[image: image1.png]uOttawa

School of Information Technology and Engineering (SITE)

CEG 4183: Higher Layer Network Protocols, Fall 2008
Lab 4: Remote Services
Date of Lab: November 24, 2008 Report is due: December 1, 2008; 12:00PM
Place: deposit in the course’s drop box.

Objective

To become familiar with the concept of application-layer remote services, in the context of Java Remote Method Invocation (RMI).
Preparation

Study Sun’s RMI tutorial at http://java.sun.com/docs/books/tutorial/rmi/ . Then, design and write the necessary program for the following scenario.
Background
Income tax regulations change on a yearly basis. Home users usually buy software packages that automatically calculate the user’s yearly tax, using the taxation rules for that year. However, since these rules change every year, users need to upgrade their software or buy a new version.

One way to minimize (or completely eliminate) the need for home users to change their software is to implement the tax calculation algorithms at a tax service provider center, and allow users to access such service, over the Internet, through a well-defined interface that rarely (hopefully never) changes. This way, when regulations change, the service provider implements the changes locally and, if the aforementioned interface was designed well, home users can continue using the service without any change at the user’s side.
A Simple Scenario
There are too many taxation rules to implement for one lab session, so let us assume the following simplified federal tax rules:

Taxable Income (TI) = Total Income – Personal Amount - Expenses

2004 rules

Personal Amount = $7,756

Expenses: no limits

Tax Brackets:

	Taxable Income (TI) range
	Federal Tax

	TI < 0
	0

	0< TI ≤ $32,183
	0.16×TI

	$32,183 < TI ≤ $64,368
	5149 + 0.22×(TI-32183)

	$64,368< TI ≤ $104,648
	12230 + 0.26×(TI-64368)

	TI > $104,648
	22703 + 0.29×(TI-64368)

2005 rules

Personal Amount = $7,832

Expenses: cannot exceed $5,000

Tax Brackets:

	Taxable Income (TI) range
	Federal Tax

	TI < 0
	0

	0< TI ≤ $33,183
	0.16×TI

	$33,183 < TI ≤ $62,377
	5149 + 0.22×(TI-32183)

	$62,377< TI ≤ $105,099
	12230 + 0.26×(TI-64368)

	TI > $105,099
	22703 + 0.29×(TI-64368)

Procedure
Design an RMI object that would have a calculateFederalTax method with arguments Total Income and Expenses and a return value for Federal Tax. Implement two such objects: one for 2004, and one for 2005 each having its own rules.

Next, implement a client program that asks the user for his/her Total Income and Expenses, then invokes the RMI object (over the network) with the user’s input, and finally prints out the federal tax as returned by the remote object.
Using the configuration and execution instructions given at the end of this document, run the following cases and record the results:

	Year
	Total Income
	Expenses

	2004
	$47,000
	$6,000

	2004
	$100,000
	$10,000

	2004
	$120,000
	$500

	2004
	$52,000
	$60,000

	2005
	$48,000
	$6,000

	2005
	$103,000
	$10,000

	2005
	$52,000
	$60,000

Questions
1- In practice, would you use RMI to develop and commercialize a software system such as this? If yes, why? If no, what would you use instead and why?
Configuration

1- Before compiling, type the following commands:

add C:\Program Files\Java\j2re1.4.2_06\bin to PATH in control panel->system

add fullPath to CLASSPATH in control panel->system ; where fullPath is the actual full path to the directory in which you are keeping the Java files for this lab.

2- In the same directory (fullPath), create a file and call it security.policy ; In that file, enter

the following text:

grant

{

permission java.security.AllPermission;

};

3- Compile your files:

javac *.java

4- run the rmic program on the generated object in step 3:

rmic MyObject
; where MyObject is the tax calculation class you have written.

5- Start up the rmi registry:

start rmiregistry

6- Start the server:

java -Djava.rmi.server.codebase=fullPath -Djava.security.policy=fullPath/security.policy MyObject
; where fullPath and MyObject are as defined in steps 1 and 4 above.

7- Now you can run the client to contact the server (do so by contacting the server’s IP

address).

