
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. C O M - ~ Z , NO. 7, JULY 1984 779

NJ. From 1971 to 1972, he was an NSF Senior Postdoctoral Fellow at the
University of Hawaii, Honolulu. From 1979 to 1980 he was a Guggenheim ’

Fellow at the University of California at San Diego and the Linkabit Corpora-
tion. His research interests are in information theory, algebraic coding theory,
communication systems, and computer networks.

Dr. Wolf was corecipient of the 1975 Information Theory Group Paper
Award for the paper “Noiseless coding of correlated information sources”
(coauthored with D. Slepian). He was Cochairman of the 1969 International
Symposium on Information Theory and was Editor for Algebraic Coding for
the IEEE TRANSACTIONS ON INFORMATION THEORY from 1969 to 1972. He
served on the Board of Governors of the IEEE Information Theory Group
from 1970 to 1976 and since 1980, and was the President in 1974. He is
currently International Chairman of Commission C of the International
Scientific Radio Union (URSI).

Synthesis of Communicating Finite-State Machines with
Guaranteed Progress

MOHAMED G. GOUDA, MEMBER, IEEE, AND YAO-TIN Y u

Abstract-We present a methodology to synthesize two communicating
finite-state machines which exchange messages over two one-directional,
FIFO channels. The methodology consists of two algorithms. The first
algorithm takes one machine M, and constructs two communicating
machines M’ and N’ such that 1) M‘ is constructed from M by adding
some receiving transitions to it, and 2) the communication between M’ and
N’ is bounded and free from deadlocks, unspecified receptions, nonex-
ecutable transitions, and state ambiguities. The second algorithm takes the
two machines M‘ and N‘ which result from the first algorithm, and
computes the smallest possible capacities for the two channels between
them. Both algorithms require an O(st) time, where s is the number of
states in the given machine M, and t is the number of state transitions in M;
thus, the methodology is practical to use.

M
I. INTRODUCTION

ANY communication protocols can be modeled as two
communicating, finite-state machines which exchange

messages over two one-directional, unbounded, FIFO chan-
nels [1 1, [3 1 , [111-[141. The communication between the
two machines in each of these models is often expected to
satisfy some “nice” progress properties [1 1, [18 1 , [191 .

Four of these progress properties are of interest to the dis-
cussion in this paper. They are boundedness and freedom from
communication deadlocks, unspecified receptions, and non-
executable state transitions. (Formal definitions of these prop-
erties are discussed later in Section 11.)

Paper approved by the Editor for Computer Communications of the IEEE
Communications Society for publication without oral presentation. Manuscript
received July 15, 1981; revised December 10, 1983.

M. G. Gouda is with the Department of Computer Sciences, University of
Texas at Austin, Austin, TX 78712.

Y.-T. Yu was with the Department of Computer Sciences, University of
Texas at Austin, Austin, TX 78712. He is now with the Department of
Computer Science, University of Iowa, Iowa City, IA 52240.

There are two basic approaches to ensure that the com-
munication between two finite-state machines satisfies such
progress properties.

I) Analysis: Develop techniques to prove that the com-
munication between any two given machines satisfies the re-
quired progress properties.

2) Synthesis: Develop techniques to complete two given
(incomplete).machines such that the communication between
the completed machines is guaranteed t o satisfy the required
progress properties.

Brand and Zafiropulo [4j have shown that the analysis ap-
proach is undecidable in general; i.e., n o algorithm can decide
whether the communication between two finite-state machines
satisfies any of the progress properties mentioned earlier.
(Nevertheless, the problem can still be decided for some special
classes of communicating finite-state machines [41, [7 1 , [8] ,
[101, [151 -[17 j .) This rather negative result of the analysis
approach makes the synthesis approach more attractive. In this
paper, we present a practical methodology to synthesize two
communicating finite-state machines with guaranteed progress
properties. A preliminary version of this methodology has
been presented in [6 j .
A. Related Work

Previous work in the synthesis approach can be distinguished
into two categories based on the objective of the synthesis.

1) Synthesis to Achieve Progress: Zafiropulo et at. [191 have
presented a methodology, henceforth referred to as the
ZWRCB methodology, to synthesize two finite-state machines
whose communication satisfies some progress properties. The
methodology proceeds in steps; at each step, the following
three substeps are performed.

a) First, the designer adds one sending transition to one
of the two incomplete machines.

b) Second, the designer executes an algorithm (based on
three synthesis rules) to add the corresponding receiving transi-

0090-6778/84/0700-077~$01 .OO 0 1984 IEEE

780 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 7, JULY 1984

tions in the other machine such that freedom from unspecified
receptions and nonexecutable transitions is guaranteed. (This
addition of receiving transitions to the second machine may
necessitate the addition of sending transitions, that are copies
of previously added sending transitions, to this same machine;
this in turn necessitates the addition of corresponding receiving
transitions to the first machine, and so on.)

c) Third, the designer checks whether or not the added
transitions can lead to a deadlock or a channel overflow. If a
deadlock or a channel overflow is detected, then the designer
must take a proper action (e.g., remove all the added transitions
in this step). Finally, the designer proceeds to the next step.

These steps continue until the designer does not need to
add further sending transitions to any of the two machines. In
this case, the two machines are complete and their communi-
cation is guaranteed to ‘be bounded and free from deadlocks,
unspecified receptions, and nonexecutable transitions.

The synthesis methodology presented in this paper also falls
into this same category; it has the same objectives as the
ZWRCB methodology. A comparison between the two meth-
odologies is discussed later in Section VI.

2) Synthesis to Achieve Progress and Service: Bochmann
and Merlin [2] , [9] have considered a special class of com-
municating finite-state machines. In this special case, the send-
ing of a message by one machine and its reception by another
machine occur instantaneously in zero time. Therefore, chan-
nels are not needed to buffer messages between different ma-
chines, and the analysis problem becomes trivially decidable.
(Actually, unboundedness and unspecified receptions cannot
occur in this class; only deadlocks and nonexecutable transi-
tions can occur.)

Bochmann and Merlin have also introduced the concept of a
“service machine” which is a finite-state machine that defines
the service performed by a set of communicating finite-state
machines. They state the following problem. “Given 11 - 1
communicating finite-state machines (n 2 2), and a service
machine, it is required to synthesize an nth communicating
machine such that the service performed by the n communi-
cating machines is defined by the given service machine or by
a maximal submachine of it.”

Their solution to the problem consists of a “formula” that
defines the required communicating machine from the given
machines. They observe, however, that the resulting communi-
cating machine may have many redundant transitions and may
reach a deadlock with the given communicating machines.
Therefore, they suggest a subsequent procedure to “trim” the
resulting machine by removing some of its transitions. The
trimming procedure is based on state exploration to determine
which transitions in the resulting machine can (or should) be
removed; and so it consumes a large amount of time.

Later, Gouda and Chu [5] have discussed another solution
to the Bochmann-Merlin problem in the special case of n = 2 ;
their solution does not require any state exploration.

B. The Paper’s Organization
Following the Introduction, the model of communicating

finite-state machines is presented in Section 11, along with its
major progress properties. The two algorithms which comprise
our synthesis methodology are presented in Sections 111 and
IV. Then in Section V, we apply the methodology to synthesize
a call establishment/clear protocol similar to that of X.25.
Concluding remarks are in Section VI. Due to space limitations,
we have omitted the correctness proofs for the two algorithms;
these proofs are discussed in [151 .

11. COMMUNICATING MACHINES
A communicating machine M is a labeled directed graph

with two types of edges called sending and receiving edges. A
sending (or receiving) edge is labeled send(g) (or receive(g), re-

spectively), for some message g in a finite set G of messages.
No two outputs of the same node in M have identical labels.

Each node in M has a distinct label and at least one output
edge. A node is called a sending (or receiving) node iff all its
output edges are sending (or receiving, respectively) edges;
otherwise it is called a mixed node. One of the nodes in M is
identified as its initial node, and each node in M is reachable
by a directed path from the initial node.

Fig. l(a) shows a communicating machineM with one send-
ing node (node l), one receiving node (node 2) , and one mixed
node (node 3). Node 1 is the initial node of M .

Let A4 and N be two communicating machines with the same
set G of messages. A state of M and N is a four-tuple [u , w, x ,
y] where u and w are the labels of two nodes in M and N, re-
spectively, and x and y are two strings of messages from the
set G. Informally, a state [u , w, x , y] means that the execution
of M has reached node u, and the execution of N has reached
node w, while the input channels of M and N have the mes-
sage sequences x and y , respectively.
’ The initial state of M and N is [u,, wo, E , E] where uo
and w o are the labels of the initial nodes of M and N, respec-
tively, and E is the empty string.

Let s = [u , w , x , y] be a state of M and N and let e be an
output edge of node u or w. A state s’ of M and N is said t o
follows over e iff the following four conditions are satisfied.

1) If e if from q t o u’ in M and is labeled send(g),
then S I = [u , w , x, y - g l , where “.” is the concatenation
operator.

then s = [u , w‘, x’g, y 1 .

then x = g-x’ ,
and sf = [u ’ , W , XI, y] .

then y = g - y ,
and s‘ = [u, w’, x , y ‘] .

2) If e is ,from w to w ’ in N and is labeled send(g),

3) If e is from u t o u’ in M and is labeled receive(g),

4) If e is from to w’ in N and is labeled receive(g),

Let s and s’ be two states of M and N. s’ follows s iff there
is an edge e in M or N such that s’ follows s over e.

Let s and S I be two states of M and N. s‘ is reachable from s
iff either s = SI,: or there exist states sl, .-, s, such that s = sl,
S I = s,, and si+l follows si for i = 1, ..e, r - 1.

A state s of M and N is reachable iff it is reachable from the
initial state of M and N.

In designing a pair of communicating machines M and N, a
designer may commit some design mistakes which cause the
resulting machines to exhibit some progress errors during the
course of communication. Five of these progress errors are de-
fined next.

I) Unbounded Communication: The communication be-
tween M and N is said t o be bounded by a positive integer K
iff for any reachable state [u , w, x, y] of M and N, I x I < K
and 1 y I < K , where I x I is the number of messages in the string
x. The communication is said to be bounded iff it is bounded
by some positive integer K . Otherwise, it is unbounded. Notice
that an unbounded communication cannot be implemented
correctly using finite-capacity channels.

2) Communication Deadlocks: A state s = [u , w, x , V I of
M and N is a deadlock state iff a) both u and w are receiving
nodes, and b) x = y = E. A reachable deadlock state consti-
tutes a progress error, since the two machines cannot progress
after reaching a deadlock state.

3) Unspecified Receptions: A state s = [u , w , x, y] of M
and N is an unspecified reception state iff one of the follow-

ing two conditions is satisfied.
a) x = g, *g2 .-.. * g k , from some k 2 1 and is a re-

ceiving node wlthout any output edge labeled re-
ceive(gl) in M .

b) y = g, -g2 - ... -gk, for some k 2 1 and w is a receiving
node without any output edge labeled receive(gl) inN.

GOUDA AND YU: COMMUNICATING FINITE STATE MACHINES 78 1

I n i t i a l Node

receive(g 2

II
ceive(g) 3

Fig. 1. A machine synthesis example. (a) M . (b) N . (c) M' . (d) N' .

A reachable unspecified reception state is a progress error
since at least one of the two machines cannot progress after
reaching an unspecified reception state.

Notice that according to this definition, unspecified recep-
tions can occur only at receiving nodes. Hence, this definition
is different from the one in [191 where unspecified receptions
can occur at receiving or mixed nodes.

4) Nonexecutable Transitions: Let e be an edge in machine
M (or N) . e is said t o be nonexecutable during the communi-
cation between M and N iff there is no pair of reachable states
s1 and s2 such that s 2 follows s1 over edge e.

A nonexecutable edge is not strictly a progress error, since
the communication between M and N can proceed properly
even in the presence of nonexecutable edges. Nonetheless,
nonexecutable edges serve no function, and it is desirable to
remove them from M and N .

5) State Ambiguities: A state [u , w, E , El o f M and N is
said t o be stable iff x = y = E (the empty string). A stable state
ambiguity exists between M and N iff there are two reachable
stable states [u l , wl, E , E] and [u 2 , w 2 , E , E] such that
either u1 = v2 and w1 # w 2 , or u1 # u2 .and w1 = w2. A state
ambiguity is no t necessarily an ,error unless the designer in-
tends to have no state ambiguities in the resulting two com-
municating machines. 0

., In this paper, we present a methodology to construct pairs
of communicating machines whose communication is free of
the above progress errors. The methodology consists of two
algorithms named the machine synthesis algorithm and the
channel capacity algorithm.

The machine synthesis algorithm takes as an input one com-
municating machine M and constructs two communicating
machines M' and N' which satisfy the following two condi-
tions.

1) M' is constructed from M by adding some receiving edges
to i t .

2) The communication between M' and N' is free of the
above five progress errors.

The channel capacity algorithm takes as an input the two
machines M' and N' which result from the first algorithm and
computes the smallest possible channel capacities between

them. In other words, it computes the smallest positive inte-
ge,rs c1 and c2 such that for an reachable state [v, w , x , y] of
M and N ' , I x I < c1 and Iy I < c 2 . Theintegercl is the smallest
possible capacity for the output channel of N', and f2 is the
smallest possible capacity for the output channel of M .

111. THE MACHINE SYNTHESIS ALGORITHM

In this section, the machine synthesis algorithm is discussed.
First, two machine synthesis examples are discussed in Sec-
tions 111-A and 111-B to motivate the algorithm. Then, the al-
gorithm itself is given in Section 111-C.

A. Dual Machines and WinnerlLoser Nodes

Consider the communicating machine M in Fig. l(a). As-
suming that M can be.modified slightly by adding receiving
edges to i t , i t is required to synthesize another machine N'
such that the communication between the modified M, called
M ' , and N' is free from the five progress errors discussed in
Section 11.

The first step is to construct a dual machine N [Fig. l (b)]
which is identical to M except that each sending (or receiving)
edge in M is replaced by a receiving (or sending, respectively)
edge in N. Thus, each sending (or receiving or mixed) node in
M corresponds to a receiving (or sending or mixed, respectively)
node in N. Two corresponding nodes in M and N are called
dual nodes. For convenience, every node in N has the same
label as its dual node in M .

During the communication between M and N , the two ma-
chines traverse dual paths in harmony; Le., while one machine
sends some message the other machine receives the same mes-
sage. This continues until M and N reach dual mixed nodes.
In this case, both M and N may traverse paths of sending edges,
causing a loss of synchronization. For example, the two ma-
chines M and N in Fig. l can start from the initial state [l , l ,
E , E] and traverse dual paths to reach the state [3, 3, E, E] .
From this state, M can send message g3 and reach receiving
node 2, and N can send message g4 and reach receiving node 1 ;
i.e., the state [2 , 1, g 4 , g 3] is reached. There are two prob-
lems with this state.

1) Machine M does not expect to receive message,..g4 at
receiving node 2, and N does not expect to receive message
g3 at receiving node 1.

2) Assuming that M receives g4 at node 2 and N receives
g3 at node 1, and so they both recognize loss of synchroniza-
tion, what should they do to restore their synchronization?

T o solve the first problem, an output edge labeled re-
ceive(g4) should be added t o receiving node 2 in M , and an
output edge labeled receive(g3) should be added to node 1 in
N . These added edges are called correcting edges. Notice that
we have not yet defined the head nodes of these correcting
edges; this is done next as we discuss a solution to the second
problem.

When M receives g4 at node 2, it should recognize that a
loss of synchronization with N has occurred at node 3. In par-
ticular, it should recognize that while M itself has reached
node 2, N has reached node 1. Therefore, to restore the lost
synchronization, M should leave node 2 and reach node 1 ; i.e.,
the correcting output edge of node 2 should be input to node
1 in M . On the other hand, when N recognizes the loss of
synchronization, it should remain at node 1 knowing that
eventually M will reach node 1 also, and the synchronization
will be restored. Hence, the correcting output edge of node 1
should be input to node 1 in N . The resulting M' and N' after
adding the correcting edges to M and N are shown in Fig. l(c)
and (d), respectively. For convenience, the correcting edges
are shown as dashed edges.

During the course of communication between M' and N',
whenever a loss of synchronization occurs at the dual mixed
node pair (3, 3), machine M' is forced to stop its progress and
rejoin N ' , thus restoring the synchronization between the two
machines. Hence, mixed node 3 in M' is called a loser, while
mixed node 3 in N' is called a winner.

It would have been also possible to make the correcting

_ .
Initial Node

edge of M' from node 2 to node 2, and the correcting edge of.
N' from node 1 to node 2. In this case, whenever a loss of
synchronization occurs, machine N would be the on; forced I-\

to stop its progress and rejoin the other machine M . There-
fore, in this case, mixed node 3 in N' would be the one called
a loser, while mixed node '3 in M' would be called a winner.

From the above example, we reach the following conclu-
sions concerning loss of synchronization between dual com-
municating machines.

1) Loss of synchronization can start at any dual mixed
node pair.

2) Loss of synchronization can be detected by either ma-
chine receiving an unexpected message at the first receiving
node following the mixed node where the loss of synchroniza-
tion has started.

3) Loss of synchronization can be corrected by one machine
stopping its progress and rejoining the other machine. The
mixed node where loss of synchronization has started in the
former machine is called a loser, and its dual mixed node in
the latter machine is called a winner.

4) From 1) and 3) above, one node in each dual mixed
node pair should be selected as a loser while the other node in
the pair is selected as a winner.

5) Which node in a dual mixed node pair is selected as a
loser or winner is, in principle, an arbitrary decision.

B. Receiving a Sequence of Messages
Consider the communicating machine M in Fig. 2(a). As

before, it is required to yodify M slightly by adding receiving
edges to i t to become M and to synthesize another communi-
cating machine N' such that the communication between M'
and N' is free of the progress errors discussed in Section 11. (d)

Fig. 2(b) shows the dual machine N for the given machine
M . The only dual mixed node pair in M and N is (1, 1). As- Fig. 2. A second machine synthesis example. (a) M. @) N . (c) M ' . (d) N'
sume that node 1 in M is selected as a loser; then node 1 in N

rece ive(g)
4

rece ive(g2)

GOUDA AND YU: COMMUNICATING FINITE STATE MACHINES 783

must be selected as a winner. It remains now to add the cor-
recting edges t o M and N , thus constructing the required ma-
chines M’ and N’.

The correcting edges of M should be added as outputs to the
first receiving nodes which follow mixed node 1 in M . There
is only one such node, namely receiving node 3, in M . Also,
each correcting edge should be labeled receive(g) where g
is a message that can be received at mixed node 1 inM. There
is only one such message, namely g4. Thus, one correcting
edge labeled receive(g4) should be added as an output of re-
ceiving node 3 in M . The destination of this edge should be the
node which can be reached from mixed node 1 by the edge
labeledreceive(g4), namely node 3 i n M , as shown in Fig. 2(c).

Adding correcting edges for a winner node is more compli-
cated than for a loser node. ,In case of a loser node, a correct-
ing edge receives the first message sent by the other machine
during the loss of synchronization, and redirects its machine
t o rejoin the other machine. In case. of a winner node, a cor-
recting edge receives all the messages sent by the other ma-
chine during the loss of synchronization, and “discards” them,
and directs its machine to stay at its current node. Thus, a cor-
recting edge for a winner node should satisfy the following
two conditions.

1) It should form a self-loop ,at a first receiving node fol-
lowing the winner mixed node.

2) It should be labeled receive(x), where x is a complete
sequence of messages sent by the other machine during the
loss of synchronization. (An edge labeled receive(g, *g2 *:-*g,.)
is equivalent to a directed path of r receiving edges labeled
receive(gl), r e ~ e i v e (g ~) ~ ..., and receive(g,), respectively. T o
refer to it as an edge rather than a path is a notational con-
venience.)

The only sequence of messages sent by machine M during
its loss of synchronization with N is glgz ; thus, each correct-
ing edge added to N should be labeled receive(glg2). Also, N
has only one receiving node, namely node 2, that follows the
winner mixed node 1; hence, one correcting edge, labeled re-
ceive(g,g2), should be added as a self-loop at node 2 in N. The
resulting machine N’ is shown in Fig. 2(d).

C. The Algorithm
The above examples are intended to give some insight into

the different steps of the machine synthesis algorithm. The al-
gorithm is presented next. (A correctness proof for the algo-
rithm is given in [151 .)

Algorithm 1:
Inputs: A communicating machine M , which satisfies the

following two conditions.
a) All edges in M have distinct labels.
b) Each directed cycle in M must have at least one send-

Outputs: Two communicating machines M’ and N’ which

a) M’ is constructed from M by adding some receiving
edges to i t .

b) The communication between M’ and N‘ is bounded,
deadlock-free, and has no unspecified receptions, no
nonexecutable transitions, and no state ambiguities.

a) Construct the dual machine N from the given machine
M by replacing each edge labeled send(g) [or re-
ceive(g)] in M by an edge labeled receive(g) [or
send(g)] in N .

b) Select each mixed node in M , at random, to be either
a loser or a winner. If a mixed node in M is selected a
loser (or a winner), then the corresponding dual node
in N must be selected a winner (or a loser, respec-
tively).

c) Construct M‘ from M by applying the loser (or win-

ing and one receiving edge.

satisfy the following two conditions.

Steps:

ner) transformation, defined next, to every loser (or
winner, respectively) mixed node ih M . Similarly,
construct N‘ from N by applying the loser (or winner)
transformation to every loser (or winner, respectively)
mixed node in N . 0

Notice that if M has no mixed nodes, then steps b) and c)
will not modify M and N in any way, and the required M’ and
N‘ are the originalM and N . Next, we define the loser and win-
ner transformations for mixed nodes in M . (The loser and win-
ner transformations for mixed nodes in N are similar.)

Loser Transformation: for a loser mixed node u in M [Fig.
3 (a) l .

Let ui (i = 1 ... m) be all the receiving nodes such that there
is a directed path of sending edges from node u to node ui in M .

Let receive(g,) (j = 1 ... n) be the label of a receiving edge
from node u to some node U, (j = 1 n) in M .

Then add a correcting edge labeled receive(g,) from each ut
(i = 1 ... m) to each u, (j = 1 *.* n) in M . 0

Winner Transformation: for a winner mixed node u in M
[Fig. 3(b)l .

Let ui (i = 1 ... m) be all the receiving nodes such that there
is a directed path of sending edges from node u to node ut in M .

Let xi (j = 1 ... n) be an ordered sequence of messages which
label the edges of a directed path of receiving edges from node
u t o a sending node in M .

Then add a correcting self-loop labeled receivetxj) (j = 1 ..-
n) at each receiving node ut (i = 1 ... m) in M . 0

Later in Section V, we discuss how to apply Algorithm 1 to
synthesize two communicating machines which represent a call
establishnient/clear protocol similar to that of X.25.

IV. THE CHANNEL CAPACITY ALGORITHM
In this section, the channel algorithm is discussed. First, we

discuss two examples in Sections IV-A and IV-B to motivate
the algorithm. Then, the algorithm itself is given in Section
IV-c.

A. Dealing with Loser Mixed Nodes

Consider the communicating machine M‘ in Fig. l(c) and
assume that it is required to compute the smallest possible
capacity for its output channel to N‘ (i.e., compute the max-
imum number of messages which can exist simultaneously in
the output channel of M’).

First, we observe that each sending edge in M‘ contributes
one message to the output channel of M‘. So, we assign each
sending edge a weight “ l” , and assign each receiving edge a
weight “O”, as shown in Fig. 4(a). Next, we apply a number
of transformations on” t o remove some of its directed paths
such that the following condition holds. For each removed
path p l , M’ has a remaining path p2 such that m 2 > m l ,
where mi is the maximum number of messages which can exist
simultaneously in the output channel of M’ as M’ “executes”
path p i (i = 1, 2). These transformations leave M‘ acyclic; thus,
the smallest possible capacity for the output channel of M’ is
the weight of the directed path with the maximum weight in M’. I
(Recall that each edge in M‘ has a weight; hence, the weight
I p I of a directed path p is the sum of weights of its edges,)

During the communication between M’ and N‘, M’ can go
from node 3 to node 1 either by receiving message g4 or by
sending g3, then receiving the correcting message g,. The sec-
ond path adds one message to the output channel of M’, but
the first path does not. Therefore, removing the first path
from M‘ will not change the output channel capacity of M‘.
The procedure to remove the first path may seem strange at
first. Remove the correcting edge in the second path, and
change the weight assigned to the receiving edge in the first
path from 0 to 1, as shown in Fig. 4(b). So now, M’ must tra-
verse the receiving edge to go from node 3 to node 1; but in
doing so, it simulates the effect of the second path, namely,

784 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. I , JULY 1984

I
I

nodes
ceivin

I
I

(b)
' Fig. 3 . Winner and loser transfigurations. [Notation: +g = receive @).I (a)

Loser transformation. (b) Winner transformation.

receive(g2)0

receive (g 10 2

Fig. 4. Computing the smallest possible capacity for the output channel of
M' in Fig. l(c).

GOUDA AND YU: COMMUNICATING FINITE STATE MACHINES 785

it sends one message and receives 84. The reason for selecting
this indirect procedure to remove the first path is to ensure
that this transformation with other transformations will leave
M’ acyclic.

Because of the way M‘ and N’ are constructed by Algorithm
1, the following property holds during the communication be-
tween M’ and N’. I f M‘ or N‘ ever sends a message, then receives
a noncorrecting message, then its output channel must be
empty immediately before the message reception. (A proof of
this property is given in [15 1 .) From this observation, when-
ever M’ reaches node 2, then immediately before receiving g 2
its output channel must be empty. Therefore, it is possible t o
partition node 2 into two nodes 2’ and 2!’’’ such that 2’ has all
the sending input edges of node 2, and 2 has all the receiving
input edges and all the receiving output edges of node 2, as
shown in Fig. 4(c). Notice that in this case node 2 (and so
node 2”) has no receiving input edges. Notice also that this
partitioning of node 2 removes many directed paths from M ,
namely, those paths which contain node 2. However, for each
removed path p l , M‘ still has a path p 2 which contains 2’ or
2” (but not both) such that m 2 > m, where mi is the maxi-
mum number of messages which can exist simultaneously in
the output channel of M’, as M‘, traverses path pi (i = 1, 2).

The resulting M’ is acyclic, and.so the smallest capacity of
its output channel is the, weight of the directed path with the
maximum weight in M‘. From Fig. 4(c), the directed path with
the maximum weight inM‘ is(2”, 3, 1,2’); its weight is 0 i- 1 +
1 = 2; hence, the smallest output channel capacity for M‘ is
two.

B. Dealing with Winner Mixed Nodes
Assume that it is required to compute the smallest capacity

for the output channel N’ in Fig. l(d). As before, assign each
sending edge a weight of 1, and each receiving edge a weight of
0, as shown in Fig. 5(a).

Correcting edges for winner nodes can be removed without
affecting the output channel capacity. There is only one such
edge in N‘, and so it can be removed as shown in Fig. 5(b).

As discussed earlier, whenever N’ (or M‘) sends a message
then receives a noncorrecting message, the output channel of
N’ (or”, respectively) must be empty immediately before the
message reception. Based on this observation, the following
two transformations can be applied on N‘.

1) As shown in Fig. 5(c), receiving node 1 is partitioned
into two nodes 1’ and 1” such that 1’ has all the sending input
edges of node 1, and 1” has all the receiving input edges and
all the rrrceiving output edges of node 1. (Notice that node 1,
an,d so 1 , has n o receiving input edges.)

2) As shown in Fig. 5(d), the winner mixed node 3 is parti-
tioned into two nodes 3’ and 3” such that 3’ has all the send-
ing input edges and all the sending output edges of node 3, and
3” has all the receiving input edges and all the output edges
(whethe;’ sending or receiving) of node 3. (Notice that node 3,
and so 3 , has n o receiving input edges.)

The resulting N’ in Fig. 5(d) is- acyclic. The directed path
with maximum weight in N’ is (3”, 2 , 3’, 1’); its weight is 0 +
1 i- 1 = 2. Therefore, the smallest output channel capacity for
N’ is two.

C The Algorithm
The above examples are intended to give some insight into

the different steps of the channel capacity algorithm. The al-
gorithm is presented next. (A correctness proof for the alga-
rithm is given in [15] .)

Algorithm 2:
Inputs: Two communicating machines M’ and N‘ which re-

Outputs: The smallyt possible capacities for the two chan-
sult from Algorithm 1.

nels between M‘ and N .

Winner

send(gp) l } receive(gg)O

rece ive(g) O

(a)

Fig. 5. Computing the smallest possible capacity for the output channel ofN’
in Fig. l(d).

Steps:
a) Assign each sending edge in M’ a weight of “ l” , and

each receiving edge in M’ a weight of “ 0 ” . In such a
weighted graph, the weight I p 1 of a directed path p is
the sum of weights of its edges.

b) Construct a directed weighted graph from M’ by the
foliowing four steps.

i) for each loser mixed node u
do find a directed path p , of sending edges, which
starts with u such that I p I > 14 1, where q is any
directed path, of sending edges, which starts with
u ; change the weight of each receiving output edge
of u (from “0”) to I p I.

ii) Remove all the correcting edges.
iii) for each loser mixed (or receiving) node u that fol-

lows immediately a sending edge
do partition node u into two nodes u’ and u ” ,
where u’ has all the sending input edges and all the
sending output edges of u, and u f f has all the re-
ceiving input edges and all the receiving output
edges of u.

iv) for each winner mixed node u that follows im-
mediately a sending edge
do partition node u into two nodes u‘ and u ” ,

786 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 7 , JULY 1984

where u’ has all the sending input edges and all the
sending output edges of u, and u“ has all the re-
ceiving input edges and all the output edges
(whether sending or receiving) of u.

c) The resulting graph is acyclic. Thus, the smallest ca-
pacity for the output channel of M‘ is 1 p I where p
is the directed path with maximum weight in the re-
sulting graph. ,

d) Repeat steps a)-c) on the other machine N’ to com-
pute the capacity of its output channel.

Notice that if M’ (and so N’) has no mixed nodes, then the
smallest output channel capacity ofM’ (or A f) equals the length
of longest sending path in M‘ (orN’, respectively). Next, we
discuss how to use Algorithms 1 and 2 to synthesize a call es-
tablishment/cleq protocol similar to that of X.25.

+82

+g3

V. SYNTHESIZING AN X.25 PROTOCOL

Consider the two communicating machines z and % in Fig.
6. They represent the call establishmenL,clear protocol in x.25
[131, where M models the DTE, and N models the DCE, and
the exchanged messages have the following meaning:

g1 stands for call request
g2 stands for call connected
g3 stands for incoming call
8 4 stands for call accepted
g, stands for clear request
g6 stands for clear indication
g, stands for clear confirmatign.
The functionality of M and N can be defined as the set of

all sequences of sending and receiving operations executed by
the two machines starting from their initial state until they
both returncto nodes 1 and 1. Five examples of these sequences
are now discussed.

1) In this sequence, 2 establishes a connection with E,
then clears i t :

c1.i sends g, , E receives g l , sends g2, M receives g 2 ,
- -

% sends g, , E receives g5, sends g7, M receives g7)

2) In this sequence, establishes a connection with 5,
then clears it:

-
(N sends g3, M receives g3, M sends g4, N receives g4,

- -

& sends 86, %i receives g6,M sends g7, E receives g7)

3) This is a “collision” sequence, where ea& of 2 and %
tries to establish a connection, then the DTE M wins (i.e., it
establishes the connection, then clears it):

- - -
& sends gl , fi sends gi, M receives g3, N receives g, ,

- i sends g2, %i receives g 2 , M sends g, , N receives g5,
-

sends g7, E receives g7)

4) This is a “collision’? sequence, where each of 2 and E
tries to clear the connection; they both succeed:
-
’&’ sends 8 5 , N sends 86, M receives 86, N receives gs>

5) In this sequence, %?-tries to establish a call; but before it

- - -

receives a response from N, it clears the call:
-
c1.i sends gl , N receives gl , E sends g2, 2 sends g 5 ,

-

- - -
M receives g2, N receives g, , N sends g7, M receives g7)

Let us use our synthesis methodology to try to construct

-

+g l

+g4

(b)

Fig. 6 . The call establishment/clear protocol in X.25. [Notation: - g = send
(g) , +g = receive (g) .] (a) A. (b) N.

t w o commu@ating-machines M‘ and N‘ with the same func-
tionality as M and N. We start with the communicating ma-
chine M in Fig. 7(a). (Constructing this initial machine is not
part of our synthesis methodology.) This initial machine
should satisfy conditions a) and b) in the input section of
Algorithm 1. Hence, instead of having three occurrences of the
message label g5 , we distinguish them into g5 l , g5 2 , and g, ?

similarly for 86 .and 8 7 .
Communicating machine M in Fig. 7(a) has two mixed

nodes; each of them can be selected arbitrarily as a loser or a
winner. Assume that all the mixed nodes in M are selected as
winners, and apply the winner transformation to each of them.
The resulting communicating machine M‘ is shown in Fig. 7(b).
(Notice that in M‘ all the message labels gsi, g6’, and g7k are
replaced by g,, g6, and g,, respectively. Thi; is possible since
the replacement does not cause a node i n M t o have two out-
put edges with identical labels.)

Let N be the dual communicating machine for M . Like M ,
N has two mixed nodes. Each mixed node in N should be
selected as a loser, and the loser transformation should be ap-
plied to each of them. The resulting communicating machine
N’ is shown in Fig. 7(c). (As in M’, the message labels gSz,
g6,‘, and g7k are replaced by g, , 86, and g,, respectively, in
N .I

Algorithm 2 can now be applied to M‘ and N’ to deduce
that the smallest output channel capacity of MI‘ is two and that
the smallest output channel capacity of N is three. LThe
smallest output channel capacity of the original M , o r N, is.
four.)

Define the functionality of the network M‘ and N‘ as the
set of all sequences of sending and receiving operations executed
by the two machines starting from their initial state until they
both return to nodes 4 and 1 . Comparing the functionality of

GOUDA AND YU: COMMUNICATING FINITE STATE MACHINES 78 7

+g7

Initial Node both sequences, the two machines try to close the connec-
tion and succeed.

3) For the sequence of type 5 for 2 and %, there is no
corresponding sequence for M and N’.

From 3), the functionality of the constructed neLwork
M’ and N’ is a “proper subset” of the functionality of M and
N. After trying for some_ time, we feel that achieving all the
functionality of M and N , using our synthesis methodology:
is impossible so long as the constructed machines M‘ and N
are expected to exchange only seven types of messages.

VI. CONCLUDING REMARKS
We have presented a two-algorithm synthesis methodology.

The first algorithm takes one communicatingl machiye M ,
and constructs two communicating machines M and N such
that 1) M’ is constructed from M by addin5 receiving edges
to i t , and 2) the communication between M and N satisfies
some required progress properties. The second algorithm com-
putes the smallest possible capacities for the two channels
between M‘ and N‘. I t is straightforward to show that each
algorithm requires a time of O(st) where s is the number.of
nodes in the given machine M and t is the number of edges in
M . The efficiency of these algorithms is the major advantage
of our synthesis methodology.

The communication between the two constructed machines
M’ and N‘ has a fixed pattern. The communication proceeds in
harmony until a loss of synchronization occurs at two dual
mixed nodes in M’ and N‘. When a loss of synchronization is
detected by both machines (not necessarily at the same time),
then one machine (a loser) stops its current progress and re-
joins the second machine, while the second machine (a win-
ner) discards all the messages sent by the first machine during
the loss of synchronization. Then, a harmonious communi-
cation between the two machines is resumed. This fixed pat-
tern of communication is the major disadvantage of our
synthesis methodology. For example, the methodology can-
not synthesize the two communicating machines in Fig. 6(a)
and (b) since their communication does ndt follow the above
pattern. Instead, the methodology can synthesize the two
functionally similar machines in Fig. 7 whose communication
follows the above pattern.

It is useful to compare this synthesis methodology with the
ZWRCB methodology [191 as they both share similar objec-
tives.

1) The ZWRCB methodology supports a reasonably rich
class of communication patterns, whereas our methodology
supports one fixed communication pattern.

2) The ZWRCB methodology is based on generating and
processing reachability trees to detect deadlocks and over-
flows. Therefore, it requires more execution time than our
methodology.

3) The ZWRCB methodology is based on a trial-and-error
principle, and so it can consume large amounts of execution
time whenever the designer proceeds in erroneous directions.
For instance, the designer may add some new sending transi-

- ..

the constructed network M‘ and N‘ with that of the original net- this added transition will a deadlock, and so he
tion to one of the two machines, and then later discover that

work M and N yields the following observations. it. By contrast, our methodology is deterministic, and so is
1) For each of the “important” sequences of types 1, not based on trial and error.

for M’ and N’.
2, and 3 for M and N , there is an identical counter sequence The discussion in this paper is limited to the of two

2 , For the sequence Of type for and ‘ 9 there is no methodology to more than two machines is still an open prob-
communicating finite-state machines. Extending the synthesis

identical counter sequence for M’ and N . Instead, there is an lem that requires further research.
“equivalent” sequence, namely:

-

(.” sends g 5 , N’ sends 8 6 , M’ receives 8 6 , N’ receives g 5 ,
ACKNOWLEDGMENT

We are thankful to G. v. Bochmann. H. Rudin, and C. Sun-
M‘ sends g,, N‘ receives g,) shine for their helpful comments on an earlier version of this

paper. We are also thankful to the referees whose suggestions
This sequence is equivalent to the type 4 sequence since in have greatly improved the presentation.

788 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 7 , JULY 1984

REFERENCES

[I] G. v. Bochmann, “Finite state description of communication proto-
cols,’’ Comput. Networks, vol. 2;pp. 361-372, 1978.

[Z] G. v. Bochmann and P. Merlin, “On the construction of communication
protocols,” in Proc. 5th Int. Comput. Cornmun. Conf., Oct. 1980.

[3] G. v. Bochmann and C. Sunshine, “Use of formal methods in communi-
cation protocol design,” IEEE Trans. Cornmun., vol. COM-28, pp.
624-631, Apr. 1980.

[4] D. Brand and P. Zafiropulo, “On communicating finite-state ma-
chines,” J. Ass. Comput. Mach., vol. 30, pp. 433-445, Apr. 1983.

[5] M. G. Gouda and W. Chu, “A finite state model for protocol processes
and services,” Dep. Comput. Sci., Univ. Texas at Austin, Tech. Rep.
198, Apr. 1982.
M. G. Gouda and Y. T. Yu, “A methodology to design deadlock-free
and bounded,” presented at 1st Int. Workshop Protocol Testing and
Verification, Brit. Nat. Phys. Labs, May 1981.
-,“Maximal progress state exploration,” presented at ACM
SIGCOMM ’83, Univ. Texas at Austin, Mar. 1983.
-,“Protocol .validation by maximal progress state exploration,”
IEEE Trans Commun., vol. COM-32, pp. 94-97, Jan. 1984.
P. Merlin and G. v. Bochmann, “On the construction of submodule
specifications and communication protocols,” TOPLAS, vol. 5, pp. 1-
25, Jan. 1983.
J. Rubin and C. H. West, “An improved protocol validation tech-
nique,” Comput. Networks, vol. 6, Apr. 1982.
H. Rudin and C. H. West, “A validation technique for tightly coupled
protocols,” IEEE Trans. Comput., vol C-31, July 1982.
C. A. Sunshine, “Formal modeling of communication protocols,”
Inform. Sci. Inst., Univ. Southern California, Los Angeles, Res. Rep.
81-89, Mar. 1981; also in Computer Networks andSimulotion II, S.
Schoemaker, Ed. New York: North-Holland, 1982.
A. Tannenbaum, Computer Networks. Englewood Cliffs, NJ: Pren-
tice-Hall, 1981.
C. H. West, “An automated technique of communication protocol
validation,” IEEE Trans. Commun., vol. COM-26, pp. 1271-1275,
Aug. 1978.
Y. T. Yu, “Communicating finite state machines: Analysis and synthe-
sis of communication protocols,” Ph.D. dissertation, Dep. Comput.
Sci., Univ. Texas at Austin, Jan. 1983.
Y. T. Yu and M. G. Gouda, “Deadlock detection for a class of

communicating finite-state machines,” IEEE Trans. Commun., vol.
COM-30, pp. 2514-2518, Dec. 1982.

[17] -,“Unboundedness detection for a class of communicating finite
state machines,” Inform. Processing Lett., vol. 17, pp. 235-240, Dec.
1983.

[18] P. Zafiropulo, “Protocol validation by duologue-matrix analysis,”
IEEE Trans. Commun., vol. COM-26, pp. 1187-1194, Aug. 1978.

[19] P. Zafiropulo, C. West, H. Rudin, D. D. Cowan, and D. Brand,
“Towards analyzing and synthesizing protocols,” IEEE Trans. Com-
mun., vol. COM-28, pp. 651-661, Apr. 1980.

*
Mohamed G. Gouda (S’76-”77) received the
B.Sc. degrees in engineering and mathematics from
Cairo University, Cairo, Egypt, in 1968 and 1971,
respectively, the M.A. degree in mathematics from
York University, Toronto, Ont., Canada, in 1972,
and the M.Math and Ph.D. degrees in computer
science from the University of Waterloo, Waterloo,
Ont., in 1973 and 1977, respectively.

From 1977 to 1980 he worked for the Honeywell
Systems and Research Center and the Honeywell
Corporate Technology Center, Minneapolis, MN.

Since 1980 he has been an Assistant Professor in the Department of Computer
Sciences at the University of Texas at Austin. His research interests include
formal verification and synthesis of distributed systems and communication
protoc6ls. *

Yao-Tin Yu was born in Taipei, Taiwan, R.O.C., in
1953. He received the B.S. degree in electrical
engineering from the National Taiwan University in
1975 and the Ph.D. degree in computer science from
the University of Texas at Austin in 1983.

Since 1983 he has been an Assistant Professor in
the Department of Computer Science at the Univer-
sity of Iowa, Iowa City. His research interests in-
clude formal techniques for the analysis and synthe-
sis of communication protocols.

