a function assigning a boolean value to the variableAccessSerializable

attribute of a scope. ∀s∈Ascope
∀
a∈descendants(s)((serialscp(s)=true ∧ a∈Ascope)⇒ serialscp(a)=false),

i.e., serializable scopes cannot be nested,

– process ∈ Ascope is the root of the HR tree, and serialscp(process)=false,

(∗ fault handling ∗)

– triggertf : Athrow → Efault is a function which maps each throw activity to a (process-defined) fault
event triggered by that activity,

– A<re>

throw = Athrow ∩ (
⋃
s∈Ascope

(AfaultH (s) ∩ Adirectenc(s))) is the set of throw activities used to throw
faults that cannot be solved during the fault handling. Note that if such a throw activity is used
to throw faults that are caught but cannot be solved by the corresponding fault handlers, it may be
syntactically named a “rethrow” activity,

– Athrow ∩ (A
fault
H (process) ∩ Adirectenc(process)) = ∅, i.e., a fault handler of the process scope

cannot throw any fault further,

(∗ compensation ∗)

– scpc : Ecompensation → Ascope\{process} is an injective function mapping a compensation event to
a (non-process) scope such that the occurrence of that event invokes the compensation of that scope,

– triggerc : Acompensate → Ecompensation is an injective function which maps each compensate activity
to a compensation event triggered by that activity,

– ∀ s ∈ Ascope , Acompensate ∩ (A
normal (s) ∩ Adirectenc(s)) = ∅, i.e., a compensate activity cannot be

used for the normal behaviour of a scope, that is, it may be used only for exception handling and
termination,

– ∀ s ∈ Ascope , let A
fct
H (s) = A

fault
H (s) ∪ AcompensationH (s) ∪ AterminationH (s), then (a ∈ Acompensate ∩

(AfctH (s) ∩ A
directenc(s))) ⇒ scpc(triggerc(a)) ∈ A

normal (s), i.e., a compensate activity is used to
invoke compensation of a (descendant) scope nested in the normal process of scope s only,

(∗ termination ∗)

– scpt : Etermination → Ascope\{process} is an injective function mapping a termination event to a
scope such that the occurrence of that event invokes the forced termination of that scope,

– let E ft = Efault ∪ Etermination , triggert : E
ft × Ascope 9 Etermination is a function which maps a

fault or a termination event to another termination event triggered for each inner scope, such that
dom(triggert) = {(e, a) ∈ E

ft ×Ascope | ∃(s,e,x)∈HR∩Ascope×E ft×A
(a ∈ clan(x))},

– ∀ s ∈ Ascope , Athrow ∩ (A
termination
H (s) ∩ Adirectenc(s)) = ∅, i.e., a throw activity cannot be used

when handling the termination for a scope. Note that a termination handler is a special type of fault
handler that cannot throw any fault unresolved,

21

(∗ control links ∗)

– LR ⊆ A× L×A is a labeled directed acyclic graph which defines the relation between the source
activity of a control link and the target activity of the link,

– The boundary crossing restrictions for a control link are defined as follows:

• ∀(a,l,a′)∈LR (a 6∈clan(a ′)), i.e., a control link cannot connect an activity to any of its ancestors,

• ∀s∈Asequence
∀
{x ,x ′}⊆children(s)

∀
a∈clan(x)

∀
a′∈clan(x ′)

(x<s
seqx

′ ⇒ ¬∃l∈L LR(a ′, l , a)), i.e., in a se-

quence activity a control link cannot connect a sub-activity or any of its descendants to any
preceding sub-activity or any of its descendants,

• let Aserialscope={s∈Ascope | serialscp(s)=true} be a set of serializable scopes, and A
′=Awhile∪Aserialscope ,

∀s∈A′∀a∈descendants(s)∀a′∈A\clan(s)(¬∃l∈L(LR(a, l , a ′)∨LR(a ′, l , a))), i.e., a control link cannot

cross the boundary of a while activity or a serializable scope,

• ∀ s∈Ascope , ∀ e∈E
normal , let Aeventh (s, e)={a∈AeventH (s) | ∃x∈Aevent

H
(s)(HR(s, e, x)∧a ∈ clan(x))}

be the set of activities used by an event handler that is triggered upon the occurrence of event e
in scope s, then ∀a∈Aevent

h
(s,e)∀a′∈A\Aevent

h
(s,e)(¬∃l∈L (LR(a, l , a ′) ∨ LR(a ′, l , a))), i.e., a control

link cannot cross the boundary of an event handler,

• ∀ s∈Ascope , ∀a∈Acompensation

H
(s)∀a′∈A\Acompensation

H
(s)(¬∃l∈L (LR(a, l , a ′)∨LR(a ′, l , a))), i.e., a control

link cannot cross the boundary of a compensation handler,

• ∀ s∈Ascope , ∀ e∈E
ft , let AftH = A

fault
H ∪AterminationH , Afth (s, e)={a∈A

ft
H(s) | ∃x∈Aft

H
(s)(HR(s, e, x)∧

a ∈ clan(x))} be the set of activities for handling a fault (or termination) event e in scope s,
then ∀

a∈Aft

h
(s,e)∀a′∈A\Aft

h
(s,e) (¬∃l∈L (LR(a ′, l , a))), i.e., a control link that crosses the boundary

of a fault handler (or termination handler), must be outbound,

– let Asource = {a ∈ A | ∃l∈L ((a, l) ∈ π1,2LR)} be a set of source activities of all control links, and
Atarget = {a ∈ A | ∃l∈L ((l , a) ∈ π2,3LR)} be a set of target activities of all control links, then
∀ a ∈ Asource , Lout (a) = {l ∈ L | ∃a′∈A LR(a, l , a ′)} is a set of all outgoing control links from a,
and ∀ a ∈ Atarget , Lin(a) = {l ∈ L | ∃a′∈A LR(a ′, l , a)} is a set of all incoming control links to a,

– let a ∈ Atarget , joincon(a), which expresses the join condition of incoming control links at a, is a
boolean function over Lin(a) (i.e. Var(joincon(a)) = Lin(a)),

– supjoinf: A → B is a function assigning a boolean value to the suppressJoinFailure attribute of
each activity,

– let ASJF = {a ∈ A | supjoinf(a) = true} and ATJF = {a ∈ A | supjoinf(a) = false}, the function
triggerjf : A

target∩ATJF → Efault maps a target activity of which the suppressJoinFailure attribute
is set to false, to the corresponding join failure fault event.

4.2 Semantics of WS-BPEL

The following definitions provide auxiliary functions and sets that facilitate the specification of the
formal semantics of WS-BPEL:

Definition 2. Given a WS-BPEL Process Model W, we define the following functions to identify the
order of activities that occur in a sequence: ∀ s ∈ Asequence ,

– head(s) ∈ children(s) identifies the first activity to occur in s, such that ¬∃
a∈children(s)(a<

s
seqhead(s)),

– tail(s) ∈ children(s) identifies the last activity to occur in s, such that ¬∃
a∈children(s)(tail(s)<

s
seqa),

– the relation l
s
seq= {(a, a

′) ∈ <s
seq | ¬ ∃x∈children(s)

(a<s
seqx ∧ x<s

seqa
′)} is a transitive reduction of

<s
seq , i.e., if al

s
seqa

′ then a ′ immediately follows a in s.

Definition 3. Given a WS-BPEL Process Model W, ∀ a ∈ Atarget , Var(joincon(a))=Lin(a). Let ba=
assign(joincon(a)), then ba ∈ B

Lin(a), such that ∀ l ∈ Lin(a), ba(l) = true if the status of l is positive,
while ba(l) = false if the status of l is negative.

Definition 4. Given a WS-BPEL Process Model W, let sA ⊆ A be a subset of activities, LOUT (sA) =
{l ∈ L | ∃a∈sA ∃a′∈A\sA LR(a, l , a ′)} is a set of control links leaving the boundary of the activity set sA.

Definition 5. Given a WS-BPEL Process Model W, the function main: Ascope → A maps each scope
activity to its main activity, such that ∀s∈Ascope

HR(s,⊥,main(s)).

22

Definition 6. Given a WS-BPEL Process ModelW, E ft (see Definition 1) is a set of fault and termina-
tion events; E tf= ran(triggertf) is a set of fault events triggered by throw activities; E jf= ran(triggerjf)

is a set of join failure events; and Entfnc= E\(E tf ∪Ecompensation) is a set of non-thrown fault events nor
compensation events.

Definition 7. Given a WS-BPEL Process Model W, let s ∈ Ascope and e ∈ E ft , Afth (s, e) (see Defini-
tion 1) is a set of activities for handling a fault event or a termination event e in scope s; E ftscp(s) =

{e ∈ E ft | (s, e) ∈ π1,2HR} is a set of fault events or termination events associated with scope s; and

LftOUT (s) =
⋃
e∈E ft

scp(s)
LOUT (A

ft
h (s, e)) is a set of control links that leave from the boundary of each of

the fault handlers or the termination handler for scope s.

Definition 8. Given a WS-BPEL Process Model W, let s ∈ Ascope , A
fct
H (s) (see Definition 1) is a

set of activities for handling all exceptions and termination in scope s, and Anfct(s) = Anormal (s) \

(
⋃
x∈Anormal (s)∩Ascope

AfctH (s)) is a set of activities used for the normal process of both scope s and all
scopes nested in s.

Definition 9 formally defines the semantics of WS-BPEL using Petri nets.

Definition 9 (Petri Net Semantics of WS-BPEL). Given a WS-BPEL Process Model W, the
corresponding labeled Petri net PNW = (PW ,TW ,FW ,LW) is defined by:

PW = {rx | x ∈ A} ∪ – activity ready
{sx | x ∈ A} ∪ – activity started
{cx | x ∈ A} ∪ – activity completed
{fx | x ∈ A} ∪ – activity finished

{to skipx | x ∈ A} ∪ – to skip activity
{skippedx | x ∈ A} ∪ – skipped activity

{skippingx | x ∈ Astructured} – skipping activity

{tcl | l ∈ L} ∪ – to evaluate transition condition
{lstl | l ∈ L} ∪ – link status true
{lsfl | l ∈ L} ∪ – link status false
{jctx | x ∈ Atarget} ∪ – join condition true
{jcfx | x ∈ Atarget} ∪ – join condition false
{jcvx | x ∈ Atarget} ∪ – join condition evaluation value

{to fx | x ∈ Atarget ∩ Astructured} ∪ – skipping to “finished” state

{to continuex | x ∈ Ascope} ∪ – to continue scope
{to stopx | x ∈ Ascope} ∪ – to stop scope
{snapshotx | x ∈ Ascope} ∪ – scope snapshot
{no snapshotx | x ∈ Ascope} ∪ – no scope snapshot

– (∗ scope status collected ∗)
{scp stat collectedNRM

x | x ∈ Ascope} ∪ – on normal path
{scp stat collected SKP

x | x ∈ Ascope} ∪ – on skip path
{scp stat collected SJF

x | x ∈ Ascope} ∪ – on suppress join failure path

{to invokeEH
x ,e | (x , e) ∈ π1,2HR ∩ Ascope×Enormal} ∪ – ready to invoke event handler

{enabledx ,e | (x , e) ∈ π1,2HR ∩ Ascope×Enormal} ∪ – event handler enabled
= {to invokeFH

x ,e | (x , e) ∈ π1,2HR ∩ Ascope×Efault} ∪ – ready to invoke fault handler
{invokedFH

x ,e | (x , e) ∈ π1,2HR ∩ Ascope×Efault} ∪ – fault handler invoked

{to invokeCH
x | x ∈ Ascope\{process}} ∪ – intend to invoke compensation

{endcx | x ∈ Ascope\{process}} ∪ – end of compensation handling

{to invokeTH
x | x ∈ Ascope\{process}} ∪ – ready to invoke termination

{invokedTH
x | x ∈ Ascope\{process}} ∪ – termination handler invoked

{to cSTP
x | x ∈ Apick ∩ (

⋃
s∈Ascope

Anfct(s))} ∪

{to cEXT
x | x ∈ Apick} ∪ – skipping to “completed” state

{to exit ,no exit} – to or not to exit entire process

23

TW = {Ax | x ∈ Abasic} ∪ – basic activity
{PREx | x ∈ A} ∪ – pre-condition evaluation
{PSTx | x ∈ A} ∪ – post-condition evaluation

{SBx | x ∈ Asequence ∪ Ascope} ∪ – sequence/scope begin
{SC x

y,y′ | x ∈ Asequence ∧ y l
x
seq y

′} ∪ – sequence continue
{SEx | x ∈ Asequence ∪ Ascope} ∪ – sequence/scope end

{ASx | x ∈ Aflow} ∪ – AND-split
{AJx | x ∈ Aflow} ∪ – AND-join
{XSx ,y | x ∈ Aswitch ∧ y ∈ children(x)} ∪ – XOR-split
{XJy,x | x ∈ Aswitch ∪ Apick ∧ y ∈ children(x)} ∪ – XOR-join

{LBx | x ∈ Awhile} ∪ – loop begin
{LCx | x ∈ Awhile} ∪ – loop continue
{LEx | x ∈ Awhile} ∪ – loop exit

{SKPx | x ∈ A} ∪ – skip activity

{SKPFx | x ∈ Astructured} ∪ – skipping activity finish
{SKP CS xy,y′ | x ∈ Asequence ∧ y l

x
seq y

′} ∪ – skipping continue in sequence

{SET LSTl | l ∈ L} ∪ – set link status to true
{SET LSFl | l ∈ L} ∪ – set link status to false

{JCEbx | x ∈ Atarget ∧ bx ∈ B
Lin (x)} ∪ – join condition evaluation

{SJFx | x ∈ Atarget ∩ ASJF} ∪ – suppress join failure (SJF)

{SJFFx | x ∈ Astructured ∩ ASJF} ∪ – suppressing join failure finish
{CLT JCTx | x ∈ Atarget} ∪ – collect join condition true
{CLT JCFx | x ∈ Atarget} ∪ – collect join condition false

{CLT SNP NRMx | x ∈ Ascope} ∪ – collect snapshot on normal path
{CLT NSNP NRMx | x ∈ Ascope} ∪ – collect no snapshot on normal path
{CLT SNP SKPx | x ∈ Ascope} ∪ – collect snapshot on skip path
{CLT NSNP SKPx | x ∈ Ascope} ∪ – collect no snapshot on skip path
{CLT SNP SJFx | x ∈ Ascope} ∪ – collect snapshot on SJF path
{CLT NSNP SJFx | x ∈ Ascope} ∪ – collect no snapshot on SJF path

{Ex ,e | (x , e) ∈ π1,2HR ∩ (Ascope ∪ Apick)×Entfnc} ∪ – event of non-thrown fault nor
– compensation

{HBx ,e | (x , e) ∈ π1,2HR ∩ A×(E\Enormal)} ∪ – handling exception begin
{HFx ,e | (x , e) ∈ π1,2HR ∩ A×E} ∪ – handling any type of event finish
{NOPx | x ∈ Ascope} ∪ – “no-op” in compensation

{IGN STPx | x ∈ Atarget∩ATJF∩(
⋃
s∈Ascope

Anfct(s))} ∪ – ignore join failure

{BYP STPx | x ∈ (Abasic∪Apick)∩(
⋃
s∈Ascope

Anfct(s))} ∪

{BYP EXTx | x ∈ Abasic ∪ Apick} ∪ – bypass basic activity or pick

{BYPF STPx | x ∈ Apick ∩ (
⋃
s∈Ascope

Anfct(s))} ∪

{BYPF EXTx | x ∈ Apick} – bypassing pick finish

LW = {(Ax , name(x)) | x ∈ Abasic} ∪ – labeled transition - basic activity

{(Ex ,e , e) | x ∈ Ascope ∪ Apick ∧ e ∈ Enormal ∧
{(Ex ,e , e) | (x , e) ∈ π1,2HR} ∪ – labeled transition - normal event
{(t , λ) | t ∈ Tw ∧ ¬∃

x∈Abasic (t = Ax) ∧
{(t , λ) | ¬ ∃

(y,e)∈π1,2HR∩(Ascope∪Apick)×Enormal (t=Ey,e)} – unlabeled transition - others

FW = {(sx ,Ax) | x ∈ Abasic} ∪ {(Ax , cx) | x ∈ Abasic} ∪ – basic activity
{(rx ,PREx) | x ∈ A} ∪ {(PREx , sx) | x ∈ A} ∪ – activity start
{(cx ,PSTx) | x ∈ A} ∪ {(PSTx , fx) | x ∈ A} ∪ – activity finish

{(sx ,SBx) | x ∈ Asequence} ∪ – (∗ sequence ∗)
{(SBx , ry) | x ∈ Asequence ∧ y = head(x)} ∪ – sequence begin
{(fy ,SC

x
y,y′) | x ∈ Asequence ∧ y l

x
seq y

′} ∪
{(SC x

y,y′ , ry′) | x ∈ Asequence ∧ y l
x
seq y

′} ∪ – sequence continue
{(fy ,SEx) | x ∈ Asequence ∧ y = tail(x)} ∪
{(SEx , cx) | x ∈ Asequence} ∪ – sequence end

24

FW ={(sx ,ASx) | x ∈ Aflow} ∪ – (∗ flow ∗)
{(ASx , ry) | x ∈ Aflow ∧ y ∈ children(x)} ∪ – AND-split
{(fy ,AJx) | x ∈ Aflow ∧ y ∈ children(x)} ∪
{(AJx , cx) | x ∈ Aflow} ∪ – AND-join

{(sx ,XSx ,y) | x ∈ Aswitch ∧ y ∈ children(x)} ∪ – (∗ switch/pick ∗)
{(XSx ,y , ry) | x ∈ Aswitch ∧ y ∈ children(x)} ∪ – XOR-split

{(sx ,Ex ,e) | (x , e) ∈ π1,2HR ∩ Apick×Enormal} ∪

{(Ex ,e , ry) | (x , e, y) ∈ HR ∩ Apick×Enormal×A} ∪ – deferred XOR-split
{(XSx ,y , to skipy′) | x ∈ Aswitch ∧ y ∈ children(x) ∧
{(XSx ,y , to skipy′) | y

′ ∈ children(x)\{y}} ∪

{(Ex ,e , ry′) | (x , e) ∈ π1,2HR ∩ Apick×Enormal ∧
{(Ex ,e , ry′) | y

′ ∈ children(x) ∧ (x , e, y ′) 6∈ HR} ∪ – skip unchosen branches
{(skippedy′ ,XJy,x) | x∈Aswitch∪Apick ∧ y∈children(x)
{(skippedy′ ,XJy,x) | ∧ y ′∈children(x)\{y}} ∪ – skipped unchosen branches
{(fy ,XJy,x) | x ∈ Aswitch∪Apick ∧ y ∈ children(x)} ∪
{(XJy,x , cx) | x ∈ Aswitch∪Apick ∧ y ∈ children(x)} ∪ – XOR-join

{(sx ,LBx) | x ∈ Awhile} ∪ – (∗ while ∗)
{(LBx , ry) | x ∈ Awhile ∧ {y} = children(x)} ∪ – loop begin
{(fy ,LCx) | x ∈ Awhile ∧ {y} = children(x)} ∪
{(LCx , sx) | x ∈ Awhile} ∪ – loop continue
{(sx ,LEx) | x ∈ Awhile} ∪ {(LEx , cx) | x ∈ Awhile} ∪ – loop end
{(to skipx ,SKPx) | x ∈ A} ∪ – (∗ skip path ∗)

{(SKPx , skippedx) | x ∈ Abasic} ∪ – skipped basic activity

{(SKPx , skippingx) | x ∈ Astructured} ∪ – skip structured activity

{(SKPx , to skipy) | x ∈ Astructured
nonseq ∧ y ∈ children(x)} ∪

{(skippedy ,SKPFx) | x ∈ Astructured
nonseq ∧ y ∈ children(x)} ∪ – skipping non-seq. activity

{(SKPx , to skipy) | x ∈ Asequence ∧ y = head(x)} ∪
{(skippedy ,SKP CS xy,y′) | x ∈ Asequence ∧ y l

x
seq y} ∪

{(SKP CS xy,y′ , to skipy′) | x ∈ Asequence ∧ y l
x
seq y} ∪

{(skippedy ,SKPFx) | x ∈ Asequence ∧ y = tail(x)} ∪ – skipping sequence activity

{(skippingx ,SKPFx) | x ∈ Astructured} ∪

{(SKPFx , skippedx) | x ∈ Astructured} ∪ – skipped structured activity

{(lstl , JCE
bx) | x ∈ Atarget ∧ l ∈ Lin(x) ∧ bx (l)=true} ∪ – (∗ control link ∗)

{(lsfl , JCE
bx) | x ∈ Atarget ∧ l ∈ Lin(x) ∧ bx (l)=false} ∪ – join condition evaluation

{(JCEbx , jctx) | x ∈ Atarget ∧ eval(joincon(x), bx)=true} ∪ – join condition to true

{(JCEbx , jctx) | x∈A
target ∧ eval(joincon(x), bx)=false} ∪ – join condition to false

{(jctx ,PREx) | x ∈ Atarget} ∪ – pre-condition positive
{(PSTx , tcl) | x ∈ Asource ∧ l ∈ Lout(x)} ∪ – post-condition evaluation
{(tcl ,SET LSTl) | l ∈ L} ∪ {(SET LSTl , lstl) | l ∈ L} ∪ – link status to true
{(tcl ,SET LSFl) | l ∈ L} ∪ {(SET LSFl , lsfl) | l ∈ L} ∪ – link status to false

{(jcfx ,SJFx) | x ∈ Atarget ∩ ASJF} ∪ – pre-condition negative
{(rx ,SJFx) | x ∈ Atarget ∩ ASJF} ∪ – suppress join failure (SJF)

{(SJFx , fx) | x ∈ Atarget ∩ Abasic ∩ ASJF} ∪ – SJFb (for basic activity)

{(SJFx , to fx) | x ∈ Atarget ∩ Astructured ∩ ASJF} ∪ – SJFs (for structured activity)

{(SJFx , to skipy) | x ∈ Atarget ∩ Astructured
nonseq ∩ ASJF ∧

{(SJFx , to skipy) | y ∈ children(x)} ∪
{(SJFx , to skipy) | x ∈ Atarget ∩ Asequence ∩ ASJF ∧
{(SJFx , to skipy) | y = head(x)} ∪ – SJFs : to skip sub-activities

{(to fx ,SJFFx) | x ∈ Atarget ∩ Astructured ∩ ASJF} ∪

{(skippedy ,SJFFx) | x ∈ Atarget ∩ Astructured
nonseq ∩ ASJF ∧

{(skippedy ,SJFFx) | y ∈ children(x)} ∪
{(skippedy ,SJFFx) | x ∈ Atarget ∩ Asequence ∩ ASJF ∧
{(skippedy ,SJFFx) | y = tail(x)} ∪ – SJFs : skipped sub-activities

{(SJFFx , fx) | x ∈ Atarget ∩ Astructured ∩ ASJF} ∪ – SJFs finish

{(SJFx , lsfl) | x ∈ Asource ∩ Abasic ∩ ASJF ∧ l ∈ Lout(x)} ∪

{(SJFFx , lsfl) | x∈A
source∩Astructured ∩ ASJF ∧ l∈Lout(x)} ∪ – dead path elimination (DPE)

25

FW ={(to skipx ,CLT JCTx) | x ∈ Atarget} ∪ – (∗ skip control link ∗)
{(CLT JCTx , to skipx) | x ∈ Atarget} ∪
{(jctx ,CLT JCTx) | x ∈ Atarget} ∪
{(CLT JCTx , jcvx) | x ∈ Atarget} ∪ – collect join condition true
{(to skipx ,CLT JCFx) | x ∈ Atarget} ∪
{(CLT JCFx , to skipx) | x ∈ Atarget} ∪
{(jcfx ,CLT JCFx) | x ∈ Atarget} ∪
{(CLT JCFx , jcvx) | x ∈ Atarget} ∪ – collect join condition false
{(jcvx ,SKPx) | x ∈ Atarget} ∪ – skip join condition value

{(SKPx , lsfl) | x ∈ Asource ∩ Abasic ∧ l ∈ Lout(x)} ∪

{(SJFFx , lsfl) | x ∈ Asource ∩ Astructured ∧ l ∈ Lout(x)} ∪ – DPE in case of skipping

{(sx ,SBx) | x∈Ascope} ∪ {(SBx , to continuex) | x∈Ascope} ∪ – (∗ scope ∗)
{(SBx , ry) | x ∈ Ascope ∧ y = main(x)} ∪ – scope begin
{(fy ,SEx) | x ∈ Ascope ∧ y = main(x)} ∪
{(SEx , cx) | x ∈ Ascope} ∪ – scope end
{(to continuex ,SEx) | x ∈ Ascope} ∪
{(SEx , snapshotx) | x ∈ Ascope} ∪ – to continue → to stop
{(SKPFx ,no snapshotx) | x ∈ Ascope} ∪ – skipped scope

{(SBx , to invokeEH
x ,e) | (x , e) ∈ π1,2HR ∩ Ascope×Enormal} ∪ – (∗ event handler ∗)

{(to invokeEH
x ,e ,SEx) | (x , e) ∈ π1,2HR ∩ Ascope×Enormal} ∪ – not to invoke EH

{(to invokeEH
x ,e ,Ex ,e) | (x , e) ∈ π1,2HR ∩ Ascope×Enormal} ∪

{(Ex ,e , ry) | (x , e, y) ∈ HR ∩ Ascope×Enormal×A} ∪ – an instance of EH invoked

{(fy , to invokeEH
x ,e) | (x , e, y) ∈ HR ∩ Ascope×Enormal×A} ∪ – an instance of EH finish

{(SBx , enabledx ,e) | (x , e) ∈ π1,2HR ∩ Ascope×Enormal} ∪ – enable enormal
{(enabledx ,e ,PSTy′) | (x , e) ∈ π1,2HR ∩ Ascope×Enormal ∧
{(enabledx ,e ,PSTy′) | y

′ = main(x)} ∪ – disable enormal
{(enabledx ,e ,SJFy′) | (x , e) ∈ π1,2HR ∩ Ascope×Enormal ∧
{(enabledx ,e ,PSTy′) | y

′ ∈ {main(x)} ∩ Atarget ∩ ASJF} ∪ – disable enormal in case of SJF

{(enabledx ,e ,Ex ,e) | (x , e) ∈ π1,2HR ∩ Ascope×Enormal} ∪

{(Ex ,e , enabledx ,e) | (x , e) ∈ π1,2HR ∩ Ascope×Enormal} ∪ – check if enormal is enabled

{(SBx , to invokeFH
x ,e) | (x , e) ∈ π1,2HR ∩ Ascope×Efault} ∪ – (∗ fault/termination handler ∗)

{(to invokeFH
x ,e ,SEx) | (x , e) ∈ π1,2HR ∩ Ascope×Efault} ∪ – not to invoke FH

{(to invokeFH
x ,e ,Ex ,e) | (x , e)∈π1,2HR ∩ Ascope×(Efault\E

tf)} ∪

{(Ex ,e , invoked
FH
x ,e) | (x , e) ∈ π1,2HR ∩ Ascope×(Efault\E

tf)} ∪ – general FH invoked

{(to invokeFH
x ,e ,At) | (x , e) ∈ π1,2HR ∩ Ascope×E tf ∧

{(to invokeFH
x ,e ,At) | t ∈ Athrow ∧ triggertf (t) = e} ∪

{(At , invokedx ,e) | (x , e) ∈ π1,2HR ∩ Ascope×E tf ∧
{(At , invokedx ,e) | t ∈ Athrow ∧ triggertf (t) = e} ∪ – trigger thrown fault event

{(jcfy ,Ex ,e) | (x , e) ∈ π1,2HR ∩ Ascope×E jf ∧
{(jcfy ,Ex ,e) | y ∈ Atarget ∧ triggerjf (y) = e} ∪

{(ry ,Ex ,e) | (x , e) ∈ π1,2HR ∩ Ascope×E jf ∧
{(ry ,Ex ,e) | y ∈ Atarget ∧ triggerjf (y) = e} ∪

{(Ex ,e , sy) | (x , e) ∈ π1,2HR ∩ Ascope×E jf ∧
{(Ex ,e , sy) | y ∈ Atarget ∧ triggerjf (y) = e} ∪ – trigger join failure event

{(SBx , to invokeTH
x) | x ∈ Ascope\{process}} ∪ – ready to invoke TH

{(to invokeTH
x ,SEx) | x ∈ Ascope\{process}} ∪ – not to invoke TH

{(to stopx ,Ey,e) | x ∈ Ascope ∧ y ∈ Ascope ∩ Adirectenc(x) ∧
{(to stopx ,Ey,e) | e ∈ Etermination ∧ (y , e) ∈ π1,2HR} ∪

{(Ey,e , to stopx) | x ∈ Ascope ∧ y ∈ Ascope ∩ Adirectenc(x) ∧
{(Ey,e , to stopx) | e ∈ Etermination ∧ (y , e) ∈ π1,2HR} ∪ – trigger termination event

{(fy′ ,HBx ,e) | (x , e) ∈ π1,2HR ∩ Ascope×E ft ∧ y ′=main(x)} ∪ – scope terminated
{invokedFH

x ,e ,HBx ,e) | (x , e) ∈ π1,2HR ∩ Ascope×Efault} ∪ – to start FH/TH

{(to invokeEH
x ,e ,HBx ,e′) | (x , e) ∈ π1,2HR ∩ Ascope×Enormal ∧

{(to invokeFH
x ,e ,HBx ,e′) | (x , e

′) ∈ π1,2HR ∩ Ascope×E ft} ∪ – not invoke any more EH
{(to invokeFH

x ,e ,HBx ,e′) | (x , e) ∈ π1,2HR ∩ Ascope×Efault ∧

{(to invokeFH
x ,e ,HBx ,e′) | (x , e

′)∈π1,2HR∩Ascope×(E ft\{e})} ∪ – not invoke any other FH

26

FW ={(to invokeTH
x ,HBx ,e′) | (x , e

′) ∈ π1,2HR ∩ Ascope×E ft} ∪ – not invoke TH

{(HBx ,e , ry) | (x , e, y) ∈ HR ∩ Ascope×E ft×A} ∪ – FH/TH start

{(fy ,HFx ,e) | (x , e, y) ∈ HR ∩ Ascope×E ft×A} ∪ – FH/TH finish

{(HFx ,e , cx) | (x , e) ∈ π1,2HR ∩ Ascope×E ft} ∪ – resume scope’s normal flow

{(Ac , to invokeCH
x) | c ∈ Acompensate ∧ x ∈ Ascope ∧ – (∗ compensation handler ∗)

{(Ac , to invokeCH
x) | scpc(triggerc(c)) = x} ∪ – intend to invoke CH

{(snapshotx ,HBx ,e) | (x , e) ∈ π1,2HR ∩ Ascope×Ecompensation} ∪ – CH is available
{(HBx ,e ,no snapshotx)|(x , e)∈ π1,2HR ∩ Ascope×Ecompensation} ∪ – CH to be unavailable
{(to invokeCH

x ,HBx ,e)|(x , e) ∈ π1,2HR ∩ Ascope×Ecompensation} ∪
{(HBx ,e , ry) | (x , e, y) ∈ HR ∩ Ascope×Ecompensation×A} ∪ – CH start
{(fy ,HFx ,e) | (x , e, y) ∈ HR ∩ Ascope×Ecompensation×A} ∪
{(HFx ,e , endcx) | (x , e) ∈ π1,2HR ∩ Ascope×Ecompensation} ∪ – CH finish

{(no snapshotx ,NOPx) | x ∈ Ascope\{process}} ∪ – CH is unavailable
{(to invokeCH

x ,NOPx) | x ∈ Ascope\{process}} ∪
{(NOPx , endcx) | x ∈ Ascope\{process}} ∪ – “no-op” in compensation
{(NOPx ,no snapshotx) | x ∈ Ascope\{process}} ∪ – CH remains unavailable
{(endcx ,PSTc) | x ∈ Ascope ∧ c ∈ Acompensate ∧
{(endcx ,PSTc) | scpc(triggerc(c)) = x} ∪ – resume compensate activity

{(to continuex ,Ex ,e) | (x , e) ∈ π1,2HR ∩ Ascope×(E ft\E tf)} ∪ – (∗ scope status change ∗)

{(Ex ,e , to stopx) | (x , e) ∈ π1,2HR ∩ Ascope×(E ft\E tf)} ∪
{(to continuex ,At) | x ∈ Ascope ∧ t ∈ Athrow ∧
{(to continuex ,At) | (x , triggertf (t)) ∈ π1,2HR} ∪
{(At , to stopx) | x ∈ Ascope ∧ t ∈ Athrow ∧
{(At , to stopx) | (x , triggertf (t)) ∈ π1,2HR} ∪ – to continue → to stop
{(to continuex ,SEx) | x ∈ Ascope} ∪
{(SEx , snapshotx) | x ∈ Ascope} ∪ – to continue → snapshot

{(to stopx ,HFx ,e) | (x , e) ∈ π1,2HR ∩ Ascope×E ft} ∪

{(HFx ,e ,no snapshotx) | (x , e) ∈ π1,2HR ∩ Ascope×E ft} ∪ – to stop → no snapshot

{(SEx , lsfl) | x ∈ Ascope ∧ l ∈ LftOUT (x)} ∪ – DPE: scope completion

{(SKPx , lsfl) | x ∈ Ascope ∧ l ∈ LftOUT (x)} ∪ – DPE: skipping scope

{(Ex ,e , lsfl) | (x , e) ∈ π1,2HR ∩ Ascope×(E ft\E tf) ∧

{(Ex ,e , lsfl) | l ∈ LftOUT (x)\LOUT (A
ft

h (x , e))} ∪ – DPE: non-thrown fault
{(At , lsfl) | t ∈ Athrow ∧ ∃

x∈Ascope
((x , triggertf (t))∈π1,2HR ∧

{(At , lsfl) | l ∈ LftOUT (x)\LOUT (A
ft

h (x , triggertf (t))))} ∪ – DPE: thrown fault
– (∗∗ prepare for update ∗∗)6

{(PREprocess,no snapshotx) | x ∈ Ascope} ∪ – initialise scope status
{(sx ,CLT SNP NRMx) | x ∈ Ascope} ∪
{(CLT SNP NRMx , sx) | x ∈ Ascope} ∪
{(snapshotx ,CLT SNP NRMx) | x ∈ Ascope} ∪ – collect snapshot status
{(CLT SNP NRMx , scp stat collectedNRM

x) | x ∈ Ascope} ∪ – on normal path
{(sx ,CLT NSNP NRMx) | x ∈ Ascope} ∪
{(CLT NSNP NRMx , sx) | x ∈ Ascope} ∪
{(no snapshotx ,CLT NSNP NRMx) | x ∈ Ascope} ∪ – collect no snapshot status
{(CLT NSNP NRMx , scp stat collectedNRM

x) | x ∈ Ascope} ∪ – on normal path
{(sx ,CLT SNP SKPx) | x ∈ Ascope} ∪
{(CLT SNP SKPx , sx) | x ∈ Ascope} ∪
{(snapshotx ,CLT SNP SKPx) | x ∈ Ascope} ∪ – collect snapshot status
{(CLT SNP SKPx , scp stat collected SKP

x) | x ∈ Ascope} ∪ – on skip path
{(sx ,CLT NSNP SKPx) | x ∈ Ascope} ∪
{(CLT NSNP SKPx , sx) | x ∈ Ascope} ∪
{(no snapshotx ,CLT NSNP SKPx) | x ∈ Ascope} ∪ – collect no snapshot status
{(CLT NSNP SKPx , scp stat collected SKP

x) | x ∈ Ascope} ∪ – on skip path
{(sx ,CLT SNP SJFx) | x ∈ Ascope} ∪
{(CLT SNP SJFx , sx) | x ∈ Ascope} ∪
{(snapshotx ,CLT SNP SJFx) | x ∈ Ascope} ∪ – collect snapshot status
{(CLT SNP SJFx , scp stat collected SJF

x) | x ∈ Ascope} ∪ – on SJF path

6 To keep PNW 1-safe, we assume that when a scope is executed multiple times, the status of the scope is
updated upon each execution.

27

FW ={(sx ,CLT NSNP SJFx) | x ∈ Ascope} ∪
{(CLT NSNP SJFx , sx) | x ∈ Ascope} ∪
{(no snapshotx ,CLT NSNP SJFx) | x ∈ Ascope} ∪ – collect no snapshot status
{(CLT NSNP SJFx , scp stat collected SJF

x) | x ∈ Ascope} ∪ – on SJF path
{(scp stat collectedNRM

x ,SBx) | x ∈ Ascope} ∪
{(scp stat collected SKP

x ,SKPFx) | x ∈ Ascope} ∪ – clean snapshot/no snapshot
{(scp stat collected SJF

x ,SJFFx) | x ∈ Ascope} ∪ – before another execution

{(to continuex ,Ay) | x ∈ Ascope ∧ y ∈ Abasic ∩ Anfct(x)} ∪ – (∗ termination due to a fault ∗)
{(Ay , to continuex) | x ∈ Ascope ∧

{(Ay , to continuex) | y ∈ (Abasic\Athrow) ∩ Anfct(x)} ∪
{(At , to continuex) | x ∈ Ascope ∧

{(At , to continuex) | t∈Athrow∩A
nfct(x)∩(A\Adirectenc(x))} ∪ – can perform basic activity

{(to continuex ,SET LSTl) | x ∈ Ascope ∧

{(to continuex ,SET LSTl) | (∃ y ∈ Anfct(x) ∩ Adirectenc(x)
{(SET LSTl , to continuex) | such that l ∈ Lout(y))} ∪
{(SET LSTl , to continuex) | x ∈ Ascope ∧

{(SET LSTl , to continuex) | (∃ y ∈ Anfct(x) ∩ Adirectenc(x)
{(SET LSTl , to continuex) | such that l ∈ Lout(y))} ∪ – can set link status to true

{(to continuex ,Ey,e) | x ∈ Ascope ∧ e ∈ Enormal ∧

{(to continuex ,Ey,e) | y ∈ (Ascope ∪ Apick) ∩ ({x} ∪ Anfct(x))
{(to continuex ,Ey,e) | ∧ (y , e) ∈ π1,2HR} ∪

{(Ey,e , to continuex) | x ∈ Ascope ∧ e ∈ Enormal ∧

{(Ey,e , to continuex) | y ∈ (Ascope ∪ Apick) ∩ ({x} ∪ Anfct(x))
{(Ey,e , to continuex) | ∧ (y , e) ∈ π1,2HR} ∪ – can process enormal

{(to continuex ,LBy) | x ∈ Ascope ∧ y ∈ Awhile ∩ Anfct(x)} ∪

{(LBy , to continuex) | x ∈ Ascope ∧ y ∈ Awhile ∩ Anfct(x)} ∪ – can continue loop in while

{(to stopx , IGN STPy) | x ∈ Ascope ∧ y ∈ Abasic ∩ Anfct(x)} ∪

{(IGN STPy , to stopx) | x ∈ Ascope ∧ y ∈ Abasic ∩ Anfct(x)} ∪

{(jcfy , IGN STPy) | y ∈ Atarget∩ATJF ∩ (
⋃
x∈Ascope

Anfct(x))} ∪ – ignore join failure

{(ry , IGN STPy) | y ∈ Atarget ∩ ATJF ∩ (
⋃
x∈Ascope

Anfct(x))} ∪

{(IGN STPy , sy) | y ∈ Atarget ∩ ATJF ∩ (
⋃
x∈Ascope

Anfct(x))} ∪ – continue dry-run of activity

{(to stopx ,BYP STPy) | x ∈ Ascope ∧ y ∈ Abasic ∩ Anfct(x)} ∪

{(BYP STPy , to stopx) | x ∈ Ascope ∧ y ∈ Abasic ∩ Anfct(x)} ∪ – to bypass basic activity

{(sy ,BYP STPy) | y ∈ Abasic ∩ (
⋃
x∈Ascope

Anfct(x))} ∪

{(BYP STPy , cy) | y ∈ Abasic ∩ (
⋃
x∈Ascope

Anfct(x))} ∪ – bypassed basic activity

{(to stopx ,BYP STPy) | x ∈ Ascope ∧ y ∈ Apick ∩ Anfct(x) ∪ – (∗∗ bypass pick ∗∗)

{(BYP STPy , to stopx) | x ∈ Ascope ∧ y ∈ Apick ∩ Anfct(x) ∪

{(sy ,BYP STPy) | y ∈ Apick ∩ (
⋃
x∈Ascope

Anfct(x))} ∪

{(BYP STPy , to cSTP
y) | y ∈ Apick ∩ (

⋃
x∈Ascope

Anfct(x))} ∪ – to bypass enormal & branches

{(BYP STPy , to skipz) | y ∈ Apick ∩ (
⋃
x∈Ascope

Anfct(x)) ∧

{(BYP STPy , to skipz) | z ∈ children(y)} ∪

{(skippedz ,BYPF STPy) | y ∈ Apick ∩ (
⋃
x∈Ascope

Anfct(x)) ∧

{(skippedz ,BYPF STPy) | z ∈ children(y)} ∪ – bypassed all branches

{(to cSTP
y ,BYPF STPy) | y ∈ Apick ∩ (

⋃
x∈Ascope

Anfct(x))} ∪

{(BYPF STPy , cy) | y ∈ Apick ∩ (
⋃
x∈Ascope

Anfct(x))} ∪ – bypassing finish

={(no exit ,Ax) | x ∈ Aexit} ∪ – (∗ termination due to exit ∗)
{(Ax , to exit) | x ∈ Aexit} ∪ – to exit entire process

{(no exit ,Ay) | y ∈ Abasic\Aexit} ∪

{(Ay ,no exit) | y ∈ Abasic\Aexit} ∪ – check no exit at basic activity

{(no exit ,Ex ,e) | (x , e) ∈ π1,2HR ∩ (Ascope ∪ Apick)×Entfnc} ∪

{(Ex ,e ,no exit) | (x , e) ∈ π1,2HR ∩ (Ascope ∪ Apick)×Entfnc} ∪ – check no exit at enormal
{(no exit ,LBx) | x ∈ Awhile} ∪ {(LBx ,no exit) | x ∈ Awhile} ∪ – check no exit in while

{(to exit ,BYP EXTx) | x ∈ Abasic} ∪

{(BYP EXTx , to exit) | x ∈ Abasic} ∪ – to bypass basic activity

{(sx ,BYP EXTx) | x ∈ Abasic} ∪ {(BYP EXTx , cx) | x ∈ Abasic} ∪ – bypassed basic activity

28

FW ={(to exit ,BYP EXTx) | x ∈ Apick} ∪ – (∗∗ bypass pick ∗∗)
{(BYP EXTx , to exit) | x ∈ Apick} ∪
{(sx ,BYP EXTx) | x ∈ Apick} ∪
{(BYP EXTx , to cEXT

x) | x ∈ Apick} ∪ – bypassed enormal
{(BYP EXTx , to skipy) | x ∈ Apick ∧ y ∈ children(x)} ∪
{(skippedy ,BYPF EXTx) | x ∈ Apick ∧ y ∈ children(x)} ∪ – skipped all branches
{(to cEXT

x ,BYPF EXTx) | x ∈ Apick} ∪
{(BYPF EXTx , cx) | x ∈ Apick} ∪ – bypassing finish

5 Automated analysis

The output of the mapping from BPEL to Petri nets defined in the previous section can be used to
perform formal verification and analysis of BPEL processes on the basis of existing Petri net analysis
techniques. The WofBPEL tool, built using Woflan [22], implements such functionality when coupled
with its companion BPEL2PNML tool. Fig. 24 depicts the role of WofBPEL and BPEL2PNML in
the analysis of BPEL processes. The BPEL process code may be manually written or generated from
a BPEL design tool, e.g. Oracle BPEL Designer. BPEL2PNML takes as input the BPEL code and
produces a file conforming to the Petri Net Markup Language (PNML) syntax. This file can be given
as input to WofBPEL which, depending on the selected options, applies a number of analysis methods
and produces an XML file describing the analysis results. It may also be used as input to general-
purpose Petri net analysis tool, e.g. PIPE.7 In addition, the PNML file obtained as the output from
BPEL2PNML also includes layout information, and can thus be used to generate a graphical view of
the corresponding Petri nets. Both BPEL2PNML and WofBPEL are available under an open-source
license at http://www.bpm.fit.qut.edu.au/projects/babel/tools.

analysis result

BPEL2PNML

BPEL code

BPEL Design Tool
(e.g. Oracle BPEL Designer)

WofBPEL

XML Browser

(e.g. PIPE editor, DOT)

Petri net
Graphical Visualiser

(e.g. PIPE Analyzer)

Petri net Analysis Tool
General−purpose

(with layout info)
PNML

(XML documents)

Fig. 24. Analysing BPEL processes using WofBPEL/BPEL2PNML.

The current WofBPEL tool can perform three types of analysis:

– Detecting unreachable activities in a BPEL process such as the situation illustrated in Sect. 2.1.
This analysis may be performed using two methods as discussed in Sect. 5.2.

– Detecting violations of the BPEL constraint stating that there can never be two simultaneously
enabled activities that may consume the same “type of message”, where a “type of message” is
described by a combination of a partner link, a port type and an operation. Details on how this
analysis is performed are given in Sect. 5.3.

– Performing a reachability analysis to determine, for each possible state of a process execution, which
types of messages may be consumed in future states of the execution. The result of this analysis can
be used for resource management. Rather than keeping a given message in the queue of inbound
messages until the message is consumed or the process instance to which the message is associated
completes, the message may be discarded as soon as it is detected that no future activity may
consume the corresponding type of message. Details of this analysis are given in Sect. 5.4.

7 https://sourceforge.net/projects/petri-net

29

Before applying any of the above analysis, WofBPEL performs a simplification of the input net,
aiming at removing unnecessary fragments that are introduced because of the way “skipping” is dealt
with in the proposed mapping. Details of this net simplification process are presented next.

5.1 Net Simplification

For sake of simplicity and to be consistent in the way structured activity constructs are mapped, we
have assumed in our mapping that any activity may be skipped. However, in general, this will not be the
case. A straightforward counter example is the root activity in the tree of structured activities, which
of course can never be skipped. Another counter-example would be an activity that is not the target of
any control link, that is not nested inside any switch or pick activity, nor inside any structured activity
that is the target of a control link. Such an activity will be executed in every execution of the process
if no fault occurs.
Because of our assumption, every activity comes with a number of places and transitions that model

the skipping of an activity. However, if the activity cannot be skipped, the places used to form the skip
path will be unmarkable, and the transitions used to form the skip path will be dead. The unmarkable
places and dead transitions might obfuscate results obtained using Petri nets. Therefore, we propose to
remove them beforehand. Note that we could have altered our mapping in such a way that it does not
generate these places and transitions. The reason for not doing so is that removing them afterwards is
more easy.
Fig. 6, Fig. 7(b) and Fig. 8(b) show the skip fragments using dashed lines. The underlying assumption

for these figures is that any activity Y that requires another activity X to be skipped, puts a token into
place to skipX, waits for a token to arrive in place skippedX, removes that token from that place, and
continues. However, if no other activity can put a token into to skipX, then the entire fragment forming
the skip path is unmarkable/dead and therefore can be removed.
Note that in Fig. 6, Fig. 7(b) and Fig. 8(b), the skip path also involves two λ-transitions (connecting

place jctx or jcfx with place jcvx) that test whether a to skip place contains a token. These transitions
correspond to skipping the activity in case of incoming links, that is, in case of join condition evaluation.
One transition models the situation that the activity needs to be skipped and the join condition has
evaluated to true, while the other models the situation where the join condition has evaluated to false.
Both transitions will only be generated by our mapping given that incoming links exist.
Having removed the redundant skip fragments as describe above, we can now use the resulting Petri

net to verify certain properties in the following subsections.

5.2 Reachability Analysis: Relaxed Soundness vs. Transition Invariants

The WofBPEL tool can detect unreachable activities in a BPEL process, such as the one illustrated
in Fig. 1, for which the corresponding net is shown in Fig. 9. Specifically, WofBPEL is able to detect
that all possible runs starting from the initial state (represented by the marking with one token in the
designated input place, e.g. rFL in Fig. 9) and leading to the desired final state (represented by the
marking with one token in the designated output place, e.g. fFL in Fig. 9). As a result, WofBPEL will
report that the action A3 in the original BPEL process (as modelled by transition A3 in Fig. 9) does not
appear in any possible run starting from the initial state to the desired final state (i.e. it is unreachable).
The reason for this is that transition “tt” will never fire. For “tt” to fire, there needs to be a token in
both places lstx1 and lstx2. However, the paths leading from the initial place (rFL) to these two places are
disjoint: an exclusive choice between these paths is made at place sSW. Note that in the mapping defined
in [20], there is no equivalent for transition “tt” and places lstx1 and lstx2, and thus this reachability
analysis cannot be performed directly on the output of the mapping.
To perform this unreachability analysis, WofBPEL relies on two different methods, namely relaxed

soundness and transition invariants. The former is complete but more computationally expensive than
the latter. Relaxed soundness [7] takes into account all possible runs to get from the initial state to the
desired final state. Every transition which is covered by any of these runs is said to be relaxed sound.
On the other hand, transitions that are not covered by these runs are called not relaxed sound. If we
assume that the goal of the Petri net is to move from the initial state to the desired final state, then
transitions that are not relaxed sound clearly indicate an error, because they cannot contribute in any
way to achieving this goal.
However, to check for relaxed soundness we need to compute the full state space of the Petri net,

which might take considerable time, especially given the fact that our mapping will generate a lot of

30

parallel behaviour (note that even switch and pick activities are mapped onto parallel behaviour, as the
unchosen branches need to be skipped). Therefore, computing relaxed soundness might be a problem.
To alleviate this state space problem, we can replace the relaxed soundness by another property

known as transition invariants. A transition invariant is a multiset of transitions that cancel out, that
is, when all transitions from the multiset would be executed simultaneously, then the state would not
change. It is straightforward to see that any cycle in the state space has to correspond to some transition
invariant. However, not all transitions in the state space will be covered by cycles. For this reason, we
add an extra transition that removes a token from the designated output place and puts a token into
the designated input place. As a result, every run from the initial state to the desired final state will
correspond to a transition invariant, and we can use transition invariants instead of relaxed soundness to
get correct results. However, the results using transition invariants are not necessarily complete, because
transition invariants might exist that do not correspond to any runs in the Petri net. This discrepancy
is due to the fact that transition invariants totally abstract from states. They more or less assume that
sufficient tokens exist to have every transition executed the appropriate number of times.

5.3 Conflicting Message-Consuming Activities

The BPEL specification [5] states that “a business process instance MUST NOT simultaneously enable
two or more receive activities for the same partnerLink, portType, operations and correlation set(s)”
(Section 11.4 of [5]).8 In other word, activities that can consume the same message event may not be
simultaneously enabled. Message events are considered the same if they have identical partner links,
port types and operations. Activities that handle message events are receive activities, pick activities,
and event handlers. Fig. 25 depicts an example of a BPEL process which involves two conflicting receive
activities rcv1 and rcv3.

[Abbr. : pL − partnerLink, pT − portType, op − operation]

 targetNamespace="http://samples.otn.com"
 suppressJoinFailure="yes"
 xmlns:tns="http://samples.otn.com"
 xmlns:services="http://services.otn.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

</sequence>

</sequence>
</flow>

</process>

<receive name="rcv3" partnerLink="pl1" portType="pt1" operation="op1"/>

 <receive name="rcv1" partnerLink="pl1" portType="pt1" operation="op1"/>

<receive name="rcv2" partnerLink="pl2" portType="pt2" operation="op3"/>

<flow name="FL" suppressJoinFailure="yes">
<sequence name="SQ1">

<sequence name="SQ2">

<wait name="A1"> <until> ‘2005−09−01T00:00+01:00’ </until> </wait>
 <invoke name="A2" partnerLink="pl2" portType="pt2" operation="op2"/>

<reply name="A3" partnerLink="pl1" portType="pt1" operation="op2"/>

{pL=pl1,
 pT=pt1,
 op=op1}

rcv1
{pL=pl2,
 pT=pt2,
 op=op3}

rcv2

{pL=pl1,
 pT=pt1,
 op=op1}

rcv3

A3A2

A1

SQ1 SQ2

FL<process name="competingMessages"

Fig. 25. Example of a BPEL process with conflicting receive activities.

To check this property, it is necessary to generate the full state space SF . Then we can check for
each s ∈ SF whether there exist (at least) two concurrently enabled transitions that represent the same
message event. For example, in Fig. 25, the two receive activities rcv1 and rcv3 may be simultaneously
enabled when the sequence activity SQ1 is about to start and in SQ2 the execution of activity rcv2
has completed. Also, for this property, we could alleviate the possible state space problem by using
well-known Petri net reduction rules [18]. Except for the transitions that model the receipt of a message
event, we could try to reduce every place and every transition before generating the state space.

5.4 Garbage Collection on Queued Messages

Again using the full state space, we can compute for each activity a in a BPEL process a set of message
typesMTa such that a message type mt is inMTa iff it is possible in the state space to consume mt after
execution of a. In other words, each basic activity a is associated with a set of message types MTa such
that for each mt ∈ MTa , there exists a run of the process where an activity that consumes a message of
type mt is executed after a. Consider the situation where activity a has just been executed, a message m

8 For the purposes of this constraint, onMessage branches of a pick activity and onEvent (message) event
handlers are equivalent to a receive activity

31

is present in the queue and the type of m is not in MTa . The message m cannot be consumed anymore
(by any activity). Thus, it can be removed from the queue (i.e. it can be garbage collected).
By computing this set for every basic activity in the BPEL process model, and piggy-backing it

in the process definition that is handed over to a BPEL engine, the engine can use this information
to remove redundant messages from its queue, thus optimising resource consumption. Accordingly, we
built a post processor to link WofBPEL with a BPEL engine. The post processor9 takes as input the
original BPEL process code and the corresponding output from WofBPEL, and produces an annotated
version of the BPEL process. In this annotated BPEL process, each basic activity a is associated with a
set of message types (identified by a partner link, a port type, an operation and optionally a correlation
set) corresponding to MTa . Given these annotations, the BPEL engine can, after executing activity a,
compare the set of message types (MTa) associated to a with the current set of messages in the queue
(Mq) and discard all messages in Mq\MTa .
Consider the BPEL process10 depicted in Fig. 26. This process, namely FlightBookingFlow, provides

a flight booking service. Upon receiving a flight booking request from a client, it sets the flight price
(e.g. $500), sends the offer to the client, and waits for the client’s response. The client may approve
the offer, in which case, the booking will be confirmed by the FlightBookingFlow process. Alternatively,
the client may reject the offer, or no response may be received from the client within 30 minutes
after the offer has been sent. In both cases, the client’s booking request will be canceled. Finally, the
FlightBookingFlow process replies to the client with his/her flight booking details including the flight
price, the booking status (i.e. confirmed or canceled), and optionally the confirmation identifier (if the
booking is confirmed).
In Fig. 26, the graphical representation depicts the above BPEL process with its basic activities

being annotated by sets of message types. Before the pick activity handleOfferResponse is executed,
each activity is annotated with a set of two message types corresponding to the messages that may
be received later. These two message types are: FlightBookingApproveMessage (identified by the tu-
ple (client, tns:FlightBooking, approve)) and FlightBookingCancelMessage (identified by the tuple (client,
tns:FlightBooking, cancel)). After one of the branches is taken in the activity handleOfferResponse, no
more messages are expected to be consumed until the end of the process. Therefore, the remaining of
the activities are annotated with an empty set of message types.

6 Conclusions

BPEL is gaining increasing adoption as a process-oriented service composition language, as reflected
by the large number of implementations.11 However, current tools lack the ability to statically detect
undesirable situations such as activity unreachability or pairs of activities that may compete for the
same message. Also, current BPEL implementations are not optimised with respect to management of
inbound messages: a message sent to a given service instance is kept in the queue even when it can be
determined that this message will never be consumed. This is because BPEL tools lack the ability to
perform reachability analysis.
These limitations can be overcome by translating BPEL process models into Petri nets and applying

existing analysis techniques. This paper has presented a mapping from BPEL to Petri nets which
is complete in terms of coverage of control flow constructs. In particular, it is the first attempt at
providing formal semantics of “join conditions” which can be used to perform reachability analysis on
BPEL processes. The mapping has been used as the basis for two open-source tools: BPEL2PNML
that translates BPEL code into PNML code and WofBPEL that performs three types of analysis on
the generated PNML code and produces output which refers back to the activity names of the original
BPEL process.
Our future work aims at extending this mapping to cover communication and data manipulation

aspects. On one hand, we envision that by extending the mapping along the communication dimension.
It will become possible to check for properties of systems of inter-connected services as opposed to
individual services. On the other hand, extending the mapping along the data perspective will allow us
to apply simulation techniques to check properties for which static analysis is not suitable. To this end,
we plan to use high-level Petri nets or a formally defined process execution language such as YAWL [2].

9 This is also available at http://www.bpm.fit.qut.edu.au/projects/babel/tools.
10 This is a revised version of BPEL Hotwireflow process demo within the Oracle BPEL Process Manager

download package at http://www.oracle.com/technology/software/products/ias/bpel/index.html.
11 For a list, see: http://en.wikipedia.org/wiki/BPEL.

32

handleOfferResponse

 suppressJoinFailure="yes"
 xmlns:tns="http://samples.otn.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

<process name="FlightBookingFlow"

 <receive name="receiveInput" partnerLink="client"
 portType="tns:FlightBooking" operation="initiate"
 variable="input" createInstance="yes"/>

 <copy>
 <from expression="number(500)"/>

 </copy>
 </assign>

 <assign name="setOffer">

 <to variable="offer" query="/tns:offer"/>

 <partnerLinks>

 partnerLinkType="tns:FlightBooking"
 <partnerLink name="client"

 partnerRole="FlightBookingRequester"/>
 myRole="FlightBookingProvider"

 </partnerLinks>

 <invoke name="sendOffer" partnerLink="client"
 portType="tns:FlightBookingCallback" operation="onOffer"
 inputVariable="offer"/>

 <variables>

 </variables>

 <variable name="input" messageType="tns:FlightBookingRequestMessage"/>
 <variable name="offer" messageType="tns:FlightBookingOfferMessage"/>
 <variable name="approved" messageType="tns:FlightBookingApproveMessage"/>
 <variable name="canceled" messageType="tns:FlightBookingCancelMessage"/>
 <variable name="output" messageType="tns:FlightBookingResultMessage"/>

 <invoke name="replyOutput" partnerLink="client"
 portType="tns:FlightBookingCallback" operation="onResult"
 inputVariable="output"/>

 </sequence>
</process>

 <copy> <to variable="output"/><from variable="input"/>
 </assign>

</copy>
 <assign name="generateOutput">

 <to variable="input" query="/tns:flightRequest/tns:status"/>

 <copy>

 </copy>

 <to variable="input" query="/tns:flightRequest/tns:confirmationId"/>
 </copy>

 <copy>

 </assign>
 </onMessage>

 <onMessage partnerLink="client" portType="tns:FlightBooking"
 operation="approve" variable="approved">
 <assign name="clientApproved">

 <from expression="string(‘Approved’)"/>

 <from expression="string(‘12345’)"/>

 <copy>

 <to variable="input" query="/tns:flightRequest/tns:status"/>
 </copy>
 </assign>
 </onMessage>

 <assign name="clientCanceled">
 operation="cancel" variable="canceled">
 <onMessage partnerLink="client" portType="tns:FlightBooking"

 <from expression="string(‘Canceled’)"/>

 </pick>
 </onAlarm>

 <onAlarm for="’PT30M’"> <!−− wait for 30 minutes −−>
 <assign name="autoCanceled">
 <copy>

 <to variable="input" query="/tns:flightRequest/tns:status"/>
 </copy>
 </assign>

 <from expression="string(‘Canceled’)"/>

 <copy>
 <assign name="recordOffer">

 </assign>
 </copy>

 <from variable="offer" query="/offer"/>
 <to variable="input" query="/tns:flightRequest/tns:price"/>

 <sequence>

 <pick name="handleOfferResponse">

Annotation of a set of message types for the messages
that may be received in the rest of the BPEL process.[...]New Legend:

Pick activity

 op=initiate}
 pT=tns:FlightBooking,
{pL=client,

[(client,
 tns:FlightBooking,
 approve),

 cancel)]
 tns:FlightBooking,
 (client,

[(client,
 tns:FlightBooking,
 approve),

 cancel)]
 tns:FlightBooking,
 (client,

[(client,
 tns:FlightBooking,
 approve),

 cancel)]
 tns:FlightBooking,
 (client,

[(client,
 tns:FlightBooking,
 approve),

 cancel)]
 tns:FlightBooking,
 (client,

replyOutput

[]

[]

. onAlarm
{pL=client,
 pT=tns:FlightBooking,
 op=approve}

onMessage

clientApproved

onMessage
{pL=client,
 pT=tns:FlightBooking,
 op=cancel}

clientCanceled autoCanceled[] [][]

receiveInput

setOffer

sendOffer

recordOffer

generateOutput

 targetNamespace="http://samples.otn.com"

Fig. 26. Example of a BPEL process and diagrammatic representation of the corresponding annotations for
garbage collection.

33

References

1. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems. MIT
press, Cambridge, Massachusetts, 2002.

2. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language. Information
Systems, 30(4):245–275, 2004.

3. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architectures and Applications.
Springer-Verlag, 2003.

4. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language for Web Services Ver-
sion 1.1. BEA Systems, IBM Corporation, Microsoft Corporation, SAP AG, Siebel Systems, May 2003.

5. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu, S. Thatte, P. Yendluri, and A.
Yiu, editors. Web Services Business Process Execution Language Version 2.0. Working Draft. WS-BPEL
TC OASIS, May 2005. Available via http://www.oasis-open.org/committees/download.php/12791/.

6. F. Casati and M.-C. Shan. Dynamic and adaptive composition of e-services. Information Systems, 26(3):143–
162, May 2001.

7. J. Dehnert. A Methodology for Workflow Modelling: from Business Process Modelling towards Sound Work-
flow Specification. PhD thesis, Technische Universität Berlin, Berlin, Germany, August 2003.

8. R. Farahbod, U. Glässer, and M. Vajihollahi. Abstract operational semantics of the Business Process
Execution Language for Web Services. Technical Report SFU-CMPT-TR-2004-03, School of Computer
Science, Simon Fraser University, Burnaby B.C. Canada, April 2004.

9. A. Ferrara. Web services: a process algebra approach. In Proceedings of 2nd International Conference on
Service Oriented Computing, pages 242–251, New York, NY, USA, 2004. ACM Press.

10. J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of BPEL4WS business collaborations. In
Proceedings of 5th International Conference on Electronic Commerce and Web Technologies (EC-Web’04),
volume 3180 of Lecture Notes in Computer Science, pages 76–85, Zaragoza, Spain, August 2004. Springer-
Verlag.

11. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of Web service composition. In
Proceedings of 18th IEEE International Conference on Automated Software Engineering, pages 152–161,
Montreal, Canada, October 2003. IEEE Computer Society.

12. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Proceedings of 13th International
Conference on World Wide Web, pages 621–630, New York, NY, USA, 2004. ACM Press.

13. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri nets. To appear in Proceedings of 3rd
International Conference on Business Process Management, September 2005.

14. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals of control flow in workflows.
Acta Informatica, 39(3):143–209, 2003.

15. M. Koshkina and F. van Breugel. Verification of business processes for Web services. Technical Report
CS-2003-11, York University, October 2003. Available via http://www.cs.yorku.ca/techreports/2003/

CS-2003-11.ps.
16. A. Martens. Verteilte Geschäftsprozesse - Modellierung und Verifikation mit Hilfe von Web Services (In

German). PhD thesis, Institut für Informatik, Humboldt-Universität zu Berlin, Berlin, Germany, 2003.
17. A. Martens. Analyzing Web service based business processes. In M. Cerioli, editor, Proceedings of 8th

International Conference on Fundamental Approaches to Software Engineering (FASE 2005), volume 3442
of Lecture Notes in Computer Science, pages 19–33. Springer-Verlag, 2005.

18. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541–580, April
1989.

19. J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1981.

20. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s thesis, Humboldt University,
Berlin, Germany, 2004.

21. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL processes using Petri nets. In D.C. Marinescu,
editor, Proceedings of 2nd International Workshop on Applications of Petri Nets to Coordination, Workflow
and Business Process Management, pages 59–78, June 2005.

22. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing workflow processes using Woflan. The
Computer Journal, 44(4):246–279, 2001.

23. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web services composition
languages: The case of BPEL4WS. In I.Y. Song, S.W. Liddle, T.W. Ling, and P. Scheuermann, editors,
Proceedings of 22nd International Conference on Conceptual Modeling (ER 2003), volume 2813 of Lecture
Notes in Computer Science, pages 200–215. Springer-Verlag, 2003.

34

