
1 | P a g e

Assignment 2

Submitted by:
Mathieu Thibault-Marois – 5049388

Presented to
Professor Gregor Von Bochmann

for
ELG7187C

Monday February 25th, 2013
University of Ottawa

2 | P a g e

Question 1

At first sight, there seem to be only one difference in the modeling of the receiver and

sender and that is the fact that after a successful connection, the LTSA automaton goes

back to its initial state for another connection to begin. In the SDL model, if the

connection is successful, the model does not go back to its initial state. It only returns if

the connection fails. Another difference is the fact that the LTSA automaton models the

underlying communication medium, something that is not needed in the SDL model.

Running a safety check on the LTS machine, LTSA reports a deadlock after the

following actions: cReq, cMS, cMR, cInd, cResp, okMS, okMR, cConf, dMS, cReq. The

reason is that after sending dMS, both the initiator and the receiver go back to the initial

state, but the underlying communication is still waiting for an appropriate reception for

the signal dMR and thus both MIR and MRI are stuck in state 1. Since Both I1 and R1

are back to state 0, there are no specified reception for dMR and thus the automaton

deadlocks. So what the model does is that both the receiver and the initiator disconnect

instantly when either one of them disconnect (receives dMR or dMS), but the

communication medium actually only expect that the Initiator will disconnect and then

the receiver will disconnect. There multiple ways to fix this as to fix it, one must make

assumptions on what is the expected behavior of the whole system. For example, is

“disconnect” a message that should transit through the medium or is it instantaneous that

when one disconnects, the other instantly also does.

The proposed solution enforces that both dMR and dMS must be received before

returning to the initial state, in any order. So if the receiver disconnects (dMR sent), then

then dMS must be seen before trying to re-establish a connection. Same goes if dMS is

received first, then dMR must be received before continuing. This solution required

change to all the LTS machines. First, the precedence relationship is enforced in both the

initiator and the receiver. Second, both communication channels are made to accept dMR

-> dMS and dMS -> dMR transitions. The model would also work by removing all

reference to dMR and dMS from the communication medium but that would mean that

both terminals are aware of the disconnect state of each other and can wait on each other

to disconnect without relying on it and it would not make much sense. In short, this

model ensures that both the initiator and the receiver disconnect properly before returning

to their initial state. The revised model is show on the next page.

LTSA’s safety and supertrace checks do not report any errors or deadlock with the

revised system. The progress check also does not report any livelock with the model.

LTSA reports that the total state space is 1280 (8 for I1, 8 for R1, 4 for MIR and 5 for

MRI) which requires at least 11 bits to represent. The fact that LTSA report no deadlock

is not a warranty that the system actually behaves like we would like it too, it just merely

ensure that no blocking exists. In order to ensure that the system behaves as expected, all

possible execution path were manually verified.

3 | P a g e

4 | P a g e

Question 2

For the sake of clarity, instead of using the machines drawn by hand shown on the

webpage, I will be using the equivalent machines shown below, redone in LTSA.

The composed LTS machine is show below (The state numbers have been modified to fit

with the notation in LTSA which start a 0, not 1):

0 0

1 0

a

0 3

b

1 3 2 0

b x

1 0

b

1 1

2 1

x

1 2

y

2 2

xy

1 0

b

1 3

a

0 0

b

c

2 3

x

Deadlock State

5 | P a g e

There are two states that, if reached, will cause a deadlock of the system. In both state 2,2

and 2,3, machine A can only transition on a C while machine B can only transition on a

B. In order to solve the problem, there should either be a transition for C in states 2 and 3

of machines B or a transition for B in state 2 of machine A. Since the second option

requires fewer modifications, it will be the one implemented. Now the second decision is

to decide to which state that transition should take machine A. Since there are no

explanations on what the machine is actually supposed to do, any choice of state will do,

as long as the deadlocks are removed. The redesigned machines are shown below, as well

as their composition, with state 2 of machine A now transitioning on B to state 0. Since

this modification affects other transition than the ones in the deadlocks states, the

composition is necessary to show that additional states that may have been introduced do

not create new deadlocks.

0 0

1 0

a

0 3

b

1 3

2 0b

x

1 0

b

1 1

2 1

x

1 2

y

2 2

xy

1 0

b

1 3

a

0 0

b

c

2 3

x

0 0

b

0 0

b

0 3

b

6 | P a g e

The new states and transitions are shown in red. As expected, the added transition added

new transitions not only in the deadlock states. However, these new added transitions do

not create any new deadlock situations. The composed machine is now safe.

Using LTSA, the two initial machines are modeled as follows:

A1 = (a -> A2 | b ->A1), A2 = (x -> A3 | b -> A2), A3 = (c -> A2).

B1 = (a -> B1 | b -> B2 | c -> B3), B2 = (a -> B2 | b -> B1),
B3 = (y -> B4), B4 = (b -> B1).

And to tell LTSA that the two models interact with each by rendez-vous, one needs

simply to add the following line:

||AB = (A1 || B1).

LTSA has the capability to compose the machines A1 and B1 into the behavior of a

single machine AB. Using this ability wields the following graph:

This is identical to the first composed machines derived by hand. Running LTSA’s safety

and supertrace checks shows that the system will deadlock for either one of these two

sequence of event : a,b,x or b,a,x. This however is limited since it only highlights states 3

(2,3 in the machine derived by hand) as a deadlock state. State 8 (2,2 in the machine

derived by hand) is not reported since the tool stops at the first deadlock state it

encounters. In short, if LTSA does not report any deadlock, then there are none, however,

if LTSA reports a deadlock, there might actually be an arbitrary number of deadlocks

states still undetected. Implementing the revised system presented before, LTSA reports

no deadlock, as expected. The implementation of the revised system is shown below.

A1 = (a -> A2 | b ->A1), A2 = (x -> A3 | b -> A2),
A3 = (c -> A2 | b -> A1).

B1 = (a -> B1 | b -> B2 | c -> B3), B2 = (a -> B2 | b -> B1),
B3 = (y -> B4), B4 = (b -> B1).

||AB = (A1 || B1).

While the revised system reports no deadlock, LTSA still reports a livelock (progress

check), for the sequence ab(bb)+.

7 | P a g e

The number of executions of x and y are indeed related to each other. Looking that the

original diagram for the composed machine, one can easily see that, in the sequence that

do not lead to deadlock, x is always followed by y. Hence for each execution of x, there

will be an execution of y. The exception to this is the sequences containing x, c, x, y in

which two executions of x follow each other, but these sequences results in a deadlock of

the system. In the revised specification, the execution x and y are no longer related. There

can be an infinite number of executions for x with no execution of y, one x for every y,

two x for every y, etc. The two becomes completely unrelated.

Question 3

In IOAs, a machine can produce an output for which the receiver does not have a

specified reception. For this question, we take the assumption that if an IOA receive an

input for which it has no specified reception, the input is simply dropped and the

receiving IOA stays in the same state, as if nothing happened. The IOA that sent the input

moves on to its new state. Since IOAs specify input and output, unlike LTS machines, the

behavior of the system must be extended from the one described in Question 2:

A Bx
a, c

b
y

This diagram shows that machine A take x and b as inputs and outputs a and c, and that

machine B takes a, c as inputs and outputs b and y. This information can then be added to

the IOAs describing machine A and B. Machine A is as follow:

0 1 2

!a

?b

?x

!c

?b

And machine B is:

0 1 2 3

?c !y

?a?a

!b

!b

!b

8 | P a g e

Doing a reachability analysis of the new system, we get the following:

1 1 2 2 1 0

2 1 1 2 1 3 2 0

1 1 2 3 1 0

2 0 1 3

1 0

1 3 0 0

0 3

0 0

1 2 2 0

!a

?x

!c

?x

!c (u)

!y

!b?x!y

!b (u)!c (u)

!b (u)

!b (u)!c (u)

?x

!b

!b

!b

!a !b

In the diagram, dashed lines represent transitions to states that were already presented

previously in the graph and red lines represent transitions where an unspecified reception

occurs. The reachability analysis shows that under the assumption that unspecified

receptions are dropped, there is no deadlock in the system. Technically, in all states

shown above, the message x could be received from the environment. However, since

nothing at all happens unless there is a reception specified, these are not represented.

In LTSA, IOA can be represented by adding non specified receptions as transitions to

additional states. For example, in state 2 of machine A, b is unexpected, so to model this,

we would add another state to which A would transition if b is received and would stay

there until c is received, which was the expected reception. The whole model in LTSA is

shown below:

A0 = (a -> A1 | b ->A0), A1 = (x -> A2 | b -> A1),
A2 = (c -> A1 | b -> A2_NR), A2_NR = (b -> A2_NR | c -> A1).

B0 = (a -> B0 | b -> B3 | c -> B1), B1 = (y -> B2 | c -> B1_NR),
B2 = (b -> B0 | c -> B2_NR), B3 = (a -> B3 | b -> B0 | c -> B3_NR),
B1_NR = (c -> B1_NR | y -> B2), B2_NR = (c -> B2_NR | b -> B0),
B3_NR = (c -> B3_NR | b -> B0).

||AB = (A0 || B0).

The resulting LTS machines for this LTS code are show on the next page.

9 | P a g e

Due to all the added transitions and states, the composed machine is now much more

complicated than the one shown in Question 2.

As expected, LTSA does not report any deadlock with the system. However, just like in

Question 2, LTSA reports a livelock for the sequence ab(bb)+.

10 | P a g e

For the last part of Question 3, the system is now assumes to have a component that

receives the y interaction sent by B. The architecture thus is now described as:

A Bx
a, c

b
y C

This new component has two states: ready and busy. When it is ready, it can receive y

and become busy and spontaneously comes back to ready.

READY BUSY

?y

ε

When in busy however, it cannot receive y and thus this situation may lead to an

unspecified reception for C. Obviously, this can only happen when B is in a position to

send, which means B is in state 1. This means that y can be sent only when the system is

in state 1,1 and 2,1 since 3,1 is not a possible state. For proof of this, take a look back at

the composition of the original system done at the start of this section.

An easy way to ensure that no receptions are made in the busy state would be for

component C to send an ACK to B once it is done with y and for B to wait on this ACK

before continuing. B would become this:

0 1

2

3

?c

!y

?a

!b

!b

!b

2.1

?ACK

And C would now be:

READY BUSY

?y

!ACK

It is thus now impossible for B to send a y to C in the busy state since it needs to wait for

C to leave the busy state before moving on and maybe sending a 2
nd

 y.

11 | P a g e

Question 4

Assuming that the system described in Question 3 now uses asynchronous

communication with FIFO buffers then doing a complete reachability analysis is

impossible. First, the behavior of the environment is not defined, so in Machine A, the

environment could send an infinite number of message x before A as time to consume

any. Same goes for y, for which the environment technically needs an infinite queue. In

order to simplify the analysis, these queues will not be considered and only the queues in

between A and B will be considered. This is in order to analyze the inner workings of the

system since we already know that the interaction with the environment is broken.

The diagram below shows a partial reachability analysis of the system. Not all transitions

from all states are shown. It highlights the fact that even internally; the system does have

multiple infinite loops possible resulting infinite queue lengths.

1 a:0

b:1 a:3
bb:
0

0

b:0 3

0 0

!a !b

!a !b

Infinite loop of !b

bb:
1

a:0

!b

bb
b:1

a:3

!b

Infinite loop of !b

2 a:0 b:1 a:3

?x !b

bb:
1

a:0

!b

Infinite loop of !b

1
ca:
0

!c

2
ca:
0

?x

1
cca
:0

!c

Infinite loop of !c

1 0

?a

2 0

?x

1 c:0

!c

2 c:0

?x

1
cc:
0

!c

Infinite loop of !c

?a

?a

?a

?a

1 1

?c

2 1

?c ?x

1 2

!y

2 2

!y

1 c:1

!c

Infinite loop of !c

?x

b:1 0

!b

ETC...
Infinite loop of !b

The problem with the design is two folds. Externally, the environment is not modeled and

so is assumed to be able to send / receive an infinite number of messages with no

protocol. On the output, this is not a big issue since the infinite queue for y is outside of

the system scope and can simply be ignored. However, for the input, the queue for x is

inside the system and is infinite. To resolve the problem, one could either model the

environment more restrictively or state that inputs to the system do not go into a queue

but are simply ignored when not expected. Internally, machine A and B both need infinite

queues to communicate with each other. This is due to a bad internal design. Machine B

can send an infinite number of message b and Machine A can send an infinite number of

message c. One should always ensure that the protocol is balanced, that is one side cannot

12 | P a g e

overwhelm the other. To solve the problem, one would have to redesign the protocol.

However, no knowing the goal of this protocol, one has no ideas what manipulations will

preserve the desired behavior. Below is one possible way (purely hypothetical) to change

the protocol to eliminate the infinite queues. Machine A is first, followed by Machine B:

0 1 2

!a ?x

2

!c

?b

?b

1 2 3

?c !y

!b

0

?a

!b

As said before, this new protocol changes the behavior of the system and thus may be

inappropriate for the task. However, it shows that it is possible to design a protocol

without encountering infinite queues if one is careful. If the design is not to be modified,

then one must make assumptions as to the environment and the behavior. For example,

let assume that x arrives at a very low frequency, then in state 1, machine A might

actually be able to deal with all the arriving b message if the frequency of those is also

not too high (but larger than for x).

The case where non-specified receptions are dropped has been considered in Question 3.

Please refer to that section for reference. In short, since there are no queues, the infinite

loops do not cause problem.

