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Synthesis of Communicating Finite-State Machines with 
Guaranteed  Progress 

MOHAMED G. GOUDA, MEMBER, IEEE, AND YAO-TIN Y u  

Abstract-We present a methodology  to  synthesize  two  communicating 
finite-state  machines  which  exchange  messages  over two one-directional, 
FIFO channels.  The  methodology  consists of  two algorithms. The first 
algorithm  takes one  machine M, and  constructs  two  communicating 
machines M’ and N’ such  that 1) M‘ is constructed  from M by adding 
some  receiving  transitions to it,  and 2) the communication between M’ and 
N’ is  bounded  and  free  from  deadlocks,  unspecified  receptions,  nonex- 
ecutable  transitions, and state  ambiguities.  The  second  algorithm  takes the 
two  machines M‘ and N‘ which result from the first  algorithm, and 
computes the smallest  possible  capacities for the two channels  between 
them.  Both  algorithms require an O(st) time, where s is the number of 
states  in the given  machine M, and t is  the number of state  transitions  in M; 
thus,  the  methodology  is practical to use. 

M 
I. INTRODUCTION 

ANY  communication  protocols  can  be  modeled  as  two 
communicating,  finite-state  machines  which  exchange 

messages over  two  one-directional,  unbounded,  FIFO  chan- 
nels [ 1 1, [3 1 , [ 111-[  141.  The  communication  between  the 
two  machines in each of these  models is often  expected  to 
satisfy  some  “nice”  progress  properties [ 1  1, [ 18 1 , [ 191 . 

Four  of  these  progress  properties  are of interest  to  the dis- 
cussion  in  this  paper.  They  are  boundedness  and  freedom  from 
communication  deadlocks,  unspecified  receptions,  and  non- 
executable  state  transitions.  (Formal  definitions of these  prop- 
erties  are  discussed  later  in  Section 11.) 
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There  are  two basic approaches  to  ensure  that  the  com- 
munication  between  two  finite-state  machines  satisfies  such 
progress  properties. 

I )  Analysis: Develop  techniques  to  prove  that  the  com- 
munication  between  any  two given machines  satisfies  the  re- 
quired  progress  properties. 

2)  Synthesis: Develop  techniques  to  complete  two given 
(incomplete).machines  such  that  the  communication  between 
the  completed  machines  is  guaranteed t o  satisfy  the  required 
progress  properties. 

Brand  and  Zafiropulo  [4j have shown  that  the  analysis  ap- 
proach  is  undecidable  in  general; i.e., n o  algorithm  can  decide 
whether  the  communication  between  two  finite-state  machines 
satisfies  any of the  progress  properties  mentioned  earlier. 
(Nevertheless,  the  problem  can  still be decided  for  some  special 
classes of communicating  finite-state  machines [ 41, [ 7 1 , [8] ,  
[ 101, [ 151 -[  17 j .) This  rather  negative  result of the  analysis 
approach  makes  the  synthesis  approach  more  attractive.  In  this 
paper,  we  present  a  practical  methodology  to  synthesize  two 
communicating  finite-state  machines  with  guaranteed  progress 
properties. A preliminary  version of this  methodology  has 
been  presented in [ 6  j . 
A. Related Work 

Previous  work  in  the  synthesis  approach  can  be  distinguished 
into  two  categories  based  on  the  objective  of  the  synthesis. 

1)  Synthesis to Achieve Progress: Zafiropulo et at. [ 191  have 
presented  a  methodology,  henceforth  referred  to as the 
ZWRCB methodology,  to  synthesize  two  finite-state  machines 
whose  communication  satisfies  some  progress  properties.  The 
methodology  proceeds in steps;  at  each  step,  the  following 
three  substeps  are  performed. 

a)  First,  the  designer  adds  one  sending  transition  to  one 
of the  two  incomplete  machines. 

b) Second,  the  designer  executes an algorithm  (based  on 
three  synthesis  rules)  to  add  the  corresponding  receiving  transi- 

0090-6778/84/0700-077~$01 .OO 0 1984 IEEE 



780 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 7, JULY 1984 

tions  in  the  other  machine  such  that  freedom  from  unspecified 
receptions  and  nonexecutable  transitions is guaranteed.  (This 
addition of receiving  transitions to  the  second  machine  may 
necessitate  the  addition  of  sending  transitions,  that  are  copies 
of  previously  added  sending  transitions,  to  this  same  machine; 
this  in  turn  necessitates  the  addition  of  corresponding receiving 
transitions  to  the  first  machine,  and so on.) 

c)  Third,  the  designer  checks  whether  or  not  the  added 
transitions  can  lead  to  a  deadlock  or  a  channel  overflow. If a 
deadlock  or  a  channel  overflow  is  detected,  then  the designer 
must  take a proper  action (e.g., remove all the  added  transitions 
in  this  step).  Finally,  the  designer  proceeds to  the  next  step. 

These  steps  continue  until  the  designer  does  not  need  to 
add  further  sending  transitions  to  any  of  the  two  machines.  In 
this  case,  the  two  machines  are  complete  and  their  communi- 
cation  is  guaranteed  to  ‘be  bounded  and  free  from  deadlocks, 
unspecified  receptions,  and  nonexecutable  transitions. 

The  synthesis  methodology  presented  in  this  paper  also  falls 
into  this  same  category;  it  has  the  same  objectives as the 
ZWRCB methodology. A comparison  between  the  two  meth- 
odologies  is  discussed  later  in  Section VI. 

2)  Synthesis  to  Achieve  Progress  and  Service:  Bochmann 
and  Merlin [ 2 ] ,  [9]  have  considered  a  special class of com- 
municating  finite-state  machines.  In  this  special  case,  the  send- 
ing  of  a message by  one  machine  and  its  reception  by  another 
machine  occur  instantaneously  in  zero  time.  Therefore,  chan- 
nels  are  not  needed  to  buffer messages between  different  ma- 
chines,  and  the  analysis  problem  becomes  trivially  decidable. 
(Actually,  unboundedness  and  unspecified  receptions  cannot 
occur  in  this  class;  only  deadlocks  and  nonexecutable  transi- 
tions  can  occur.) 

Bochmann  and  Merlin  have  also  introduced  the  concept of a 
“service  machine”  which is a  finite-state  machine  that  defines 
the  service  performed  by  a  set  of  communicating  finite-state 
machines.  They  state  the  following  problem.  “Given 11 - 1 
communicating  finite-state  machines (n  2 2), and  a service 
machine,  it is required  to  synthesize  an  nth  communicating 
machine  such  that  the  service  performed  by  the n communi- 
cating  machines is defined by the given  service machine  or by 
a  maximal  submachine  of  it.” 

Their  solution to the  problem  consists  of  a  “formula”  that 
defines  the  required  communicating  machine  from  the given 
machines.  They  observe,  however,  that  the  resulting  communi- 
cating  machine  may  have  many  redundant  transitions  and  may 
reach  a  deadlock  with  the given communicating  machines. 
Therefore,  they  suggest  a  subsequent  procedure  to  “trim”  the 
resulting  machine by removing  some of its  transitions.  The 
trimming  procedure is based on  state  exploration  to  determine 
which  transitions  in  the  resulting  machine  can  (or  should) be 
removed;  and so it  consumes  a large amount of time. 

Later,  Gouda  and  Chu  [5]  have  discussed  another  solution 
to  the  Bochmann-Merlin  problem  in  the  special  case of n = 2 ;  
their  solution  does  not  require  any  state  exploration. 

B. The Paper’s Organization 
Following  the  Introduction,  the  model of communicating 

finite-state  machines  is  presented  in  Section 11, along  with  its 
major  progress  properties.  The  two  algorithms  which  comprise 
our  synthesis  methodology  are  presented  in  Sections 111 and 
IV. Then  in  Section V, we  apply  the  methodology  to  synthesize 
a  call  establishment/clear  protocol  similar  to  that of X.25. 
Concluding  remarks  are  in  Section  VI.  Due  to  space  limitations, 
we  have  omitted  the  correctness  proofs  for  the  two  algorithms; 
these  proofs  are  discussed  in [ 151 . 

11. COMMUNICATING MACHINES 
A communicating  machine M is a  labeled  directed  graph 

with  two  types of edges  called  sending  and  receiving edges. A 
sending  (or  receiving)  edge is labeled  send(g)  (or  receive(g),  re- 

spectively),  for  some message g in  a  finite  set G of messages. 
No two  outputs  of  the  same  node  in M have  identical  labels. 

Each  node  in M has  a  distinct  label  and  at  least  one  output 
edge. A node  is  called  a  sending  (or  receiving)  node  iff all its 
output edges are  sending  (or  receiving,  respectively)  edges; 
otherwise  it is called  a  mixed  node.  One of the  nodes in M is 
identified as its  initial  node,  and  each  node  in M is reachable 
by a  directed  path  from  the  initial  node. 

Fig. l(a)  shows  a  communicating  machineM  with  one  send- 
ing  node  (node  l),  one  receiving  node  (node 2 ) ,  and  one  mixed 
node  (node 3). Node  1 is the  initial  node of M .  

Let A4 and N be two  communicating  machines  with  the  same 
set G of  messages. A state of M and N is a  four-tuple [ u ,  w, x ,  
y ]  where u and w are  the  labels  of  two  nodes  in M and  N,  re- 
spectively,  and x and y are two  strings  of messages from  the 
set G. Informally,  a  state [ u ,  w, x ,   y ]  means  that  the  execution 
of M has  reached  node u,  and  the  execution of N has  reached 
node w, while  the  input  channels of M and N have  the mes- 
sage sequences x and   y ,  respectively. 
’ The  initial  state  of M and N is [u,, wo, E ,  E ]  where uo 
and w o  are  the  labels  of  the  initial  nodes  of M and  N,  respec- 
tively,  and E is the  empty  string. 

Let s = [ u ,  w ,  x ,   y ]  be  a  state  of M and N and  let  e  be  an 
output  edge of node u or w. A state s’ of M and N is said t o  
follows over  e iff the  following  four  conditions  are  satisfied. 

1) If e if from q t o  u’ in M and is labeled  send(g), 
then S I  = [ u  , w ,  x, y - g l ,  where “.” is the  concatenation 
operator. 

then s = [ u ,  w‘, x’g,  y 1 .  

then x = g-x’ ,  
and sf = [u ’ ,  W ,  XI, y ] .  

then y = g - y  , 
and s‘ = [ u,  w’, x ,   y ‘ ]  . 

2) If e is ,from w to  w ’  in N and is labeled  send(g), 

3) If e is from u t o  u’ in M and is labeled  receive(g), 

4) If  e is from  to w’ in N and is labeled  receive(g), 

Let s and s’ be  two  states  of M and N. s’ follows s iff there 
is an  edge  e  in M or  N such  that s’ follows s over  e. 

Let s and S I  be two  states of M and N. s‘ is reachable from s 
iff  either s = SI,: or  there  exist  states sl, .-, s, such  that s = sl, 
S I  = s,, and si+l follows si for  i  = 1, ..e, r - 1. 

A state s of  M and N is reachable iff it is reachable  from  the 
initial  state of M and N. 

In  designing  a  pair of communicating  machines M and N, a 
designer  may  commit  some design mistakes  which  cause  the 
resulting  machines to  exhibit  some  progress  errors  during  the 
course  of  communication.  Five of these  progress  errors  are  de- 
fined  next. 

I )  Unbounded  Communication:  The  communication be- 
tween M and N is  said t o  be bounded by a  positive  integer K 
iff for  any  reachable  state [ u ,  w, x, y ]  of M and  N, I x I < K 
and 1 y I < K ,  where I x I is the  number of messages  in  the  string 
x.  The  communication  is said to  be  bounded iff it is bounded 
by  some  positive  integer K .  Otherwise,  it is unbounded.  Notice 
that  an  unbounded  communication  cannot  be  implemented 
correctly  using  finite-capacity  channels. 

2) Communication  Deadlocks:  A  state s = [ u ,  w, x ,  V I  of 
M and N is a  deadlock  state iff a)  both u and w are  receiving 
nodes,  and  b)  x = y = E. A reachable  deadlock  state  consti- 
tutes  a  progress  error,  since  the  two  machines  cannot  progress 
after  reaching  a  deadlock  state. 

3) Unspecified  Receptions:  A  state s = [ u ,  w ,  x, y ]  of M 
and N is an  unspecified  reception  state  iff  one of the  follow- 

ing  two  conditions  is  satisfied. 
a)  x = g, *g2 .-.. * g k ,  from  some  k 2 1  and is a  re- 

ceiving  node  wlthout  any  output  edge  labeled re- 
ceive(gl)  in M .  

b)  y = g, -g2 - ... -gk,  for  some k 2 1  and w is a  receiving 
node  without  any  output  edge  labeled  receive(gl)  inN. 
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I n i t i a l  Node 

receive(g 2 

II 
ceive(g ) 3 

Fig. 1. A machine  synthesis example. (a) M .  (b) N .  (c) M' . (d) N' . 

A  reachable  unspecified  reception  state is a  progress  error 
since at  least  one of the  two  machines  cannot  progress  after 
reaching  an  unspecified  reception  state. 

Notice  that  according  to  this  definition,  unspecified  recep- 
tions  can  occur  only  at  receiving  nodes.  Hence,  this  definition 
is  different  from  the  one  in [ 191 where  unspecified  receptions 
can  occur  at  receiving  or  mixed  nodes. 

4 )  Nonexecutable Transitions: Let e be an  edge  in  machine 
M (or  N ) .  e is  said t o  be nonexecutable during  the  communi- 
cation  between M and N iff there is no pair  of  reachable  states 
s1 and s2 such  that s 2  follows s1 over  edge e. 

A nonexecutable  edge is not  strictly  a  progress  error,  since 
the  communication  between M and N can  proceed  properly 
even  in  the  presence of nonexecutable edges. Nonetheless, 
nonexecutable  edges  serve no  function,  and  it  is  desirable  to 
remove  them  from M and N .  

5 )  State  Ambiguities: A  state [ u ,  w, E ,  El o f M  and N is 
said t o  be stable iff x = y = E (the  empty  string). A stable  state 
ambiguity  exists  between M and N iff there  are  two  reachable 
stable  states [ u l ,  wl, E ,  E ]  and [ u 2 ,  w 2 ,  E ,  E ]  such  that 
either u1 = v2 and w1 # w 2 ,  or u1 # u2 .and w1 = w2. A  state 
ambiguity is no t  necessarily an ,error  unless  the  designer  in- 
tends  to  have  no  state  ambiguities  in  the  resulting  two  com- 
municating  machines. 0 

., In  this  paper, we present  a  methodology  to  construct  pairs 
of communicating  machines  whose  communication is free of 
the  above  progress  errors.  The  methodology  consists of two 
algorithms  named  the  machine  synthesis  algorithm  and  the 
channel  capacity  algorithm. 

The machine  synthesis  algorithm takes  as  an  input  one  com- 
municating  machine M and  constructs  two  communicating 
machines M' and N' which  satisfy  the  following  two  condi- 
tions. 

1) M' is constructed  from M by  adding  some  receiving  edges 
to   i t .  

2) The  communication  between M' and N' is free of the 
above five progress  errors. 

The channel  capacity  algorithm takes  as  an  input  the  two 
machines M' and N' which  result  from  the  first  algorithm  and 
computes  the  smallest  possible  channel  capacities  between 

them.  In  other  words,  it  computes  the  smallest  positive  inte- 
ge,rs c1 and c2 such  that  for  an  reachable  state [v, w , x ,  y ]  of 
M and N ' ,  I x I < c1 and Iy I < c 2 .  Theintegercl is the  smallest 
possible  capacity  for  the  output  channel of N',  and f2  is the 
smallest  possible  capacity  for  the  output  channel of M . 

111. THE MACHINE SYNTHESIS ALGORITHM 

In  this  section,  the  machine  synthesis  algorithm is discussed. 
First,  two  machine  synthesis  examples  are  discussed  in  Sec- 
tions 111-A and 111-B to  motivate  the  algorithm.  Then,  the al- 
gorithm  itself  is given in  Section 111-C. 

A. Dual  Machines and WinnerlLoser  Nodes 

Consider  the  communicating  machine M in  Fig.  l(a). As- 
suming  that M can  be.modified  slightly  by  adding  receiving 
edges to  i t ,   i t  is required to synthesize  another  machine N' 
such  that  the  communication  between  the  modified M, called 
M ' ,  and N' is free  from  the five progress  errors  discussed in 
Section 11. 

The  first  step  is to construct  a dual machine N [Fig.   l (b)]  
which is identical  to M except  that  each  sending  (or  receiving) 
edge  in M is replaced  by  a  receiving  (or  sending,  respectively) 
edge  in N.  Thus,  each  sending  (or  receiving  or  mixed)  node  in 
M corresponds  to  a  receiving  (or  sending  or  mixed,  respectively) 
node  in N. Two  corresponding  nodes  in M and N are  called 
dual  nodes. For  convenience,  every  node  in N has  the  same 
label  as  its  dual  node  in M .  

During  the  communication  between M and N ,  the  two ma- 
chines  traverse  dual  paths  in  harmony; Le., while  one  machine 
sends  some  message  the  other  machine  receives  the  same  mes- 
sage.  This  continues  until M and N reach  dual  mixed  nodes. 
In  this  case,  both M and N may  traverse  paths of sending  edges, 
causing  a  loss of synchronization.  For  example,  the  two  ma- 
chines M and N in  Fig. l can  start  from  the  initial  state [ l ,  l ,  
E ,  E ]  and  traverse  dual  paths to reach  the  state [3, 3, E,  E ] .  
From  this  state, M can  send  message g3 and  reach  receiving 
node 2, and N can  send message g4 and  reach  receiving  node 1 ; 
i.e., the  state [2 ,  1, g 4 ,  g 3 ]  is reached.  There  are  two  prob- 
lems  with  this  state. 



1)  Machine M does  not  expect  to  receive message,..g4 at 
receiving  node  2,  and N does  not  expect  to  receive  message 
g3 at  receiving  node  1. 

2 )  Assuming  that M receives g4 at  node 2 and N receives 
g3 at  node  1,  and so they  both  recognize  loss of synchroniza- 
tion,  what  should  they  do  to  restore  their  synchronization? 

T o  solve the  first  problem, an output  edge  labeled  re- 
ceive(g4)  should  be  added t o  receiving  node  2  in M ,  and  an 
output  edge  labeled  receive(g3)  should  be  added  to  node 1 in 
N .  These  added  edges  are  called  correcting edges. Notice  that 
we  have  not  yet  defined  the  head  nodes of these  correcting 
edges;  this is done  next  as  we  discuss  a  solution  to  the  second 
problem. 

When M receives g4 at  node  2,  it  should  recognize  that  a 
loss  of  synchronization  with N has  occurred  at  node 3. In  par- 
ticular,  it  should  recognize  that  while M itself has  reached 
node  2, N has  reached  node 1. Therefore,  to  restore  the  lost 
synchronization, M should leave node  2  and  reach  node  1 ; i.e., 
the  correcting  output  edge of node 2 should be input  to  node 
1  in M .  On  the  other  hand,  when N recognizes  the  loss  of 
synchronization,  it  should  remain  at  node  1  knowing  that 
eventually M will reach  node  1  also,  and  the  synchronization 
will be  restored.  Hence,  the  correcting  output  edge of node  1 
should be input  to  node  1  in N .  The  resulting M' and N' after 
adding  the  correcting  edges  to M and N are  shown  in  Fig.  l(c) 
and  (d),  respectively.  For  convenience,  the  correcting  edges 
are  shown  as  dashed  edges. 

During  the  course  of  communication  between M' and N', 
whenever  a  loss of synchronization  occurs  at  the  dual  mixed 
node  pair (3, 3), machine M'  is  forced  to  stop  its  progress  and 
rejoin N ' ,  thus  restoring  the  synchronization  between  the  two 
machines.  Hence,  mixed  node 3 in M' is called  a  loser,  while 
mixed  node 3 in N' is called  a winner. 

It  would  have  been  also  possible  to  make  the  correcting 

_ .  
Initial Node 

edge of M' from  node  2  to  node  2,   and  the  correcting  edge  of.  
N' from  node 1 to  node  2.  In  this  case,  whenever  a  loss of 
synchronization  occurs,  machine N would be the on; forced I-\ 

to  stop  its  progress  and  rejoin  the  other  machine M . There- 
fore,  in  this  case,  mixed  node 3 in N' would be the  one  called 
a  loser,  while  mixed  node '3 in M' would be called  a  winner. 

From  the  above  example,  we  reach  the  following  conclu- 
sions  concerning  loss  of  synchronization  between  dual  com- 
municating  machines. 

1) Loss of synchronization  can  start  at  any  dual  mixed 
node  pair. 

2) Loss of synchronization  can  be  detected  by  either  ma- 
chine  receiving  an  unexpected message at  the  first  receiving 
node  following  the  mixed  node  where  the  loss  of  synchroniza- 
tion  has  started. 

3) Loss of synchronization  can  be  corrected  by  one  machine 
stopping  its  progress  and  rejoining  the  other  machine.  The 
mixed  node  where  loss  of  synchronization  has  started  in  the 
former  machine is called  a  loser,  and  its  dual  mixed  node  in 
the  latter  machine is called  a  winner. 

4) From  1)  and 3) above,  one  node  in  each  dual  mixed 
node  pair  should  be  selected  as  a  loser  while  the  other  node  in 
the  pair  is  selected  as  a  winner. 

5 )  Which  node  in  a  dual  mixed  node  pair is selected  as  a 
loser  or  winner is, in  principle,  an  arbitrary  decision. 

B. Receiving a Sequence of Messages 
Consider  the  communicating  machine M in Fig. 2(a). As 

before,  it  is required  to  yodify M slightly  by  adding  receiving 
edges to   i t   to   become M and  to  synthesize  another  communi- 
cating  machine N' such  that  the  communication  between M' 
and N' is free  of  the  progress  errors  discussed  in  Section 11. (d) 

Fig.  2(b)  shows  the  dual  machine N for  the given machine 
M .  The  only  dual  mixed  node  pair  in M and N is ( 1, 1). As- Fig. 2. A second  machine  synthesis example. (a) M. @) N .  (c) M ' .  (d) N' 
sume  that  node 1 in M is selected as a  loser;  then  node  1  in N 

rece ive(g  ) 
4 

rece ive(g2)  
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must  be  selected  as  a  winner.  It  remains  now  to  add  the  cor- 
recting  edges t o  M and N ,  thus  constructing  the  required ma- 
chines M’ and N’. 

The  correcting  edges  of M should  be  added as outputs  to  the 
first  receiving  nodes  which  follow  mixed  node  1  in M .  There 
is only  one  such  node,  namely  receiving  node  3,  in M .  Also, 
each  correcting  edge  should  be  labeled  receive(g)  where g 
is  a message that  can  be  received  at  mixed  node 1 inM.  There 
is only  one  such  message,  namely g4. Thus,  one  correcting 
edge  labeled  receive(g4)  should  be  added as an  output  of  re- 
ceiving node 3 in M .  The  destination of this  edge  should  be  the 
node  which  can  be  reached  from  mixed  node  1  by  the  edge 
labeledreceive(g4),  namely  node 3 i n M ,  as shown  in  Fig.  2(c). 

Adding  correcting  edges  for  a  winner  node is more  compli- 
cated  than  for  a  loser  node.  ,In case  of a  loser  node,  a  correct- 
ing  edge  receives  the  first message sent  by  the  other  machine 
during  the  loss  of  synchronization,  and  redirects  its  machine 
t o  rejoin  the  other  machine.  In case.  of a  winner  node,  a  cor- 
recting  edge  receives  all  the messages sent by the  other  ma- 
chine  during  the  loss of synchronization,  and  “discards”  them, 
and  directs  its  machine to  stay  at  its  current  node.  Thus,  a  cor- 
recting  edge  for  a  winner  node  should  satisfy  the  following 
two  conditions. 

1)  It  should  form  a  self-loop  ,at  a  first  receiving  node  fol- 
lowing  the  winner  mixed  node. 

2) It  should  be  labeled  receive(x),  where  x is a  complete 
sequence of messages sent  by  the  other  machine  during  the 
loss of synchronization.  (An  edge  labeled  receive(g, *g2 *:-*g,.) 
is equivalent  to  a  directed  path of r  receiving  edges  labeled 
receive(gl), r e ~ e i v e ( g ~ ) ~  ..., and receive(g,), respectively. T o  
refer  to  it  as an  edge  rather  than  a  path is a  notational  con- 
venience.) 

The  only  sequence  of messages sent  by  machine M during 
its  loss of synchronization  with N is glgz ; thus,  each  correct- 
ing edge  added  to N should  be  labeled  receive(glg2).  Also, N 
has  only  one  receiving  node,  namely  node 2, that  follows  the 
winner  mixed  node  1;  hence,  one  correcting  edge,  labeled  re- 
ceive(g,g2),  should  be  added  as  a  self-loop  at  node  2  in N.  The 
resulting  machine N’ is shown  in Fig. 2(d). 

C. The  Algorithm 
The  above  examples  are  intended  to give some  insight  into 

the  different  steps of the  machine  synthesis  algorithm.  The al- 
gorithm is presented  next.  (A  correctness  proof  for  the algo- 
rithm  is given in [ 151 .) 

Algorithm 1: 
Inputs: A  communicating  machine M ,  which  satisfies  the 

following  two  conditions. 
a) All edges  in M have distinct  labels. 
b)  Each  directed  cycle  in M must  have  at  least  one  send- 

Outputs: Two  communicating  machines M’ and N’ which 

a) M’ is constructed  from M by  adding  some  receiving 
edges to   i t .  

b)  The  communication  between M’ and N‘ is bounded, 
deadlock-free,  and  has  no  unspecified  receptions,  no 
nonexecutable  transitions,  and  no  state  ambiguities. 

a)  Construct  the  dual  machine N from  the given machine 
M by  replacing  each  edge  labeled  send(g)  [or  re- 
ceive(g)]  in M by  an  edge  labeled  receive(g)  [or 
send(g)] in N .  

b) Select  each  mixed  node  in M ,  at  random,  to be either 
a  loser  or  a  winner. If a  mixed  node  in M is selected  a 
loser  (or  a  winner),  then  the  corresponding  dual  node 
in N must be selected  a  winner  (or  a  loser,  respec- 
tively). 

c)  Construct M‘ from M by  applying  the  loser  (or  win- 

ing  and  one  receiving  edge. 

satisfy  the  following  two  conditions. 

Steps: 

ner)  transformation,  defined  next,  to  every  loser  (or 
winner,  respectively)  mixed  node ih M .  Similarly, 
construct N‘ from N by  applying  the  loser  (or  winner) 
transformation  to every loser  (or  winner,  respectively) 
mixed  node  in N .  0 

Notice  that if M has no  mixed  nodes,  then  steps  b)  and c) 
will not  modify M and N in  any  way,  and  the  required M’ and 
N‘ are  the  originalM  and N .  Next,  we  define  the  loser  and  win- 
ner  transformations  for  mixed  nodes  in M .  (The  loser  and  win- 
ner  transformations  for  mixed  nodes  in N are  similar.) 

Loser  Transformation:  for  a  loser  mixed  node u in M [Fig. 
3 (a) l .  

Let ui (i = 1 ... m )  be all the  receiving  nodes  such  that  there 
is  a  directed  path  of  sending  edges  from  node u to  node ui in M .  

Let receive(g,) ( j  = 1 ... n )  be  the  label  of  a  receiving  edge 
from  node u to  some  node U, ( j  = 1 n )  in M .  

Then  add  a  correcting  edge  labeled receive(g,) from  each ut 
(i = 1 ... m )  to  each u, ( j  = 1 *.* n )  in M .  0 

Winner Transformation:  for  a  winner  mixed  node u in M 
[Fig.   3(b)l .  

Let ui (i = 1 ... m )  be all the  receiving  nodes  such  that  there 
is a  directed  path of sending  edges  from  node u to   node ut in M .  

Let xi ( j  = 1 ... n )  be  an  ordered  sequence of messages which 
label  the  edges  of  a  directed  path  of  receiving  edges  from  node 
u t o  a  sending  node  in M .  

Then  add  a  correcting  self-loop  labeled  receivetxj) ( j  = 1 ..- 
n )  at  each  receiving  node ut (i = 1 ... m )  in M .  0 

Later  in  Section  V,  we  discuss  how  to  apply  Algorithm  1  to 
synthesize  two  communicating  machines  which  represent  a  call 
establishnient/clear  protocol  similar to   that   of  X.25. 

IV. THE CHANNEL CAPACITY ALGORITHM 
In  this  section,  the  channel  algorithm is discussed.  First,  we 

discuss two  examples  in  Sections IV-A and IV-B to  motivate 
the  algorithm.  Then,  the  algorithm  itself  is given in  Section 
IV-c. 

A. Dealing with  Loser Mixed Nodes 

Consider  the  communicating  machine M‘ in Fig. l(c)  and 
assume  that  it is required to  compute  the smallest  possible 
capacity  for  its  output  channel  to N‘ (i.e., compute  the  max- 
imum  number  of messages which  can  exist  simultaneously  in 
the  output  channel  of M’). 

First,  we  observe  that  each  sending  edge  in M‘ contributes 
one message to  the  output  channel of M‘. So, we assign each 
sending  edge  a  weight “ l” ,   and assign each  receiving  edge  a 
weight “O”,  as shown  in Fig. 4(a).  Next,  we  apply  a  number 
of  transformations on” t o  remove  some of its  directed  paths 
such  that  the  following  condition  holds.  For  each  removed 
path p l ,  M’ has  a  remaining  path p2 such  that m 2  > m l ,  
where mi is the  maximum  number of  messages which  can  exist 
simultaneously  in  the  output  channel of M’ as M’ “executes” 
path p i  (i = 1,  2).  These  transformations leave M‘ acyclic;  thus, 
the  smallest  possible  capacity  for  the  output  channel  of M’ is 
the  weight  of  the  directed  path  with  the  maximum  weight  in M’. I 
(Recall  that  each  edge in M‘ has  a  weight;  hence,  the  weight 
I p I of a  directed  path p is the  sum  of  weights of its  edges,) 

During  the  communication  between M’ and N‘, M’ can  go 
from  node 3 to  node  1  either  by  receiving message g4 or by 
sending  g3,  then  receiving  the  correcting message g,. The sec- 
ond  path  adds  one message to  the  output  channel of M’,  but 
the  first  path  does  not.  Therefore,  removing  the  first  path 
from M‘ will not  change  the  output  channel  capacity of M‘. 
The  procedure  to  remove  the  first  path  may  seem  strange  at 
first.  Remove  the  correcting  edge  in  the  second  path,  and 
change  the  weight assigned to   the receiving  edge  in  the  first 
path  from 0 to  1,  as  shown  in  Fig.  4(b). So now, M’ must  tra- 
verse the  receiving  edge to  go  from  node  3  to  node  1;  but  in 
doing so, it  simulates  the  effect of the  second  path,  namely, 
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I 
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nodes 
ceivin 

I 
I 

(b) 
' Fig. 3 .  Winner  and loser transfigurations.  [Notation: +g = receive @).I (a) 

Loser transformation. (b) Winner  transformation. 

receive(g2)0 

receive (g 10 2 

Fig. 4. Computing  the smallest possible capacity  for  the  output  channel of 
M' in Fig. l(c). 
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it  sends  one message and  receives 84. The  reason  for  selecting 
this  indirect  procedure  to  remove  the  first  path is to  ensure 
that  this  transformation  with  other  transformations will  leave 
M’ acyclic. 

Because  of  the  way M‘ and N’ are  constructed  by  Algorithm 
1, the  following  property  holds  during  the  communication be- 
tween M’ and N’. I f  M‘ or  N‘ ever  sends  a message, then  receives 
a  noncorrecting  message,  then  its  output  channel  must be 
empty  immediately  before  the message reception. (A proof  of 
this  property  is given in [ 15 1 .) From  this  observation,  when- 
ever M’ reaches  node  2,  then  immediately  before  receiving g 2  
its  output  channel  must  be  empty.  Therefore,  it is possible t o  
partition  node  2  into  two  nodes 2’ and 2!’’’ such  that 2’ has all 
the  sending  input  edges of node  2,  and  2  has all the  receiving 
input  edges  and all the  receiving  output  edges  of  node  2, as 
shown  in  Fig.  4(c).  Notice  that  in  this  case  node  2  (and so 
node  2”)  has  no  receiving  input edges. Notice also that  this 
partitioning of node  2  removes  many  directed  paths  from M , 
namely,  those  paths  which  contain  node 2. However,  for  each 
removed  path p l ,  M‘ still  has  a  path p 2  which  contains  2’  or 
2” (but  not  both)  such  that m 2  > m, where mi is the  maxi- 
mum  number of  messages which  can  exist  simultaneously  in 
the  output  channel of M’,  as M‘, traverses  path pi (i = 1, 2). 

The  resulting M’ is acyclic, and.so  the smallest  capacity  of 
its  output  channel  is  the,  weight of the  directed  path  with  the 
maximum  weight  in M‘. From Fig. 4(c),  the  directed  path  with 
the  maximum  weight  inM‘  is(2”, 3, 1,2’);  its  weight is 0 i- 1 + 
1 = 2;  hence,  the  smallest  output  channel  capacity  for M‘ is 
two. 

B. Dealing with Winner  Mixed Nodes 
Assume  that  it is required to  compute  the  smallest  capacity 

for  the  output  channel N’ in Fig. l(d).  As  before, assign each 
sending  edge  a  weight of 1, and  each  receiving  edge  a  weight of 
0, as shown  in Fig. 5(a). 

Correcting  edges  for  winner  nodes  can be removed  without 
affecting  the  output  channel  capacity.  There is only  one  such 
edge  in N‘, and so it  can  be  removed as shown  in Fig. 5(b). 

As  discussed  earlier,  whenever N’ (or M‘) sends  a message 
then  receives  a  noncorrecting  message,  the  output  channel of 
N’ (or”,  respectively)  must  be  empty  immediately  before  the 
message reception. Based on this  observation,  the  following 
two  transformations  can  be  applied  on N‘. 

1) As shown  in Fig. 5(c),  receiving  node 1 is partitioned 
into  two  nodes 1’ and 1” such  that 1’ has all the  sending  input 
edges  of  node 1, and 1” has all the  receiving  input  edges  and 
all the rrrceiving output  edges of node  1.  (Notice  that  node  1, 
an,d so 1 , has n o  receiving  input  edges.) 

2) As shown  in Fig. 5(d),  the  winner  mixed  node 3 is parti- 
tioned  into  two  nodes 3’ and 3” such  that 3’ has all the  send- 
ing  input  edges  and all the  sending  output  edges  of  node 3, and 
3” has all the  receiving  input  edges  and all the  output  edges 
(whethe;’ sending  or  receiving)  of  node 3. (Notice  that  node 3, 
and so 3 , has n o  receiving input edges.) 

The  resulting N’ in Fig. 5(d) is- acyclic. The  directed  path 
with  maximum  weight  in N’ is (3”, 2 ,  3’, 1’); its  weight  is 0 + 
1 i- 1 = 2.  Therefore,  the  smallest  output  channel  capacity  for 
N’ is two. 

C The  Algorithm 
The  above  examples  are  intended  to give some  insight  into 

the  different  steps  of  the  channel  capacity  algorithm.  The al- 
gorithm is presented  next. (A correctness  proof  for  the alga- 
rithm is  given in [ 15 ] .) 

Algorithm 2:  
Inputs: Two  communicating  machines M’ and N‘ which  re- 

Outputs: The  smallyt  possible  capacities  for  the  two  chan- 
sult  from  Algorithm 1. 

nels  between M‘ and N . 

Winner 

send(gp) l  } receive(gg)O 

rece ive(g  ) O  

(a) 

Fig. 5. Computing  the  smallest  possible  capacity for the  output channel ofN’ 
in Fig. l(d). 

Steps: 
a) Assign each  sending  edge  in M’ a  weight of “ l” ,   and  

each  receiving  edge  in M’ a  weight  of “ 0 ” .  In  such  a 
weighted  graph,  the  weight I p 1 of a directed  path p is 
the  sum of weights of its edges. 

b)  Construct  a  directed  weighted  graph  from M’ by  the 
foliowing  four  steps. 

i) for each  loser  mixed  node u 
do find  a  directed  path p ,  of sending  edges,  which 
starts  with u such  that I p I > 14 1, where q is any 
directed  path,  of  sending  edges,  which  starts  with 
u ;  change  the  weight  of  each  receiving  output  edge 
of u (from “0”) to  I p I. 

ii)  Remove all the  correcting edges. 
iii) for each  loser  mixed  (or  receiving)  node u that  fol- 

lows  immediately  a  sending  edge 
do partition  node u into  two  nodes u’  and u ” ,  
where u’ has all the  sending  input  edges  and all the 
sending  output  edges of u, and u f f  has all the re- 
ceiving input  edges  and all the  receiving  output 
edges  of u. 

iv) for each  winner  mixed  node u that  follows  im- 
mediately  a  sending  edge 
do partition  node u into  two  nodes u‘  and u ” ,  
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where u’  has all the  sending  input  edges  and  all  the 
sending  output  edges  of u,  and u“ has all the  re- 
ceiving input  edges  and all the  output  edges 
(whether  sending  or  receiving) of u. 

c)  The  resulting  graph  is  acyclic.  Thus,  the  smallest ca- 
pacity  for  the  output  channel  of M‘ is 1 p I where p 
is  the  directed  path  with  maximum  weight  in  the  re- 
sulting  graph. , 

d)  Repeat  steps a)-c) on  the  other  machine N’ to  com- 
pute  the  capacity of its  output  channel. 

Notice  that if M’ (and so N’) has no  mixed  nodes,  then  the 
smallest  output  channel  capacity  ofM’  (or A f )  equals  the  length 
of  longest  sending  path  in M‘ (orN’,  respectively).  Next,  we 
discuss  how  to  use  Algorithms  1  and  2  to  synthesize  a  call es- 
tablishment/cleq  protocol  similar  to  that of X.25. 

+82 

+g3 

V. SYNTHESIZING AN X.25 PROTOCOL 

Consider  the  two  communicating  machines z and % in  Fig. 
6. They  represent  the  call  establishmenL,clear  protocol  in  x.25 
[ 131,  where M models  the  DTE,  and N models  the  DCE,  and 
the  exchanged messages have the  following  meaning: 

g1 stands  for  call  request 
g2 stands  for  call  connected 
g3 stands  for  incoming  call 
8 4  stands  for  call  accepted 
g, stands  for  clear  request 
g6 stands  for  clear  indication 
g, stands  for  clear  confirmatign. 
The functionality of M and N can  be  defined as the  set  of 

all  sequences  of  sending  and  receiving  operations  executed  by 
the  two  machines  starting  from  their  initial  state  until  they 
both  returncto  nodes 1 and 1. Five  examples  of  these  sequences 
are  now  discussed. 

1)  In  this  sequence, 2 establishes  a  connection  with E, 
then clears i t :  

c1.i sends g, , E receives g l ,  sends g2, M receives g 2 ,  
- - 

% sends g, , E receives g5, sends g7, M receives g7) 

2)  In  this  sequence,  establishes  a  connection  with 5, 
then  clears  it: 

- 
(N sends g3, M receives g3, M sends g4, N receives g4, 

- - 

& sends 86,  %i receives g6,M sends g7, E receives g7) 

3) This  is  a  “collision”  sequence,  where  ea&  of 2 and % 
tries  to  establish  a  connection,  then  the  DTE M wins (i.e., it 
establishes  the  connection,  then  clears  it): 

- - - 
& sends gl , fi sends gi, M receives g3, N receives g, , 

- i sends g2, %i receives g 2 ,  M sends g, , N receives g5, 
- 

sends g7, E receives g7) 

4) This  is  a  “collision’?  sequence,  where  each of 2 and E 
tries  to  clear  the  connection;  they  both  succeed: 
- 
’&’ sends 8 5 ,  N sends 86,  M receives 86,  N receives gs> 

5)  In  this  sequence, %?-tries to establish  a  call;  but  before  it 

- - - 

receives  a  response  from N, it  clears  the call: 
- 
c1.i sends gl , N receives gl , E sends g2, 2 sends g 5 ,  

- 

- - - 
M receives g2, N receives g, , N sends g7, M receives g7) 

Let  us  use  our  synthesis  methodology  to  try  to  construct 

- 

+g l 

+g4 

(b) 

Fig. 6 .  The  call  establishment/clear  protocol  in X.25. [Notation: - g = send 
( g ) ,  +g = receive (g ) . ]  (a) A. (b) N. 

t w o  commu@ating-machines M‘ and N‘ with  the  same  func- 
tionality as M and N. We start  with  the  communicating ma- 
chine M in  Fig.  7(a).  (Constructing  this  initial  machine  is  not 
part of our  synthesis  methodology.)  This  initial  machine 
should  satisfy  conditions a) and b) in the  input  section of 
Algorithm 1. Hence,  instead of having  three  occurrences  of  the 
message label g5 , we  distinguish  them  into g5 l ,  g5 2 ,  and g, ? 

similarly  for 86 .and 8 7 .  
Communicating  machine M in  Fig.  7(a)  has  two  mixed 

nodes;  each of them  can  be  selected  arbitrarily  as  a  loser  or  a 
winner.  Assume  that all the  mixed  nodes  in M are  selected  as 
winners,  and  apply  the  winner  transformation  to  each of them. 
The  resulting  communicating  machine M‘ is shown  in  Fig.  7(b). 
(Notice  that  in M‘ all  the message labels gsi, g6’, and g7k are 
replaced  by g,, g6, and g,, respectively. Thi; is possible  since 
the  replacement  does  not  cause  a  node i n M   t o  have  two  out- 
put  edges  with  identical  labels.) 

Let N be  the  dual  communicating  machine  for M .  Like M ,  
N has  two  mixed  nodes.  Each  mixed  node  in N should  be 
selected  as  a  loser,  and  the  loser  transformation  should  be  ap- 
plied to  each of them.  The  resulting  communicating  machine 
N’ is shown  in  Fig.  7(c). (As in M’,  the  message  labels gSz, 
g6,‘, and g7k are  replaced  by g, , 86,  and g,, respectively,  in 
N .I 

Algorithm 2 can  now  be  applied  to M‘ and N’ to  deduce 
that  the smallest output  channel  capacity of MI‘ is two  and  that 
the  smallest  output  channel  capacity of N is three. LThe 
smallest output  channel  capacity of the  original M ,  o r  N, is. 
four.) 

Define  the  functionality  of  the  network M‘ and N‘ as the 
set of  all sequences  of  sending  and  receiving  operations  executed 
by  the  two  machines  starting  from  their  initial  state  until  they 
both  return  to  nodes 4 and 1 .  Comparing  the  functionality of 
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Initial Node both  sequences,  the  two  machines  try  to  close  the  connec- 
tion  and  succeed. 

3) For  the  sequence  of  type 5 for  2 and %, there is no 
corresponding  sequence  for M and N’. 

From 3), the  functionality of the  constructed neLwork 
M’ and N’ is a  “proper  subset” of the  functionality of M and 
N. After  trying  for some_ time,  we  feel  that  achieving all the 
functionality of M and N ,  using our  synthesis  methodology: 
is impossible so long as the  constructed  machines M‘ and N 
are  expected  to  exchange  only seven types of  messages. 

VI. CONCLUDING REMARKS 
We have presented  a  two-algorithm  synthesis  methodology. 

The  first  algorithm  takes  one  communicatingl  machiye M ,  
and  constructs  two  communicating  machines M and N such 
that  1) M’ is constructed  from M by  addin5 receiving edges 
to  i t ,   and 2) the  communication  between M and N satisfies 
some  required  progress  properties.  The  second  algorithm  com- 
putes  the  smallest  possible  capacities  for  the  two  channels 
between M‘ and N‘. I t  is straightforward to  show  that  each 
algorithm  requires  a  time  of O(st) where s is the  number.of 
nodes  in  the given machine M and t is the  number of edges  in 
M .  The  efficiency of these  algorithms  is  the  major  advantage 
of  our  synthesis  methodology. 

The  communication  between  the  two  constructed  machines 
M’ and N‘ has  a  fixed  pattern.  The  communication  proceeds  in 
harmony  until  a loss of synchronization  occurs  at  two  dual 
mixed  nodes  in M’ and N‘. When a loss of synchronization  is 
detected  by  both  machines  (not  necessarily  at  the  same  time), 
then  one  machine  (a  loser)  stops  its  current  progress  and re- 
joins  the  second  machine,  while  the  second  machine  (a  win- 
ner)  discards all the messages sent  by  the  first  machine  during 
the loss of synchronization.  Then,  a  harmonious  communi- 
cation  between  the  two  machines is resumed.  This  fixed  pat- 
tern of communication is the  major  disadvantage  of  our 
synthesis  methodology.  For  example,  the  methodology  can- 
not  synthesize  the  two  communicating  machines  in Fig. 6(a) 
and  (b)  since  their  communication  does  ndt  follow  the  above 
pattern.  Instead,  the  methodology  can  synthesize  the  two 
functionally  similar  machines  in Fig. 7 whose  communication 
follows  the  above  pattern. 

It is useful  to  compare  this  synthesis  methodology  with  the 
ZWRCB methodology [ 191 as they  both  share  similar  objec- 
tives. 

1) The ZWRCB methodology  supports  a  reasonably  rich 
class of communication  patterns,  whereas  our  methodology 
supports  one  fixed  communication  pattern. 

2) The ZWRCB methodology is based  on  generating  and 
processing  reachability  trees  to  detect  deadlocks  and  over- 
flows.  Therefore,  it  requires  more  execution  time  than  our 
methodology. 

3) The ZWRCB methodology  is  based  on  a  trial-and-error 
principle,  and so it  can  consume  large  amounts of execution 
time  whenever  the  designer  proceeds in erroneous  directions. 
For  instance,  the  designer  may  add  some  new  sending  transi- 

- .. 

the  constructed  network M‘ and N‘ with  that of the  original  net-  this  added transition will a deadlock, and so he 
tion  to  one  of  the  two  machines,  and  then  later  discover  that 

work M and N yields  the  following  observations. it.  By  contrast,  our  methodology  is  deterministic,  and so is 
1) For  each  of  the  “important”  sequences of types 1, not based on trial and error. 

for  M’ and N’. 
2, and 3 for M and N ,  there is an  identical  counter  sequence  The discussion in this paper is limited to the of two 

2 ,  For the  sequence Of type for and ‘ 9  there is no methodology  to  more  than  two  machines is still  an  open  prob- 
communicating  finite-state  machines.  Extending  the  synthesis 

identical  counter  sequence  for M’ and N . Instead,  there  is  an lem that requires further research. 
“equivalent”  sequence,  namely: 

- 

(.” sends g 5 ,  N’  sends 8 6 ,  M’ receives 8 6 ,  N’ receives g 5 ,  
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